Duży ludzki mózg pojawił się dzięki fermentowanej żywności?
dodany przez
KopalniaWiedzy.pl, w Humanistyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Na stanowisku La Prele w Wyoming (USA), gdzie paleolityczni mieszkańcy Ameryki Północnej zabili mamuta lub pożywili się na znalezionym martwym zwierzęciu, archeolodzy dokonali kolejnego interesującego odkrycia. Jak donoszą na łamach PLOS ONE stanowy archeolog Spencer Pelton i jego koledzy z University of Wyoming, już wtedy wcześni mieszkańcy kontynentu wytwarzali igły z dziurką. Były one robione z kości lisów, zajęcy lub królików, rysi, pum, być może też wymarłego miracinonyksa (amerykańskiego geparda).
Nasze badania są pierwszymi, w trakcie których zidentyfikowaliśmy gatunki, z których Paleoindianie wytwarzali igły z dziurką. To silny dowód na wytwarzanie ze skór szytych ubrań. To właśnie takie ubrania były jednym z tych osiągnięć, które umożliwiły naszym przodkom rozprzestrzenienie się na północnych szerokościach geograficznych i kolonizację obu Ameryk, stwierdzili badacze.
Przed 13 000 lat na stanowisku La Prele w hrabstwie Converse Homo sapiens zabił lub znalazł martwego niemal dorosłego mamuta. Już wcześniej zespół profesora Todda Surovella zalazł tam najstarszy w Amerykach koralik. Został wykonany z zajęczej kości.
Zidentyfikowanie gatunków, z kości których wykonano koralik czy znalezione obecnie 32 fragmenty igieł, było możliwe dzięki badaniom zooarchelogicznym z wykorzystaniem spektrometrii mas. Z kości wydobyto kolagen, a następnie zbadano jego skład chemiczny i przypasowano do gatunków.
Pomimo tego, że kościane igły są niezwykle ważnym elementem badań nad rozprzestrzenianiem się człowieka współczesnego po świecie, nikomu dotychczas nie udało się zidentyfikować materiału, z którego były wykonane, przez co nasze zrozumienie tej ważnej innowacji kulturowej było niepełne, zauważają autorzy badań. O tym, że ludzie prawdopodobnie musieli używać szytych ubrań, by przetrwać na północy kuli ziemskiej, wiadomo od dawna. Jednak mamy bardzo miało dowodów na istnienie takich ubrań. Istnieją za to dowody pośrednie, chociażby w postaci igieł z kości.
Zdaniem naukowców, zwierzęta, z których ciał wykonywano igły, prawdopodobnie były łapane w pułapki i w tym przypadku wcale nie musiało chodzić o zdobywanie pożywienia. Nasze badania przypominają, że łowcy wykorzystują zwierzęta w bardzo różnych celach, a znalezienie kości na stanowisku archeologicznym wcale nie musi oznaczać, że zwierzę zjedzono, dodają.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Badacze z MIT, University of Cambridge i McGill University skanowali mózgi ludzi oglądających filmy i dzięki temu stworzyli najbardziej kompletną mapę funkcjonowania kory mózgowej. Za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) naukowcy zidentyfikowali w naszej korze mózgowej 24 sieci połączeń, które pełnią różne funkcje, jak przetwarzanie języka, interakcje społeczne czy przetwarzanie sygnałów wizualnych.
Wiele z tych sieci było znanych wcześniej, jednak dotychczas nie zbadano ich działania w warunkach naturalnych. Wcześniejsze badania polegały bowiem na obserwowaniu tych sieci podczas wypełniania konkretnych zadań lub podczas odpoczynku. Teraz uczeni sprawdzali ich działanie podczas oglądania filmów, byli więc w stanie sprawdzić, jak reagują na różnego rodzaju sceny. W neuronauce coraz częściej bada się mózg w naturalnym środowisku. To inne podejście, które dostarcz nam nowych informacji w porównaniu z konwencjonalnymi metodami badawczymi, mówi Robert Desimone, dyrektor McGovern Institute for Brain Research na MIT.
Dotychczas zidentyfikowane sieci w mózgu badano podczas wykonywania takich zadań jak na przykład oglądanie fotografii twarzy czy też podczas odpoczynku, gdy badani mogli swobodnie błądzić myślami. Teraz naukowcy postanowili przyjrzeć się mózgowi w czasie bardziej naturalnych zadań: oglądania filmów.
Wykorzystując do stymulacji mózgu tak bogate środowisko jak film, możemy bardzo efektywnie badań wiele obszarów kory mózgowej. Różne regiony będą różnie reagowały na różne elementy filmu, jeszcze inne obszary będą aktywne podczas przetwarzania informacji dźwiękowych, inne w czasie oceniania kontekstu. Aktywując mózg w ten sposób możemy odróżnić od siebie różne obszary lub różne sieci w oparciu o ich wzorce aktywacji, wyjaśnia badacz Reza Rajimehr.
Bo badań zaangażowano 176 osób, z których każda oglądała przez godzinę klipy filmowe z różnymi scenami. W tym czasie ich mózgi były skanowane aparatem do rezonansu magnetycznego, generującym pole magnetyczne o indukcji 7 tesli. To zapewnia znacznie lepszy obraz niż najlepsze komercyjnie dostępne aparaty MRI. Następnie za pomocą algorytmów maszynowego uczenia analizowano uzyskane dane. Dzięki temu zidentyfikowali 24 różne sieci o różnych wzorcach aktywności i zadaniach.
Różne regiony mózgu konkurują ze sobą o przetwarzanie specyficznych zadań, gdy więc mapuje się je z osobna, otrzymujemy nieco większe sieci, gdyż ich działanie nie jest ograniczone przez inne. My przeanalizowaliśmy wszystkie te sieci jednocześnie podczas pracy, co pozwoliło na bardziej precyzyjne określenie granic każdej z nich, dodaje Rajimehr.
Badacze opisali też sieci, których wcześniej nikt nie zauważył. Jedna z nich znajduje się w korze przedczołowej i wydaje się bardzo silnie reagować na bodźce wizualne. Sieć ta była najbardziej aktywna podczas przetwarzania scen z poszczególnych klatek filmu. Trzy inne sieci zaangażowane były w „kontrolę wykonawczą” i były najbardziej aktywne w czasie przechodzenia pomiędzy różnymi klipami. Naukowcy zauważyli też, że były one powiązane z sieciami przetwarzającymi konkretne cechy filmów, takie jak twarze czy działanie. Gdy zaś taka powiązana sieć, odpowiedzialna za daną cechę, była bardzo aktywna, sieci „kontroli wykonawczej” wyciszały się i vice versa. Gdy dochodzi do silnej aktywacji sieci odpowiedzialnej za specyficzny obszar, wydaje się, że te sieci wyższego poziomu zostają wyciszone. Ale w sytuacjach niepewności czy dużej złożoności bodźca, sieci te zostają zaangażowane i obserwujemy ich wysoką aktywność, wyjaśniają naukowcy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W 2000 roku w pobliżu miasta Pampore w Indiach znaleziono sfosylizowane szczątki trzech słoniowatych. Przed tygodniem naukowcy opublikowali dwa artykuły, z których dowiadujemy się, że mamy tutaj do czynienia z najstarszymi na subkontynencie indyjskim śladami dzielenia mięsa zwierząt przez ludzi.
Wspomniane słoniowate żyły 300–400 tysięcy lat temu i należały do wymarłego rodzaju Palaeoloxodon, którego przedstawiciele byli dwukrotnie bardziej masywni od współczesnych słoni afrykańskich. Dotychczas tylko raz znaleziono kości tego gatunku rodzaju Palaeoloxodon. Szczątki odkryte w 2000 roku są znacznie bardziej kompletne.
Zwierzęta zmarły w pobliżu rzeki w dolinie Kaszmir. Wkrótce po śmierci ich szczątki i 87 kamiennych narzędzi wykonanych przez przodka człowieka, zostały przykryte osadami, co pozwoliło zachować je do dnia dzisiejszego. W jednym ze wspomnianych artykułów badacze opisują, jak odkryli wióry z kości, co wskazuje, że ludzie rozbili kości, by pozyskać z nich szpik. W drugim opisano same kości oraz gatunek, do którego należały.
To jednak zjadł słonie? Tego nie wiemy. Dotychczas na subkontynencie indyjskim skamieniałe szczątki hominina odkryto tylko w jednym miejscu. Znaleziono je w 1982 roku i naukowcy do dzisiaj nie mogą się zgodzić, do jakiego gatunku należał człowiek z Narmada. Pewne jest, że wykazuje on cechy typowe dla starszych i młodszych gatunków homininow, co sugeruje, że na subkontynencie dochodziło do mieszania gatunków i musiał on odgrywać ważną rolę we wczesnym rozprzestrzenianiu się człowieka.
Teraz dowiedzieliśmy się, że mieszkańcy Indii środkowego plejstocenu – niezależnie od tego, kim byli – jedli słonie. Kamienne narzędzia, które prawdopodobnie wykorzystali do pozyskania szpiku, zostały wykonane z bazaltu, który nie występuje w okolicy znalezienia szczątków. Paleontolodzy sądzą, że surowy materiał został przyniesiony z zewnątrz, a narzędzia wykonano na miejscu.
Odkrycie ma duże znaczenie dla lepszego zrozumienia obecności człowieka na subkontynencie. Dotychczas najstarsze dowody na dzielenie mięsa zwierzęcego nie były starsze niż 10 tysięcy lat. Być może nie przyglądano się temu zbyt szczegółowo, albo szukano w nieodpowiednich miejscach. Jednak dotychczas nie mieliśmy żadnych dowodów, by ludzie żywili się dużymi zwierzętami na terenie Indii, mówi jeden z badaczy, Advait Jukar, kurator zbiorów paleontologii kręgowców we Florida Museum of Natural History.
Trzeba tutaj podkreślić, że o ile mamy dowody, iż ludzie pożywiali się na słoniach, to brak dowodów, by je upolowali. Niewykluczone, że zwierzęta zmarły z przyczyna naturalnych, a ludzie je po prostu znaleźli i skorzystali z okazji.
Wśród skamieniałości znajduje się najbardziej kompletna czaszka gatunku Palaeoloxodon turkmenicus. Jego szczątki znaleziono wcześniej tylko raz. W 1955 roku w Turkmenistanie odkryto fragment czaszki. Wyglądał on inaczej niż czaszki innych Palaeoloxodon, ale nie był na tyle duży, by jednoznacznie stwierdzić, że należy do osobnego gatunku. Problem z rodzajem Palaeoloxodon jest taki, że zęby poszczególnych gatunków są niemal identyczne. Jeśli więc znajdziesz pojedynczy ząb, nie wiesz, do jakiego gatunku należał. Trzeba przyglądać się czaszkom, mówi Jukar.
Na szczęście w przypadku skamieniałości z Pampore zachowały się kości gnykowe. Są one bardzo delikatne, ale różne u różnych gatunków, dzięki czemu są przydatnym narzędziem do określania przynależności gatunkowej szczątków.
Zdaniem Jukara, skoro ludzie jedzą mięso od milionów lat, powinniśmy znaleźć więcej szczątków o tym świadczących. Trzeba lepiej poszukać. Oraz zbierać dosłownie wszystko. W przeszłości kolekcjonowano tylko czaszki i kości kończyn. Nie zbierano połamanych kości, które mogły nosić ślady działania ludzi, mówi Jukar.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Neurolog Carina Heller poddała się w ciągu roku 75 badaniom rezonansem magnetycznym, by zebrać dane na temat wpływu pigułek antykoncepcyjnych na mózg. Pierwszą pigułkę antykoncepcyjną dopuszczono do użycia w USA w 1960 roku i już po dwóch latach przyjmowało ją 1,2 miliona Amerykanek. Obecnie z pigułek korzysta – z różnych powodów – około 150 milionów kobiet na całym świecie, co czyni je jednymi z najczęściej używanych leków. I chociaż generalnie są one bezpiecznie, ich wpływ na mózg jest słabo poznany.
Dlatego też Heller postanowiła sprawdzić to na sobie. Zwykle bowiem eksperymentalne obrazowanie mózgu z wykorzystaniem MRI prowadzone jest na niewielkich grupach, a każda osoba poddawana jest badaniu raz lub dwa razy. Takim badaniom umykają codzienne zmiany w działaniu czy morfologii mózgu.
Pani Heller najpierw pozwoliła przeskanować swój mózg 25 razy w ciągu 5 tygodni. Rejestrowano wówczas zmiany zachodzące podczas jej naturalnego cyklu. Klika miesięcy później zaczęła brać pigułki antykoncepcyjne i po trzech miesiącach poddała się kolejnym 25 skanom w ciągu 5 tygodni. Wkrótce po tym przestała brać pigułki, odczekała 3 miesiąca i została poddana ostatnim 25 skanom w 5 tygodni. Po każdym skanowaniu pobierano jej też krew do badań oraz wypełniała kwestionariusz dotyczący nastroju.
Heller zaprezentowała wstępne wyniki swoich badań podczas dorocznej konferencji Towarzystwa Neuronauk. Uczona zauważyła, że w trakcie naturalnego cyklu dochodzi do regularnych zmian w objętości mózgu i liczbie połączeń pomiędzy różnymi regionami. W czasie brania pigułek objętość mózgu była nieco mniejsza, podobnie jak liczba połączeń. Po odstawieniu pigułek jej mózg w większości powrócił do naturalnego cyklu zmian.
Uczona planuje też porównać wyniki swoich badań MRI z wynikami badań kobiety z endometriozą, niezwykle bolesną, niszczącą organizm i życie chorobą, która jest jedną z głównych przyczyn kobiecej niepłodności. Uczona chce sprawdzić, czy zmiany poziomu hormonów w mózgu mogą mieć wpływ na rozwój choroby.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Choroba Alzheimera niszczy mózg w dwóch etapach, ogłosili badacze z amerykańskich Narodowych Instytutów Zdrowia. Ich zdaniem pierwszy etap przebiega powoli i niezauważenie, zanim jeszcze pojawią się problemy z pamięcią. Wówczas dochodzi do uszkodzeń tylko kilku typów wrażliwych komórek. Etap drugi jest znacznie bardziej niszczący i w nim dochodzi do pojawienia się objawów choroby, szybkiej akumulacji blaszek amyloidowych, splątków i innych cech charakterystycznych alzheimera.
Jednym z problemów związanych z diagnozowaniem i leczeniem choroby Alzheimera jest fakt, że do znacznej części szkód dochodzi na długo zanim pojawią się objawy. Możliwość wykrycia tych szkód oznacza, że po raz pierwszy możemy obserwować to, co dzieje się w mózgu chorej osoby na najwcześniejszych etapach choroby. Uzyskane przez nas wyniki w znaczący sposób zmienią rozumienie, w jaki sposób choroba uszkadza mózg i ułatwią opracowanie nowych metod leczenia, mówi doktor Richar J. Hodes, dyrektor Narodowego Instytutu Starzenia Się.
Badacze przeanalizowali mózgu 84 osób i stwierdzili, że uszkodzenie na wczesnym etapie choroby neuronów hamujących może być tym czynnikiem, który wyzwala całą kaskadę reakcji prowadzących do choroby.
Badania potwierdziły też wcześniejsze spostrzeżenia dotyczące alzheimera. Naukowcy wykorzystali zaawansowane narzędzia do analizy genetycznej, by bliżej przyjrzeć się komórkom w zakręcie skroniowym środkowym, gdzie znajdują się ośrodki odpowiedzialne za pamięć, język i widzenie. Obszar ten jest bardzo wrażliwy na zmiany zachodzące w chorobie Alzheimera.
Porównując dane z analizowanych mózgów z danymi z mózgów osób, które cierpiały na alzheimera, naukowcy byli w stanie odtworzyć linię czasu zmian zachodzących w komórkach i genach w miarę rozwoju choroby.
Wcześniejsze badania sugerowały, że do uszkodzeń dochodzi z kilkunastu etapach charakteryzujących się coraz większą liczbą umierających komórek, zwiększającym się stanem zapalnym i akumulacją białka w postaci blaszek amyloidowych i splątków. Z nowych badań wynika, że występują jedynie dwa etapy, a do wielu uszkodzeń dochodzi w drugim z nich i to wówczas pojawiają się widoczne objawy.
W pierwszej, wolno przebiegającej ukrytej fazie, powoli gromadzą się blaszki, dochodzi do aktywowania układu odpornościowego mózgu, osłonki mielinowej oraz śmierci hamujących neuronów somatostatynowych. To ostatnie odkrycie jest zaskakujące. Dotychczas uważano bowiem, że szkody w alzheimerze są powodowane głównie poprzez uszkodzenia neuronów pobudzających, które aktywują komórki, a nie je uspokajają. W opublikowanym na łamach Nature artykule możemy zapoznać się z hipotezą opisującą, w jaki sposób śmierć neuronów somatostatynowych może przyczyniać się do rozwoju choroby.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.