Błędne analizy fal grawitacyjnych mogą prowadzić do fałszywych wniosków dot. teorii Einsteina
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Fale grawitacyjne zdradzają niektóre właściwości czarnych dziur, przez które zostały wygenerowane, takie jak ich masa czy odległość od Ziemi. Jednak para brytyjskich fizyków twierdzi, że dzięki nim można dowiedzieć się znacznie więcej o czarnych dziurach. Zdaniem Louisa Hamaide i Theo Torresa z King's College London, fale grawitacyjne mogą zdradzić nam informacje o materii wchłoniętej przez czarne dziury.
Jak wiemy, wszystko, co przekroczy horyzont czarnej dziury, zostaje przez niż wchłonięte. Z dziur nie wydobywa się nawet światło, dlatego tak trudno je badać. Jednak w 1974 roku Stephen Hawking zaproponował istnienie promieniowania wydobywającego się z czarnej dziury. Jedną nielosową cechą tego tzw. promieniowania Hawkinga, jest energia emitowanych fotonów, która zależna jest od masy dziury. Istnienie promieniowania Hawkinga prowadzi do paradoksu. Polega ona na bezpowrotnej utracie informacji o obiektach, które kiedyś zostały wchłonięte przez czarną dziurę. To sprzeczne z zasadami mechaniki kwantowej, które mówią, że informacja nie może ulec zniszczeniu i całkowicie zniknąć z wszechświata.
Hamaide i Torres przeprowadzili obliczenia dla czarnej dziury Schwarzschilda, czyli statycznej czarnej dziury. Obiekt taki nie posiada ładunku ani pędu, a promień jej horyzontu zdarzeń jest wprost proporcjonalny do jej masy. Naukowcy wykorzystali przy tym teorię perturbacji, za pomocą której badali zmiany właściwości czarnej dziury w wyniku wchłonięcia przez nią obiektu.
Z obliczeń wynika, że sygnatura pozostawiona przez obiekt wpadający do czarnej dziury jest niezwykle prosta. Z częstotliwości fal grawitacyjnych możemy poznać masę czarnej dziury, a ich amplituda zawiera informacje o masach obiektów, które do niej wpadły. Czas wpadnięcia do czarnej dziury jest zaś zapisany w fazie amplitudy, a informacje o kącie, pod jakim cząstki wpadły zawarte są w kątach fazowych sygnału fali grawitacyjnej, stwierdzają badacze na łamach Classical and Quantum Gravity.
Wielu specjalistów sceptycznie podchodzi do twierdzeń naukowców z King's College. Zwracają oni uwagę, że czarna dziura jest układem kwantowym, tymczasem Hamaide i Torres wykonali analizy klasyczne. Autorzy pracy przyznają, że sygnatury są klasyczne, a opis całego obiektu powinien być kwantowy, na podstawie funkcji falowej. Z ich obliczeń wynika, że klasyczna informacja będzie stanowiła ponad 99,9% całości, jednak nigdy nie osiągnie 100%, dlatego też w ten sposób nie uda się uzyskać pełnych informacji o czarnej dziurze. Sceptycy zwracają też uwagę, że nie w każdym przypadku można będzie dokonać pomiaru klasycznej informacji i pytają, czy w ogóle takie pomiary są możliwe. Do ich przeprowadzenia bowiem konieczne byłoby uzyskanie danych z wielu niezwykle czułych detektorów otaczających czarną dziurę. Samo więc praktyczne zastosowanie obliczeń stoi pod olbrzymim znakiem zapytania, tym bardziej, że współczesne wykrywacze fal grawitacyjnych i tak mają problemy z precyzyjnym określeniem masy i spinu czarnych dziur. I w przyszłości się to nie zmieni.
Autorzy badań zgadzają się z takim stanowiskiem. Dodają jednak, że ich praca pokazuje, iż w miarę jak przyszłe detektory fal grawitacyjnych będą coraz bardziej czułe, to uzyskanie z nich konkretnych informacji na temat właściwości czarnej dziury będzie łatwiejsze, a nie – jak się często uważa – trudniejsze.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Międzynarodowy zespół naukowy pracujący pod kierunkiem uczonych z University of Cambridge wykorzystał dwa teleskopy do bezpośredniego zmierzenia masy białego karła metodą mikrosoczewkowania grawitacyjnego. Specjaliści obserwowali, jak światło z odległej gwiazdy zagina się wokół karła LAWD 37. Po raz pierwszy udało się zaobserwować takie zjawisko w odniesieniu do izolowanej gwiazdy innej niż Słońce i po raz pierwszy zmierzono w ten sposób masę takiej gwiazdy.
Białe karły powstają z gwiazd podobnych do Słońca po ustaniu w nich reakcji jądrowych. To niezwykle gęste obiekty składające się ze zdegenerowanej materii. LAWD 37 jest przedmiotem intensywnych badań. Znajduje się w odległości zaledwie 15 lat świetlnych od nas i powstał około 1,15 miliarda lat temu. Dzięki temu, że jest on tak blisko, mamy o nim dużo informacji. Brakowało nam pomiarów masy, mówi główny autor badań, doktor Peter McGill. Wraz z kolegami wykorzystał on Teleskopy Gaia i Hubble do przeprowadzenia pomiarów z wykorzystaniem przewidzianego przez Einsteina zjawiska mikrosoczewkowania grawitacyjnego.
Einstein przewidział je w Ogólnej Teorii Względności stwierdzając, że gdy na tle odległej gwiazdy będzie przechodził masywny niewielkie obiekt, to docierające do nas światło z tej gwiazdy zostanie zagięte w wyniku oddziaływania grawitacyjnego tego obiektu. Efekt ten jako pierwsi potwierdzili w 1919 roku brytyjscy astronomowie, Arthur Eddington i Frank Dyson, podczas zaćmienia Słońca. Einstein sceptycznie odnosił się jednak do możliwości wykrycia go dla gwiazdy spoza Układu Słonecznego. Dopiero w 2017 roku udało się go potwierdzić dla znajdującego się w układzie podwójnym białego karła Stein 2051 b. Teraz po raz pierwszy zaobserwowano go dla pojedynczej gwiazdy spoza Układu Słonecznego.
Zespół McGilla wykorzystał dane z Teleskopu Gaia do dokładnego ustawienia Teleskopu Hubble'a w odpowiednim miejscu i czasie. Pomiarów dokonano w listopadzie 2019 roku. Przez kolejne lata naukowcy zajmowali się wyizolowaniem światła odległej gwiazdy z całego tła. Efekt soczewkowania był bowiem bardzo słaby. Jak mówi McGill, to tak, jakby mierzyć długość widzianego z Ziemi samochodu znajdującego się na Księżycu. Efekt ten był 625 razy mniejszy niż zagięcie obserwowane w 1919 roku podczas zaćmienia. Gdy w końcu udało się wyizolować sygnał z soczewkowania, naukowcy byli w stanie stwierdzić, o ile – w wyniku zagięcia światła – pozornie zmieniła się pozycja gwiazdy w tle. Jako, że ta wielkość jest proporcjonalna do masy białego karła, naukowcy mogli obliczyć, że masa LAWD 37 wynosi 56% masy Słońca. Pomiary potwierdziły obecnie obowiązujące teorie odnośnie ewolucji białych karłów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nie możemy bezpośrednio obserwować wczesnego wszechświata, ale być może będziemy w stanie obserwować go pośrednio, badając, w jaki sposób fale grawitacyjne z tamtej epoki wpłynęły na materię i promieniowanie, które obecnie widzimy, mówi Deepen Garg, student z Princeton Plama Physics Laboratory. Garg i jego promotor Ilya Dodin zaadaptowali do badań wszechświata technikę ze swoich badań nad fuzją jądrową.
Naukowcy badali, w jaki sposób fale elektromagnetyczne rozprzestrzeniają się przez plazmę obecną w reaktorach fuzyjnych. Okazało się, że proces ten bardzo przypomina sposób rozprzestrzeniania się fal grawitacyjnych. Postanowili więc wykorzystać te podobieństwa.
Fale grawitacyjne, przewidziane przez Alberta Einsteina w 1916 roku, zostały wykryte w 2015 roku przez obserwatorium LIGO. To zaburzenia czasoprzestrzeni wywołane ruchem bardzo gęstych obiektów. Fale te przemieszczają się z prędkością światła.
Garg i Dodin, wykorzystując swoje spostrzeżenia z badań nad falą elektromagnetyczną w plazmie, opracowali wzory za pomocą których – jak mają nadzieję – uda się odczytać właściwości odległych gwiazd. W falach grawitacyjnych mogą być „zapisane” np. o gęstości materii, przez którą przeszły. Być może nawet uda się w ten sposób zdobyć dodatkowe informacje o zderzeniach gwiazd neutronowych i czarnych dziur.
To miał być prosty, krótki, sześciomiesięczny program badawczy dla mojego studenta. Gdy jednak zaczęliśmy zagłębiać się w problem, okazało się, że niewiele o nim wiadomo i można na tym przykładzie wykonać pewne podstawowe prace teoretyczne, przyznaje Dodin.
Naukowcy chcą w niedługiej przyszłości wykorzystać swoje wzory w praktyce. Zastrzegają, że uzyskanie znaczących wyników będzie wymagało sporo pracy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po 16 latach badań opublikowano wyniki eksperymentu, który miał poszukać luk w ogólnej teorii względności Einsteina. Teorię poddano testom w ekstremalnych warunkach, wykorzystując w tym celu parę pulsarów, które obserwowano przez siedem różnych teleskopów. Teraz, na łamach Physical Review X naukowcy informują o zaobserwowaniu nowych zjawisk relatywistycznych. Ich istnienie teoretycznie przewidziano wcześniej, ale dopiero teraz udało się je zaobserwować.
Wielokrotnie udowodniono, że ogólna teoria względności (OTW) Einsteina się sprawdza, jednak wiemy, że nie mówi ona ostatniego słowa w dziedzinie teorii grawitacji. Ponad 100 lat po jej sformułowaniu naukowcy wciąż poszukują w niej luk, mówi doktor Robert Ferdmanz University of East Anglia.
Uczony przypomina, że OTW jest niekompatybilna z oddziaływaniami podstawowymi opisywanymi przez mechanikę kwantową. Dlatego też uczeni na całym świecie poddają teorię Einsteina wymagającym testom, by znaleźć jej słabości. Odkrycie znacznego odejścia od OTW byłoby ważnym odkryciem, które otworzyłoby nam drzwi do nowej fizyki, wykraczającej poza nasze aktualne rozumienie wszechświata. A to z kolei mogłoby ewentualnie doprowadzić do opracowania teorii unifikującej wszystkie podstawowe siły natury.
Dlatego też zespół pod kierunkiem Michaela Kramera z Instytutu Radioastronomii im. Maxa Plancka w Bonn, rozpoczął przed laty jeden z najbardziej rygorystycznych testów teorii względności.
Pulsar to wysoce namagnetyzowana wirująca kompaktowa gwiazda, która z biegunów magnetycznych emituje promieniowanie elektromagnetyczne. Masa pulsarów naszych jest większa od masy Słońca, ale ich średnica wynosi zaledwie około 20 kilometrów. Są to więc niewiarygodnie gęste obiekty, które jak latarnie morskie omiatają przestrzeń kosmiczną za pomocą fal radiowych, wyjaśnia Ferdman.
Naukowcy postanowili przyjrzeć się podwójnemu pulsarowi, który odkryli w 2003 roku. To najbardziej precyzyjne laboratorium do testowania teorii Einsteina. Teorii, która powstała, gdy ani nie wiedziano o istnieniu takich gwiazd, ani nie istniała technologia pozwalająca na ich badanie, mówią uczeni.
Zwykle pulsar podwójny składa się z pulsara i obiektu typu gwiazdowego (np. białego karła, gwiazdy neutronowej). Uczeni wzięli na warsztat niezwykle rzadki typ pulsara podwójnego, w którym oba obiekty są pulsarami. Gwiazdy wędrują wokół siebie wykonując pełne okrążenie w ciągu 147 sekund, pędząc przy tym z prędkością około 1 miliona km/h. Jedne z obserwowanych pulsarów wiruje z prędkością około 44 razy na sekundę. Jego towarzysz jest młodszy i wiruje z prędkością 2,8 obrotu na sekundę. Jednak to ruch pulsarów względem siebie tworzy idealne laboratoriów do testów teorii grawitacji.
Układ PSR J0737–3039A/B obserwowano za pomocą siedmiu teleskopów z USA, Australii, Francji, Niemiec, Holandii i Wielkiej Brytanii. Dzięki temu osiągnęli niezwykłą precyzję pomiarową.
Byliśmy w stanie przetestować kamień węgielny teorii Einsteina, fale grawitacyjne, z dokładnością 1000-krotnie większą niż współczesne wykrywacze fal grawitacyjnych i 25-krotnie większą niż badania pulsara podwójnego Hulse-Taylora (PSR B1913+16), za którego odkrycie i analizę Hulse i Taylor otrzymali Nagrodę Nobla, cieszy się profesor Kramer.
Analizowaliśmy drogę fotonów fal radiowych emitowanych przez pulsar i badaliśmy ją w silnym polu grawitacyjnym drugiego pulsara. Po raz pierwszy obserwowaliśmy, że fotony były spowalniane nie tylko przez silne zakrzywienie czasoprzestrzeni w pobliżu towarzyszącego pulsara, ale również, że są one odginane o 0,04 stopnia. Nigdy wcześniej tego nie obserwowano, mówi profesor Ingrid Stairs z University of British Columbia.
Dzięki temu, że wykorzystano tak niezwykły obiekt jak pulsar, który bardzo szybko się obraca, jest o 30% bardziej masywny od Słońca i ma zaledwie 24 kilometry średnicy, można było przetestować wiele koncepcji OTW. Oprócz fal grawitacyjnych i rozchodzenia się światła mogliśmy nawet zmierzyć dylatację czasu w polu grawitacyjnym. Gdy badaliśmy emisję elektromagnetyczną pulsara musieliśmy wziąć pod uwagę słynne równanie E=mc2. Okazało się, że nasz pulsar traci w ciągu sekundy aż 8 milionów ton masy. Jednak tylko pozornie jest to dużo. To zaledwie 3 części na tysiąc miliardów miliardów jego masy całkowitej, dodaje profesor Dick Manchester z australijskiego CSIRO.
Naukowcy zauważyli też kolejny efekt relatywistyczny. Z dokładnością do 1 części na milion zmierzyli zmiany orientacji orbity pulsara. Efekt ten znany jest też z orbity Merkurego, jednak w przypadku badanego pulsara jest 140 000 razy silniejszy.
Połączenie różnych technik pomiarowych pozwoliło też stwierdzić, że odległość pomiędzy Ziemią a pulsarem podwójnym wynosi 2400 lat świetlnych i zawęzić margines błędu do 8%. To bardzo istotne, gdyż wyniki wielu badań odległych obiektów były bardzo niepewne ze względu na niepewność odnośnie ich położenia.
Zebraliśmy o tym systemie wszelkie możliwe informacje i na tej podstawie zbudowaliśmy perfekcyjnie spójny obraz, wykorzystując w tym celu wiele dziedzin fizyki: fizykę jądrową, grawitację, fizykę ośrodka międzygwiezdnego, fizykę plazmy i wiele innych, dodaje profesor Bill Coles z University of California San Diego. Uzyskane w ten sposób wyniki zgadzają się i uzupełniają wyniki innych eksperymentów.
Osiągnęliśmy niespotykaną dotychczas precyzję. Przyszłe eksperymenty, z użyciem jeszcze większych teleskopów, pokażą jeszcze więcej, mówi Kramer.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ludzie, Ziemia czy gwiazdy pojawili się dlatego, że w pierwszej sekundy istnienia wszechświata wytwarzane było więcej materii niż antymaterii. Ta asymetria była niezwykle mała. Na każde 10 miliardów cząstek antymaterii pojawiało się 10 miliardów + 1 cząstka materii. Ta minimalna nierównowaga doprowadziła do stworzenia materialnego wszechświata, a fenomenu tego współczesna fizyka nie potrafi wyjaśnić.
Z teorii wynika bowiem, że powinna powstać dokładnie taka sama liczba cząstek materii i antymaterii. Grupa fizyków-teoretyków stwierdziła właśnie, że nie można wykluczyć, iż w naszych możliwościach leży wykrycie nietopologicznych solitonów Q-balls, a ich wykrycie pozwoliłoby odpowiedzieć na pytanie, dlaczego po Wielkim Wybuchu pojawiło się więcej materii niż antymaterii.
Obecnie fizycy uważają, że asymetria materii i antymaterii pojawiła się w pierwszej sekundzie po Wielkim Wybuchu, a w jej czasie rodzący się wszechświat gwałtownie zwiększył swoje wymiary. Jednak przetestowanie teorii o inflacji kosmologicznej jest niezwykle trudne. Żeby ją sprawdzić musielibyśmy wykorzystać olbrzymie akceleratory cząstek i dostarczyć im więcej energii, niż jesteśmy w stanie wyprodukować.
Jednak amerykańsko-japoński zespół naukowy, w skład którego wchodzą m.in. specjaliści z japońskiego Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) i Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) uważają, że do przetestowania tej teorii można wykorzystać nietopologiczne solitony Q-ball. Jedna z teorii dotyczących nierównowagi materii i antymaterii mówi bowiem, że pojawiła się ona w wyniku złożonego procesu tzw. bariogenezy Afflecka-Dine'a. To w jej przebiegu miały pojawić się Q-balle.
Profesor Graham White, główny autor badań z Kavli IPMU wyjaśnia, czym jest Q-ball. Mówi, że jest bozonem, jak bozon Higgsa. Bozon Higgsa pojawia się, gdy pole Higgsa zostaje wzbudzone. Jednak w polu Higgsa mogą pojawiać się też inne elementy, jak grudki. Jeśli mamy pole bardzo podobne do pola Higgsa, które ma pewien ładunek, nie ładunek elektryczny, ale jakiś ładunek, wówczas taka grudka ma ładunek taki, jak jedna cząstka. Jako, że ładunek nie może po prostu zniknąć, całe pole musi „zdecydować” czy tworzy grudki czy cząstki. Jeśli utworzenie grudek będzie wymagało mniej energii, będą powstawały grudki. Łączące się ze sobą grudki stworzą Q-ball, mówi.
Często mówimy, że takie Q-balle istnieją przez jakiś czas. W miarę rozszerzania się wszechświata zanikają one wolniej niż promieniowanie tła, w końcu większość energii wszechświata skupia się w Q-ballach. W międzyczasie pojawiają się niewielkie fluktuacje w gęstości promieniowania, które skupiają się tam, gdzie dominują Q-balle. Gdy zaś Q-ball się rozpada, jest to zjawisko tak gwałtowne, że pojawiają się fale grawitacyjne. Możemy je wykryć w nadchodzących dekadach. Piękno poszukiwań fal grawitacyjnych polega na tym, że wszechświat jest całkowicie dla nich przezroczysty, wędrują więc do jego początku, mówi White.
Zdaniem teoretyków, generowane przez znikające Q-balle fale mają odpowiednie charakterystyki, by można je było zarejestrować za pomocą standardowych wykrywaczy fal grawitacyjnych.
Szczegóły badań zostały opublikowane w serwisie arXiv.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.