Sign in to follow this
Followers
0
-
Similar Content
-
By KopalniaWiedzy.pl
Międzynarodowy zespół astronomów poinformował o odkryciu jednych z najgorętszych gwiazd we wszechświecie. Temperatura powierzchni każdej z 8 gwiazd wynosi ponad 100 000 stopni Celsjusza. Są więc one znacznie gorętsze niż Słońce.
Autorzy badań przeanalizowali dane pochodzące z Southern African Large Telescope (SALT). Ten największy na Półkuli Południowej teleskop optyczny posiada heksagonalne zwierciadło o wymiarach 10x11 metrów. Naukowcy przeprowadzili przegląd danych pod kątem bogatych w hel karłów i odkryli niezwykle gorące białe karły oraz gwiazdy, które się wkrótce nimi staną. Temperatura powierzchni najbardziej gorącego z nich wynosi aż 180 000 stopni Celsjusza. Dla porównania, temperatura powierzchni Słońca to „zaledwie” 5500 stopni Celsjusza.
Jedna ze zidentyfikowanych gwiazd znajduje się w centrum odkrytej właśnie mgławicy o średnicy 1 roku świetlnego. Dwie inne to gwiazdy zmienne. Wszystkie z gorących gwiazd znajdują sie na zaawansowanych etapach życia i zbliżają do końca etapu białch karłów. Ze względu na niezwykle wysoką temperaturę gwiazdy te są ponadstukrotnie jaśniejsze od Słońca, co jest niezwykłą cechą jak na białe karły.
Białe karły to niewielkie gwiazdy, rozmiarów Ziemi, ale o olbrzymiej masie, porównywalnej z masą Słońca. To najbardziej gęste z gwiazd wciaż zawierających normalną materię. Z kolei gwiazdy, które mają stać się białymi karłami są od nich kilkukrotnie większe, szybko się kurczą i w ciągu kilku tysięcy lat zmienią się w białe karły.
Gwiazdy o temperaturze powierzchni 100 000 stopni Celsjusza lub więcej są niezwykle rzadkie. Byliśmy bardzo zdziwieni, gdyż znaleźliśmy ich aż tak wiele. Nasze odkrycie pomoże w zrozumieniu ostatnich etapów ewolucji gwiazd, mówi Simon Jeffery z Armagh Observatory and Planetarium, który stał na czele grupy badawczej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Niemal połowa gwiazd Drogi Mlecznej to obiekty samotne, jak Słońce. Druga połowa zaś to gwiazdy znajdujące się w układach podwójnych lub większych. W układach takich gwiazdy mogą znajdować się na niezwykle ciasnych orbitach. I właśnie taki, rekordowo ciasny układ, znaleźli właśnie astronomowie z MIT.
Nowo odkryty system, ZTF J1813+4251, to układ kataklizmiczny o rekordowo krótkim czasie obiegu gwiazd wokół siebie. Gwiazdy okrążają się w ciągu zaledwie... 51 minut.
Układy kataklizmiczne, zwane też zmiennymi kataklizmicznymi, składają się z gwiazdy ciągu głównego (podobne do Słońca) oraz z białego karła. Powstają one, gdy dwie gwiazdy zbliżą się do siebie na tyle, że biały karzeł zaczyna wchłaniać materię z gwiazdy mu towarzyszącej. W trakcie tego procesu dochodzi do pojawiania się olbrzymich zmiennych błysków światła. Astronomowie, obserwujący przed wiekami te rozbłyski, sądzili, że są one skutkiem jakiegoś kataklizmu. Stąd nazwa tych układów.
W przypadku ZTF J1813+4251, w przeciwieństwie do innych podobnych systemów, udało się wielokrotnie zaobserwować przesłonięcie jednej gwiazdy przez drugą, co dało astronomom okazję do dokładnych pomiarów właściwości obu gwiazd. Dzięki temu mogli przeprowadzić symulacje obecnego wyglądu systemu oraz tego, jak będzie ewoluował przez najbliższych kilkaset milionów lat. Z symulacji wynika, że gwiazda ciągu głównego okrąża białego karła i traci na jego rzecz olbrzymie ilości wodoru. Z czasem zostanie obdarta z materii i pozostanie z niej głównie gęste bogate w hel jądro. Za około 70 milionów lat gwiazdy tak bardzo zbliżą się do siebie, że będą okrążały się w ciągu zaledwie 18 minut. Później zaczną się od siebie oddalać.
Symulacje to potwierdzenie hipotez, które wysunięto przed laty. Mówiły one, że gwiazdy z układach kataklizmicznych wchodzą z czasem na ultrakrótkie orbity. Tutaj mamy do czynienia z rzadkim przypadkiem, gdy przyłapaliśmy jeden z takich systemów w momencie zmiany z akrecji wodoru na akrecję helu, mówi Kevin Burdge z MIT. Przewidywano, że obiekty takie będą wchodziły na ultrakrótkie orbity i od dawna zastanawiano się, czy będą one na tyle krótkie, by pojawiły się fale grawitacyjne.
Nowy układ został odkryty przez naukowców z MIT, Harvard and Smithsonian Center for Astrophysics i innych instytucji w katalogu Zwicky Transient Facility (ZTF). Jest on tworzony w Palomar Observatory w Kalifornii. Umieszczony tam aparat fotograficzny przez lata wykonał ponad 1000 zdjęć każdej z ponad miliarda obserwowanych gwiazd, rejestrując w ten sposób zmiany ich jasności.
Naukowcy przeanalizowali dane, szukając cech charakterystycznych systemów na ultrakrótkich orbitach, które mogłyby emitować olbrzymie rozbłyski światła oraz fale grawitacyjne. Stworzony przez Burdge'a algorytm wskazał na około milion gwiazd, które co mniej więcej godzinę prawdopodobnie emitowały rozbłyski. Następnie skupił się na rozbłyskach o szczególnych cechach. W ten sposób zauważył ZTF J1813+4251, układ, który znajduje się w odległości około 3000 lat świetlnych od Ziemi, w Gwiazdozbiorze Herkulesa.
Burge i jego zespół rozpoczęli wówczas obserwacje za pomocą W.M. Keck Observatory na Hawajach i Gran Telescopio Canarias. Przekonali się, że znaleziony system daje wyjątkowo jasny sygnał. Dzięki temu możliwe były precyzyjne pomiary układu.
ZTF J1813+4251 składa się prawdopodobnie z białego karła o rozmiarach 100-krotnie mniejszych niż Słońce i o połowie masy naszej gwiazdy. Towarzyszy mu gwiazda o masie i 1/10 rozmiarów Słońca. Obie gwiazdy okrążały się w ciągu 51 minut, ale coś tutaj nie pasowało.
Ta druga gwiazda wyglądała jak Słońce, ale Słońce nie zmieści się na orbicie krótszej niż 8-godzinna, mówi Burdge. Wyjaśnieniem okazała się praca naukowa sprzed 30 lat autorstwa profesora MIT Saula Rappaporta. Przewidział on w niej, że układy o bardzo ciasnych orbitach mogą istnieć jako układy kataklizmiczne. Gdy biały karzeł pochłonie cały wodór z towarzyszącej mu gwiazdy podobne do Słońca, pozostaje gęste jądro z helu, które jest wystarczająco masywne, by martwa gwiazda znalazła się na ultrakrótkiej orbicie.
ZTF J1813+4251 to układ kataklizmiczny, który znajduje się właśnie z momencie przejścia z gwiazdy wodorowej, w obiekt bogaty w hel. To szczególny układ. Mieliśmy olbrzymie szczęście, że zauważyliśmy system, który daje odpowiedź na ważne pytanie. To jedna z najpiękniejszych zmiennych kataklizmicznych, cieszy się Burdge.
« powrót do artykułu -
By KopalniaWiedzy.pl
Astronomowie odkryli nowy typ eksplozji gwiazd – mikronową. Do tego typu eksplozji dochodzi na powierzchni niektórych gwiazd, a w ich wyniku w ciągu kilku godzin wypaleniu ulega nawet 20 x 1015 ton materiału tworzącego gwiazdę.
Odkryliśmy zjawisko, które nazwaliśmy mikronową. Jego istnienie rzuca wyzwanie naszemu rozumieniu, w jaki sposób w gwiazdach dochodzi do eksplozji termojądrowych. Dotychczas sądziliśmy, że wiemy, jak to się dzieje. Jednak to odkrycie pokazuje, że eksplozje takie mogą powstawać w zupełnie nowy sposób, mówi Simone Scaringi z Durham University, który stał na czele zespołu badawczego.
Mikronowe to potężne wydarzenia w małej skali. Niosą ze sobą znacznie mniej energii niż znane nam od wieków nowe. Oba typy eksplozji łączy rodzaj gwiazd, mają one bowiem miejsce na białych karłach. To martwe gwiazdy o masie podobnej do masy Słońca, ale średnicy Ziemi.
Gdy biały karzeł występuje w układzie podwójnym, może wysysać materię swojego towarzysza. Gdy ta materia opada na bardzo gorącą powierzchnię białego karła dochodzi do eksplozji, w wyniku której atomy wodoru łączą się, tworząc atom helu. W nowych eksplozja termonuklearna ma miejsce na całej powierzchni gwiazdy. Takie powodują, że biały karzeł pali się i jasno świeci przez wiele tygodni, wyjaśnia współautorka badań, Nathalie Degenaar z Uniwersytetu w Amsterdamie.
Z kolei mikronowe to podobne eksplozje, do których dochodzi w mniejszej skali. Trwają one zaledwie kilka lub kilkanaście godzin. Zarejestrowano je na niektórych białych karłach o bardzo silnym polu magnetycznym, które kieruje opadający na gwiazdę materiał w stronę jej biegunów. Po raz pierwszy obserwowaliśmy zlokalizowaną fuzję wodoru. Wodorowe paliwo zostaje uwięzione w pobliżu biegunów niektórych białych karłów i tylko tam dochodzi do fuzji, dodaje Paul Groot z Radbound University. To zaś prowadzi do mikroeksplozji o sile 1/1 000 000 nowych, stąd też nazwa mikronowa, wyjaśnia uczony.
Odkrycie mikronowych to wyzwanie dla obecnego rozumienia gwiezdnych eksplozji. To pokazuje, jak dynamicznym miejscem jest wszechświat. Takie zjawiska mogą często występować, ale jako że trwają krótko, trudno jest je uchwycić, dodaje Scaingi.
Naukowcy dokonali odkrycia przypadkiem, przeglądając dane z Transiting Exoplanet Survey Satellite (TESS). Odkryliśmy w nich coś niezwykłego. Jasny rozbłysk w paśmie optyczny, który trwał kilka godzin. Podczas dalszych poszukiwań znaleźliśmy kilkanaście podobnych sygnałów, mówią naukowcy. W danych z TESS znaleziono trzy mikronowe, z czego dwie miały miejsce na białych karłach. Potwierdzenie, że i w przypadku trzeciej eksplozji mieliśmy do czynienia z białym karłem, wymagało wykorzystania instrumentu X-shooter z Very Large Telescope. Dzięki niemu zidentyfikowano zaś kolejne mikronowe.
« powrót do artykułu -
By KopalniaWiedzy.pl
Jacques Kluska i jego zespół z Katolickiego Uniwersytetu w Leuven (KU Leuven) znaleźli dowody wskazujące, że stare gwiazdy w układach podwójnych mogą tworzyć planety. Podczas prowadzonych w podczerwieni obserwacji naukowcy zauważyli 10 systemów, w których w dyskach protoplanetarnych prawdopodobnie uformowały się wielkie planety. Jeśli odkrycie się potwierdzi, będziemy musieli ponownie przemyśleć teorie dotyczące narodzin planet.
Dyski protoplanetarne do olbrzymie struktury z gazu i pyłu otaczające rodzące się gwiazdy. Dzięki ich obserwacjom wiemy, w jaki sposób powstają planety. Wszystko rozpoczyna się od stopniowego łącznia się materii w dyskach. Z czasem zlepia się jej coraz więcej, powstaje coraz większy obiekt, który dosłownie rzeźbi w dysku. Z czasem rodzi się planeta, a tam, gdzie krąży wokół gwiazdy, widać wyraźnie mniej materiału w dysku protoplanetarnym. Ten brakujący materiał utworzył planetę. Obserwując więc dyski protoplanetarne z takimi wyraźnymi przerwami w materiale, możemy odnajdować tworzące się wokół nich planety. Z obserwacji dysków protoplanetarnych wokół młodych gwiazd wiemy, że emisja w podczerwieni z tych dysków spada w miarę formowania się w nich planet.
Jednak dyski protoplanetarne istnieją nie tylko wokół młodych gwiazd. Zaobserwowano je też wokół starych układów podwójnych, w skład których wchodzi biały karzeł. To pozostałość gwiazdy, która odrzuciła swoje zewnętrzne warstwy. I to właśnie te warstwy tworzą „dysk protoplanetarny drugiej generacji” wokół takich systemów.
Kluska i jego zespół obserwowali emisję z 85 starych układów podwójnych w Drodze Mlecznej. Zauważyli, że w przypadku 10 z nich emisja w podczerwieni była niższa niż powinna. To zaś sugeruje, że mogą się tam tworzyć planety. To jednak nie wszystkie wskazówki. Okazało się bowiem, że na powierzchni białych karłów w tych systemach występuje mniejszy odsetek metali trudnotopliwych – m.in. niobu, molibdenu, wolframu, tantalu i renu – niż zwykle. To wskazuje, że metale te mogły wejść w skład tworzącej się planety, zamiast opaść na powierzchnię gwiazdy.
Belgijscy uczeni chcą teraz wykorzystać teleskopy Europejskiego Obserwatorium Południowego, za pomocą których spróbują dojrzeć ewentualne planety tworzące się w dyskach protoplanetarnych starych układów podwójnych. Jeśli im się to uda, będą mogli badać tworzenie się „planet drugiej generacji”.
« powrót do artykułu -
By KopalniaWiedzy.pl
Astronomowie z University of Wisconsin-Milwaukee odnaleźli najzimniejszego i najsłabiej świecącego białego karła. Gwiazda jest tak zimna, że znajdujący się w niej węgiel skrystalizował i powstał olbrzymi diament wielkości Ziemi.
To naprawdę niezwykły obiekt. Uważamy, że w przestrzeni kosmicznej znajduje się wielka liczba starych białych karłów. Trudno je zobaczyć i nie wiemy, gdzie patrzeć. Nie jest możliwe natrafienie bezpośrednio na nie - mówi profesor David Kaplan.
Białe karły to niezwykle gęste obiekty, które są ostatnim etapem życia gwiazd podobnych do Słońca. Składają się głównie z węgla i tlenu. Stygną i gasną przez miliardy lat. Białe karły trudno jest jednak badać, gdyż ich odnalezienie jest niemal niemożliwe.
Wspomniany biały karzeł, który liczy sobie 11 miliardów lat, został odnaleziony dzięki Green Bank Telescope oraz Very Long Baseline Array. Teleskopy te nie pozwoliły na bezpośrednią obserwację białego karła. Urządzenia badały milisekundowego milisekundowego pulsara PSR J2222-0137, który obraca się z prędkością 30 razy na sekundę.
Obserwacje ujawniły, że pulsar jest grawitacyjnie powiązany z innym obiektem, z którym obiegają się nawzajem w ciągu 2,45 dnia. Obiekt ten to gwiazda neutronowa lub, co bardziej prawdopodobne, niezwykle zimny biały karzeł.
Obserwacje pozwoliły na precyzyjne określenie pozycji pulsara. Znamy jego pozycję z dokładnością lepszą niż 1 piksel - mówi profesor Kaplan. To z kolei daje nadzieję, że uda się bezpośrednio zaobserwować towarzyszącego mu białego karła. Uczeni stwierdzili dotychczas, że masa pulsara wynosi 1,2 masy Słońca, a masa białego karła to 1,05 masy Słońca. Mimo, że towarzysza pulsara ciągle nie zaobserwowano, to jego kołowa orbita stanowi dodatkowy dowód, że to biały karzeł. Gwiazdy neutronowe mają orbity eliptyczne.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.