
Opracowany w Krakowie Model Wymiany Gluonów kładzie kres koncepcji istnienia dikwarków
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W fizyce jądrowej termin „liczby magiczne” odnosi się do takiej liczby protonów lub neutronów, która zapewnia jądru atomowemu większą stabilność poprzez wypełnienie powłok. Z modelu powłokowego wynika bowiem, że jądra, których powłoki są wypełnione, są stabilniejsze. Obecnie uznane liczby magiczne zarówno dla protonów jak i neutronów to 2, 8, 20, 28, 50, 82 i 126. Jeśli mamy do czynienia z jądrem, dla którego i protony i neutrony występują w liczbie magicznej, mówimy o jądrze podwójnie magicznym. Jądrem podwójnie magicznym jest np. jądro tlenu, zawierające 8 protonów i 8 neutronów.
Jednak wspomniane powyżej liczby odnoszą się do stabilnych izotopów. Znacznie słabiej rozumiemy liczby magiczne dla krótkotrwałych egzotycznych izotopów. Zrozumienie egzotycznych jąder atomów pozwoli nam lepiej zrozumieć samą naturę materii i powstawanie atomów w ekstremalnych środowiskach.
Naukowcy z Instytutu Współczesnej Fizyki Chińskiej Akademii Nauk jako pierwsi precyzyjnie zmierzyli masę egzotycznego bardzo krótkotrwałego jądra krzemu-22. To jądro o bardzo dużym deficycie neutronów. Najbardziej rozpowszechniony izotop 28Si ma 14 neutronów. Tymczasem 22Si ma ich zaledwie 8. Oraz 14 protonów. I właśnie liczba 14 jest, zdaniem chińskich uczonych, liczbą magiczną dla protonów w przypadku jąder egzotycznych.
W ciągu ostatnich lat naukowcy badający egzotyczne jądra doszli do wniosku, że w ich przypadku liczbami magicznymi dla neutronów są 14, 16, 32 i 34. Rzadko jednak udaje się to, co udało się właśnie pracownikom Chińskiej Akademii Nauk – określić magiczną liczbę protonów dla egzotycznych jąder.
Sugestie, że tak może być, pojawiły się w czasie badań nad tlenem-22 (posiada 14 neutronów i 8 protonów). Zauważono wówczas, że 14 neutronów ma w jego przypadku cechy wskazujące na liczbę magiczną. Teoretycy stwierdzili zatem, że w przypadku „lustrzanego odbicia” tlenu-22, czyli krzemu-22 (14 protonów i 8 neutronów) liczba 14 może być liczbą magiczną dla protonów. Badania pokazały, że tak rzeczywiście jest.
Źródło: Z=14 Magicity Revealed by the Mass of the Proton Dripline Nucleus 22Si, https://journals.aps.org/prl/abstract/10.1103/ffwt-n7yc
« powrót do artykułu -
przez KopalniaWiedzy.pl
W eksperymencie ATLAS potwierdzono niezwykle interesujące wyniki analiz przeprowadzonych w CMS. Otóż kolejne analizy wskazują, że w Wielkim Zderzaczu Hadronów w wyniku zderzeń protonów powstaje toponium. To mezon utworzony przez – najbardziej masywną cząstkę elementarną i najkrócej istniejący z kwarków – kwark t (wysoki) i antykwark t znajdujące się w stanie quasi-związanym.
Podczas kolizji wysokoenergetycznych protonów w Wielkim Zderzaczu Hadronów standardowo powstają pary kwarków t i ich antykwarków. Badania ich przekroju czynnego jest ważnym elementem testowania Modelu Standardowego i sposobem na poszukiwanie nowych nieznanych cząstek, których Model nie opisuje.
Gdy naukowcy z CMS analizowali w ubiegłym roku dane z lat 2016–2018 dotyczące produkcji par kwark t - antykwark t, zauważyli coś niezwykłego. Ich uwagę zwrócił nadmiar tych par, który może wskazywać na istnienie nieznanej cząstki. Jednak najbardziej intrygujący był fakt, że nadmiar ten pojawił się przy energiach stanowiących dolną granicę zakresu poszukiwań. Wysunęli wówczas hipotezę, że nadmiar ten pochodzi od kwarków wysokich i antykwarków wysokich tworzących stan quasi-związany, zwany toponium.
Kwark wysoki jest samotnikiem. Jako jedyny nie tworzy hadronów. Kwarki u (górny), d (dolny) i s (dziwny) tworzą wszystkie powszechnie występujące hadrony, a kwarki c (powabny) i b (piękny) tworzą rzadkie i krótkotrwałe hadrony rejestrowane w akceleratorach. Kwark t ma tak dużą masę i istnieje tak krótko, że rozpada się, zanim zdąży utworzyć jakikolwiek stan związany. Jednak mechanika kwantowa przewiduje pojawienie się szczególnych okoliczności, w których para kwark t i antykwark t istnieje na dyle długo, że mogą wymienić gluony, tworząc toponium.
Gdy CMS ogłaszał przed kilkoma miesiącami odkrycie, koordynator prac, Andreas Meyer mówił, że uzyskany przez nas przekrój czynny (prawdopodobieństwo) dla naszej uproszczonej hipotezy wynosi 8,8 pb (pikobarnów) ± 15%. Można powiedzieć, że to znacząco powyżej 5 sigma [5 sigma to wartość odchyleń standardowych, powyżej której można ogłosić odkrycie - red.].
Teraz naukowcy z ATLAS poinformowali o wynikach pełnej analizy danych z kampanii RUN-2 prowadzonej w latach 2015–2018. Zauważyli w nich to samo zjawisko, co wcześniej ich koledzy z CMS. Przekrój czynny określili na 9,0 pb ± 15%, co w wysokim stopniu zgadza się z wcześniejszymi danymi.
O ile jednak nie ma wątpliwości, co do istnienia obserwowanych danych, ich interpretacja nastręcza pewne trudności. Istnienie toponium nie jest bowiem jedynym możliwym wyjaśnieniem. Nie można bowiem wykluczyć, że dane wskazują na istnienie cząstki o masie dwukrotnie większej niż masa kwarka t, która powstaje w wyniku zderzeń gluonów i rozpada się na parę kwark t - antykwark t. Dokładna interpretacja danych będzie zależała od możliwości precyzyjnego modelowania interakcji kwarków i gluonów w złożonych środowiskach zderzeń protonów.
Jeśli jednak uda się potwierdzić istnienie toponium, będzie to kolejne poznane kwarkonium, czyli stan utworzony przez kwarka i jego antykwark. Obecnie znamy czarmonium – to kwark powabny (charm) i jego antykwark – oraz bottomonium, czyli kwark spodni (bottom) i antykwark. Czarmonium zostało odkryte w SLAC w 1974 roku, a bottomium znaleziono trzy lata później w Fermilabie.
Źródło: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2025-008/
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Thomas Jefferson National Accelerator Facility dokonano pierwszych w historii pomiarów gluonów wewnątrz jądra atomowego. To duży krok w kierunku poznania rozkładu pola gluonowego (pola Yanga-Millsa) wewnątrz protonu, cieszy się jeden z członków zespołu badawczego, profesor Axel Schmidt z George Washington University. Jesteśmy na pograniczu wiedzy o „kleju atomowym”. W zasadzie nic o tym nie wiemy, więc przydatna jest każda nowa informacja. To jednocześnie niezwykle ekscytujące i bardzo trudne, dodaje profesor Or Hen z MIT.
Gluony to cząstki elementarne pośredniczące w oddziaływaniach silnych. Są „klejem” zlepiającym kwarki, z których powstają protony i neutrony. Z wcześniejszych badań wiemy, jaki jest rozkład gluonów w swobodnych – niezwiązanych w jądrze atomowym – protonach i neutronach. Nie wiemy jednak, jak wygląda on, gdy protony i neutrony znajdują się wewnątrz jądra. Tymczasem na początku lat 80. XX wieku zauważono, że kwarki wewnątrz protonów i neutronów znajdujących się w jądrze atomowym poruszają się wolniej, niż kwarki w swobodnych nukleonach. To zdumiewające zjawisko, nazwane efektem EMC, nie zostało dotychczas wyjaśnione. Naukowcy, którzy chcą się o nim więcej dowiedzieć, badają gluony podobnie, jak badają kwarki. Jednak pomiar rozkładu elektrycznie obojętnych gluonów jest daleko trudniejszy, niż posiadających ładunek kwarków.
Naukowcy z Jefferson Lab przyjrzeli się gluonom i kwarkom, wykorzystując w tym celu mezon J/ψ, czyli czarmonium. Cząstkę tę można uzyskać ostrzeliwując protony i neutrony fotonami. Czarmonium szybko rozpada się na elektron i pozyton. Wykrywanie par elektron-pozyton pozwala obliczyć, ile mezonów J/ψ powstało. Jako że w skład czarmonium wchodzi kwark powabny, którego nie ma w żadnym z nukleonów, wiadomo, że czarmonium powstaje w wyniku interakcji fotonu z gluonem.
Żeby uzyskać czarmonium w wyniku ostrzeliwania swobodnych protonów fotonami – co wcześniej robiono już w Jefferson Lab – trzeba wykorzystać strumień fotonów o dużej energii, co najmniej 8,2 GeV (gigaelektronowoltów). Jednak autorzy najnowszych badań otrzymali czarmonium korzystając z fotonów o mniejszych energiach.
Było to możliwe dzięki temu, że jako cel wykorzystali jądra deuteru, helu i węgla. Nukleony w jądrach atomowych, w przeciwieństwie do swobodnych nukleonów używanych jako cel stacjonarny w badaniach, poruszają się. Doszło więc do połączenia energii kinetycznej poruszającego się nukleonu z energią kinetyczną fotonu, która była poniżej wymaganego minimum, co w rezultacie dało energię powyżej minimum, wystarczającą do powstania czarmonium.
Dzięki takiemu rozwiązaniu uczeni z USA stali się pierwszymi, którzy zbadali fotoprodukcję mezonu J/ψ poniżej minimalnej energii fotonów wymaganej przy stacjonarnym protonie. A ponieważ ich celem były atomy, mierzyli w ten sposób gluony w protonach i neutronach znajdujących się w jądrze atomowym.
Podstawowa trudność w przeprowadzeniu takiego eksperymentu polegała na tym, że nikt wcześniej nie próbował czegoś podobnego, nie wiadomo więc było, w jaki sposób eksperyment przygotować, ani czy w ogóle jest on możliwy. Udało się w olbrzymiej mierze dzięki doktorowi Jacksonowi Pybusowi z Los Alamos National Laboratory. W ramach swojej pracy magisterskiej na MIT wykonał analizę teoretyczną, która zaowocowała zaprojektowaniem odpowiedniego badania. To unikatowe badania zarówno z punktu widzenia z fizyki, jak i techniki eksperymentalnej opracowanej przez magistranta. Nikt z nas, z wyjątkiem Jacksona, nie byłby w stanie tego zrobić, przyznają autorzy badań.
Gdy naukowcy porównali wyniki pomiarów z teoretycznymi obliczeniami, okazało się, że podczas eksperymentu powstało więcej czarmonium, niż przewiduje teoria. To dowodzi, że gluony w związanych nukleonach zachowują się inaczej, niż w nukleonach swobodnych. Potrzeba jednak znacznie więcej badań, by stwierdzić, na czym polegają te różnice. Jednak teraz, gdy wiadomo, w jaki sposób należy przygotować odpowiednie eksperymenty, prowadzenie takich pomiarów będzie łatwiejsze.
Źródło: First Measurement of Near-Threshold and Subthreshold J/ψ Photoproduction off Nuclei
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.