Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Polska firma pracuje nad uniwersalnymi dronami stratosferycznymi

Recommended Posts

Polski startup pracuje nad uniwersalnymi stratosferycznymi dronami. W kwietniu wykonał lot elektrycznym, bezzałogowym samolotem na wysokości ponad 24 km. Takie drony mają niedługo pozwalać na prowadzenie licznych badań naukowych, obrazowanie Ziemi, a nawet zastępowanie satelitów.

W niedzielę, 18 kwietnia, bezzałogowy samolot firmy Cloudless, o pięciometrowej rozpiętości skrzydeł, po godzinnym wznoszeniu pod specjalnym balonem rozpoczął autonomiczny lot na wysokości ponad 24 km. Po 2,5 godzinnej podróży precyzyjnie wylądował w założonym wcześniej miejscu.

Celem lotu było przebadanie w warunkach rzeczywistych prototypu najnowszego, relatywnie dużego samolotu o wysokim udźwigu, który będzie mógł zabierać na pokład aparaturę badawczą – mówi PAP inż. Piotr Franczak, który jest także pilotem.

To już kolejny stratosferyczny lot drona przeprowadzony przez dwójkę inżynierów Piotra Franczaka i Krzysztofa Bujwida. Wcześniej udało im się wprowadzić mniejszy, bezzałogowy samolot na wysokość 27 km.

Taki pułap stanowi szczególne wyzwanie ze względu na wyjątkowo rozrzedzone powietrze, w którym samolot musi się utrzymać. Twórcy Cloudless wyjaśniają, że na tej wysokości panują nieco podobne warunki, jak na Marsie. To jednak nie rekordy wysokości są tym, na czym nam zależy. Chcemy latać powyżej zjawisk pogodowych, ponieważ to gwarantuje 100 proc. dostęp do promieni słonecznych niezależnie od pogody, a docelowo nasze drony mają być zasilane słonecznie – wyjaśnia inż. Franczak.

Stratosferyczne bezzałogowce będą mogły bowiem prowadzić rozmaite badania naukowe z różnych dziedzin – np. meteorologii, ochrony środowiska, czy inżynierii kosmicznej. Wystarczy tylko podpiąć do samolotu odpowiednią aparaturę, aby zmierzyć np. stężenie ozonu czy pyłów.

Pierwsze badania mogą rozpocząć się już niedługo. Nawiązaliśmy już współpracę z Instytutem Technologiczno-Przyrodniczym. Wspólnie analizujemy dziedziny, w których można wykorzystać naszego drona – opowiada współzałożyciel Cloudless.

Inny temat to teledetekcja, czyli obrazowanie Ziemi. Docelowo chcielibyśmy prowadzić obserwacje Ziemi z pomocą kamer, czy nawet tworzyć mapy o większej dokładności niż tworzone z pomocą technik satelitarnych. Na przykład podczas jednego lotu można byłoby stworzyć precyzyjną mapę całego miasta i to całkowicie polskim sprzętem – wyjaśnia specjalista.

Twórcy Cloudless mają jednak jeszcze ambitniejszy cel - chcą stworzyć stratosferyczne drony, które staną się pseudosatelitami. Solarne samoloty teoretycznie może bowiem unosić się w przestworzach nawet rok bez lądowania. Będą pełniły podobne funkcje, jak orbitalne satelity, tylko poruszając się wielokrotnie bliżej Ziemi. W wielu dziedzinach da im to przewagę - np. będą mogły fotografować powierzchnię z bliższej odległości.

Stratosferyczne drony są przy tym nieporównanie tańsze od satelitów. To jest największy cel tego projektu. Mamy już przeprowadzone odpowiednie obliczenia i według analiz takie pseudosatelity będą mogły działać. Będą mogły latać całą dobę - w ciągu dnia panele słoneczne będą dawały energie do lotu, jak i do ładowania akumulatorów wykorzystywanych nocą – wyjaśnia inż. Franczak.

Nad podobnymi konstrukcjami pracuje już m.in. Airbus i BAE systems. Chcemy pokazać, że w Polsce też można to zrobić – dodaje. Cloudless zapewnia, że do rozpoczęcia wielu badań naukowych, np. z zakresu meteorologii czy badań kosmicznych, firma jest gotowa już dzisiaj. Rozpoczęcie działań z zakresu teledetekcji, czyli zdalnej obserwacji Ziemi, ma być możliwe za rok.

Na budowę unoszących się miesiącami pseudosatelitów potrzeba nieco więcej czasu. Zajmie to więcej niż rok lub dwa. Wiele zależy też od inwestorów, których właśnie poszukujemy – mówi inż. Franczak.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Ciekawy kierunek, ale główne pytanie co ten dron na tej wysokości robił. Jeśli spadał jak kamień przez 10km aż do momentu gdzie gęstość atmosfery pozwoliła mu szybować, to takie próby były wykonywane przez amatorów już wielokrotnie ( może również w polsce ;) ). Tu przykład z przed 8 lat modelarza ze Szwecji:

Były to czasy gdzie nie było jeszcze tanich kontrolerów wykonujących autonomiczne loty.

Obecnie poza uzyskaniem zgody na lot na taka wysokość, zgody na wykorzystanie nie do końca legalnego w Polsce pasma 1.2GHz na przesył wizji i wykorzystanie pasma 433MHz do sterowania modelem lub / i  zbierania telemetrii ( sądząc po antenach to to samo pasmo które wkorzystała firma Cloudless ) wielu modelarzy w Polsce było by w stanie przeprowadzić taki test. Do autonomicznego lotu i precyzyjnego lądowania potrzebne jest elektronika za mniej niż 1000zł. 

Niemniej bardzo cieszy że takie próby są w naszym kraju wykonywane, bo potencjał w lotach bezzałogowych i budowie oprzyrządowania do nich mieliśmy i wydaje mi się że nadal mamy bardzo duży. Sporo elektroniki na potrzeby tego hobby zostało zaprojektowanej przez i przy wsparciu naszych rodzimych konstruktorów. 

 

Share this post


Link to post
Share on other sites

Ha, dzięki za przypomnienie tego filmu! Pamiętam intro tego autora. Stare, dobre czasy jak się bawiłem więcej w RC :)

Share this post


Link to post
Share on other sites
4 godziny temu, dexx napisał:

Jeśli spadał jak kamień przez 10km aż do momentu gdzie gęstość atmosfery pozwoliła mu szybować, to takie próby były wykonywane przez amatorów już wielokrotnie ( może również w polsce ;) )

Jeśli wynieśli go balonem, to mogli zaprojektować śmigła tak żeby właśnie sobie radził przy ciśnieniu na 20km. Ale tak myślę że przecież na 20 km grawitacja jest niemal identyczna jak na powierzchni więc taki dron powisi sobie tak samo długo jak te dużo niżej, więc krótko

Share this post


Link to post
Share on other sites
Posted (edited)

Śmigła nie są problemem. Mogą zaprojektować skok i profil łopat tak, aby samolot radził sobie na pułapie docelowym, a obroty nie muszą być wysokie. Samolot jest wynoszony w końcu przez balon. Wszystkie tego typu konstrukcje będą miały profile skrzydeł i w konstrukcję zbliżoną do szybowców, tak jak widać na zdjęciu, oraz panele słoneczne. Lockheed U-2 ma pułap operacyjny na poziomie 21 300 metrów, więc to nie jest niemożliwe. Wydaje mi się, że tego typu konstrukcja może latać z niewielką prędkością, więc przy niewielkich oporach, prawie w nieskończoność, zakładając, że odzyska energię z paneli w ciągu dnia, a pogoda na tym pułapie nie jest problemem.

Słysze o tego typu pomysłach od jakiegoś czasu. Wydaje się, że to jest przyszłość, bo z jednej strony satelity robią się coraz mniejsze (cubesat i jeszcze mniejsze satelity jak picosats i femtosats), a z drugiej strony drony mają wystarczający udźwig, a elektronika i optyka jest kompaktowa. Optyka nie musi być tak zaawansowana jak na satelitach, bo kamera jest 10x bliżej powierzchni.

Grawitacja jest nawet na ISS prawie taka sama jak na Ziemi :)

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
18 godzin temu, cyjanobakteria napisał:

Wydaje mi się, że tego typu konstrukcja może latać z niewielką prędkością, więc przy niewielkich oporach, prawie w nieskończoność

Mały opór to zarazem mała siła nośna. Żeby ją zwiększyć to trzeba np powiększyć skrzydła zwiększając opór

Share this post


Link to post
Share on other sites
Posted (edited)

Zależy od profilu skrzydła oraz wymiarów. Generalnie im skrzydło dłuższe i krótsza cięciwa tym mniejszy stawia opór, a do tego można dodać końcówki, które ograniczają powstawanie turbulencji na końcach skrzydeł. Zwróć uwagę na szybowce. Na szybko znalazłem jeden z lepszych szybowców ASH-30mi, który ma współczynnik 60 (glide ratio > 60:1), a udźwig pewnie 200-250 kg, bo jest dwuosobowy. Współczynnik 60 oznacza, że zrobi 60 km w poziomie na każdy 1 km utraconego pułapu. W ogóle rekord lotu szybowcowego to 3000 km wzdłuż Andów (silne prądy wznoszące).

Hipotetycznie, jeżeli dron traciłby 1 Ah dziennie z akumulatora o pojemności 60 Ah, bo miałby na przykład niewystarczającą ilość ogniw FV albo zbyt duży payload, to misja może trwać 2 miesiące. Wydaje mi się, że można obecnie zbudować tego typu płatowiec, który w ten sposób może latać praktycznie w nieskończoność albo niewiele do tego brakuje.

Szybowiec na 16 km ze szczelną kabiną pod ciśnieniem :)

 

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
Posted (edited)

Przypomniało mi się, że rcflighttest zrobił kilka projektów w przeszłości. Do znalezienia na YT (solar powered plane fpv).

Tutaj film na innym kanale tego typu UAV. Wygląda na profesjonalny projekt małego teamu. Wytrzymał ponad 80h w powietrzu, ale to na niskim pułapie, pod chmurami i na końcu popsuła się pogoda (wiatr). Ale wygląda, że i tak mieli zamiar wylądować. Na trzeci dzień, po 75h w powietrzu, w południe baterie były w pełni naładowane, więc pojazd jest w stanie naładować baterie zanim zapadnie zmrok.

 

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Grupa astronomów bezpośrednio zmierzyła prędkość wiatró wiejących w stratosferze Jowisza. Zespół kierowany przez Thibaulta Cavalie z Laboratorium Astrofizyki w Bordeux wykorzystał Atacama Large Milimeter/submilimeter Array (ALMA) do obserwacji ruchu nowych molekuł, jakie powstały w atmosferze Jowisza po uderzeniu w nią komety Shoemaker-Levy 9 w roku 1994. Uzyskane wyniki wskazują, że badane wiatry mogą być najpotężniejszym zjawiskiem meteorologicznym w Układzie Słonecznym.
      Do pomiarów prędkości wiatru w stratosferze Jowisza nie można wykorzystać chmur, gdyż ich tam nie ma. Na szczęście naukowcy wpadli na alternatywą metodę pomiaru. Postanowili zbadać prędkość ruchu molekuł cyjanowodoru, które pojawiły się w prądach strumieniowych atmosfery Jowisza po kolizji z Shoemaker-Levy 9.
      Najbardziej spektakularnym z dokonanych przez nas odkryć jest zaobserwowanie silnych prądów strumieniowych, których prędkość sięga 400 metrów na sekundę. Wieją one pod zorzami w pobliżu biegunów, mówi Cavalie. Te 400 m/s to 1440 km/h, czyli ponaddwukrotnie szybciej niż największa prędkość wiatru zarejestrowana w Wielkiej Czerwonej Plamie na Jowiszu. To jednocześnie ponaddtrzykrotnie więcej niż prędkość najszybszego zarejestrowanego wiatru na Ziemi.
      Nasze badania wskazują, że te prądy strumieniowe zachowują się jak olbrzymie wiry o średnicy nawet czterokrotnie większej od średnicy Ziemi i o wysokości sięgającej 900 kilometrów, mówi współautor badań Bilal Benmahi. Tak duży wir to wydarzenie meteorologiczne unikatowe w skali Układu Słonecznego, dodaje Cavalie.
      Naukowcy od pewnego czasu wiedzą, że w pobliżu biegunów Jowisza wieją silne wiatry, jednak są one obecne setki kilometrów wyżej, niż obszar badany przez zespół Cavalie. Dotychczas sądzono, że wiatry te znacznie słabną, zanim dotrą w głębsze partie atmosfery. Dane z ALMA mówią coś wręcz przeciwnego, stwierdza Cavalie.
      Uczeni wykorzystali 42 z 66 anten ALMA ulokowanych na pustyni Atacama. Dzięki nim zmierzyli efekt Dopplera, niewielkie zmiany w częstotliwości promieniowania emitowanego przez molekuły. Zmiany te powodowane są ruchem molekuł. Obserwując te zmiany mogliśmy wyliczyć prędkość wiatru tak, jak można wyliczyć prędkość poruszającego się pociągu ze zmiany częstotliwości jego sygnału ostrzegawczego, wyjaśnia Vincent Hue z Southwest Research Institute.
      Uczeni zmierzyli nie tylko prędkości w stratosferze w pobliżu biegunów. Dokonali również pierwszych bezpośrednich pomiarów prądów strumieniowych w stratosferze wokół równika. Okazało się, że wieją one średnio z prędkością 600 km/h.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z University of Washington stworzyli Smellicopter, autonomicznego drona, który wykorzystuje czułki ćmy do nawigowania w stronę źródła zapachu. Takie drony mogłyby dostać się w miejsca niedostępne lub niebezpieczne, lokalizując wyciek gazu, ofiary katastrof, materiały wybuchowe itp.
      Stworzone przez człowieka czujniki zapachu nie mają najmniejszych szans z naturą, mówi główna autorka badań, doktorantka Melanie Anderson. Dzięki wykorzystaniu w Smellicopterze prawdziwych czułków ćmy mogliśmy skorzystać zarówno z olbrzymiej czułości organizmów naturalnych, jak i z robotycznej platformy, której pracę możemy kontrolować.
      Komórki w czułkach ćmy wzmacniają sygnały zapachowe. Ćma ma bardzo wydajny mechanizm, pojedyncza molekuła może wywołać reakcję licznych komórek. To niezwykle wydajny, precyzyjny i szybki proces, dodaje profesor Thomas Daniel, promotor Anderson.
      Naukowcy wykorzystali czułki zawisaka tytoniowego (Manduca sexta). Zwierzęta były usypiane w zamrażarce przed odcięciem czułków. Po usunięciu czułki działały przez cztery godziny, a czas ten można wydłużyć utrzymując je w niskiej temperaturze. Do czułków dołączono okablowanie podłączone do obwodu elektrycznego. W ten sposób można było mierzyć uśredniony sygnał przekazywany przez wszystkie komórki czułków. Takie urządzenie porównano z wydajnością całkowicie sztucznego czujnika zapachów. Okazało się, że ten przygotowany na potrzeby Smellicoptera działa znacznie szybciej.
      Podstawą do zbudowania Smellicopetera był niewielki opensource'owy dron z czterema wirnikami, do którego użytkownik może dodawać nowe elementy. Uczeni wyposażyli go w dwa dodatkowe stateczniki, dzięki którym był ciągle skierowany pod wiatr.
      Z robotycznego punktu widzenia, to genialne rozwiązanie. Klasyczne podejście do robotyki zakłada dodawanie kolejnych czujników i ewentualnie stworzenie wymyślnego algorytmu lub maszynowego uczenia się do wyczuwania kierunku wiatru. A tu okazuje się, że wystarczy dodać stateczniki, stwierdza współautor badań profesor Sawyer Fuller.
      Również sposób pracy Smellicoptera jest bardzo prosty. Naukowcy określają tylko pewien zakres sygnałów, których ma poszukiwać. Wypuszczony z ręki dron najpierw leci w lewo na określoną odległość. Jeśli jego drogi nie przetnie żaden zapach mieszczący się w zakresie, zawraca i leci w prawo. Gdy zaś trafi na zapach, leci w jego kierunku.
      Dzięki czterem czujnikom na podczerwień, z których każdy próbkuje otoczenie 10 razy na sekundę, dron potrafi omijać przeszkody. Ponadto Smellicopter nie korzysta z GPS-a a z niewielkiej kamery. Widzi więc otoczenie, dzięki czemu może pracować w pomieszczeniach, pod ziemią czy w rurociągach.
      W czasie testów naukowcy wykorzystali fakt, że czułki ćmy w sposób naturalny są wrażliwe na zapachy kwiatów. Jednak naukowcy mają nadzieję, że w przyszłości uda się całość dostroić do innych zapachów, jak np. dwutlenek węgla wydychany przez osobę uwięzioną pod gruzami czy sygnatury chemiczne środków wybuchowych.
      Odnajdowanie źródła zapachu to idealne zadanie dla niewielkich dronów. Duże urządzenia są w stanie zabrać na pokład całą masę czujników i za ich pomocą budować mapę otoczenia. W małej skali tego nie robimy. Jedyne, czego potrzebujemy, by odnaleźć źródło zapachu to możliwość ustawienia się w jego kierunku i omijania przeszkód. Nie musimy mieć do tego zaawansowanych czujników. Wystarczy czujnik zapachu. A Smellicopter jest w tym naprawdę dobry, mówi Fuller.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wielki sukces inżynierów z Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy. Pierwszego lipca zespół Koła Naukowego Sonda - dr inż. Damian Ledziński, mgr inż. Sandra Śmigiel, mgr inż. Gracjan Kątek, mgr inż. Karol Hartwig i inż. Marta Gackowska - jako pierwszy w Polsce dokonał zdalnego lotu dronem online z niewyobrażalnej, jak do tej pory, odległości 333 km. Wydarzenie miało miejsce podczas tegorocznego konkursu DRONIADA GZM2020 w Katowicach.
      Dzięki wykorzystaniu chmury obliczeniowej i autorskiemu rozwiązaniu problemu, całość lotu drona była bezpośrednio sterowana i kontrolowana zza biurka znajdującego się w budynku kampusu UTP w bydgoskim Fordonie. W Katowicach dron został uruchomiony przez Dariusza Werschnera, prezesa Polskiej Izby Systemów Bezzałogowych, po czym bydgoscy naukowcy przejęli nad nim kontrolę i wykonali trzykrotnie pełną misję nad lotniskiem. Maszynę kontrolował algorytm. Zastosowane rozwiązanie umożliwia lot dronem każdego typu opartym o kontroler lotu PIXHAWK.
      Ta innowacyjna technologia tworzona jest przez zespół naukowców z Wydziału Inżynierii Mechanicznej i Wydziału Telekomunikacji, Informatyki i Elektrotechniki Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik marsjański Perseverance, który ma wystartować za trzy tygodnie, zabierze ze sobą nietypowy ładunek. Na jego pokładzie znajdzie się niewielki autonomiczny helikopter Ingenuity. Jeśli wszystko pójdzie dobrze, będzie on pierwszym pojazdem wysłanym przez człowieka, który wykona wspomagany silnikiem lot w atmosferze innej planety.
      Lot na Marsie może nie wydawać się niczym imponującym, ale jest to niezwykle trudne zadanie. Dość wspomnieć, że gęstość atmosfery Marsa to zaledwie 1% gęstości atmosfery ziemskiej, a temperatura na Czerwonej Planecie może w nocy spaść do -100 stopni Celsjusza. Wyobraźmy sobie lekki wietrzyk na Ziemi. A teraz wyobraźmy sobie 100-krotnie mniej gęste powietrze, które trzeba wykorzystać do uzyskanie siły nośnej i kontroli pojazdu, mówi Theodore Tzanetos z Jet Propulsion Laboratory. Żaden ziemski śmigłowiec nigdy nie latał w tak rozrzedzonej atmosferze.
      Preserverance i Ingenuity mają wystartować 20 lipca bieżącego roku (okno startowe będzie otwarte do 11 sierpnia), a lądowanie na Marsie planowane jest na 18 lutego przyszłego roku. Około 60 marsjańskich dni później łazik opuści drona na powierzchnię planety i odsunie się od niego na odległość 100 metrów.
      Ingenuity waży 1,8 kilograma. Wyposażono go w dwa umieszczone jeden na drugim rotory z włókna węglowego. Obracają się one w przeciwnych kierunkach z prędkością około 2400 obrotów na minutę. To pięciokrotnie szybciej niż wirniki śmigłowców na Ziemi. Gdy obracały się wolniej, dron nie mógłby oderwać się od powierzchni Marsa. Gdyby jednak obracały się znacznie szybciej, zewnętrzne krawędzie wirników zbliżyłyby się do prędkości dźwięku, wywołały falę uderzeniową, która zdestabilizowałaby pojazd.
      Głównym zadaniem Ingenuity jest sprawdzenie wykorzystanych technologii. Twórcy drona mają nadzieję, że w ciągu 30 dni uda im się wykonać 5 lotów. Żaden z nich nie ma trwać dłużej niż 90 sekund. Dron ma nie przekraczać wysokości 10 metrów, a długość każdego z lotów ma być nie większa niż 300 metrów.
      Josh Ravich, który stał na czele zespołu inżynierów projektujących Ingenuity, mówi, że dron będzie nieco mniej manewrowy niż drony wykorzystywane na Ziemi. Musimy jednak pamiętać, że marsjański śmigłowiec musi przetrwać start rakiety, lot z Ziemi na Marsa, wejście w atmosferę i lądowanie oraz zimne marsjańskie noce. Dlatego też inżynierowie przez wiele lat pracowali nad znalezieniem równowagi pomiędzy zużyciem energii, wytrzymałością, wagą i manewrowością.
      Większość energii, którą Ingenuity pozyskuje z niewielkiego panelu słonecznego umieszczonego nad wirnikami, zostanie zużyta nie na loty, a na ogrzewanie systemów drona podczas zimnych marsjańskich nocy. Inżynierowie zastanawiali się nad izolacją cieplną z aerożelu, jednak zrezygnowali z niej, gdyż uznali, że będzie zbyt wiele ważyła. Modelowanie wykazało, że marsjańska atmosfera, która w większości składa się z dwutlenku węgla, będzie w pewnym stopniu zapobiegała utracie ciepła przez drona.
      Naukowcy uznali też, że najlepszą porą na pierwszy lot będzie późny marsjański poranek. Słońce świeci wówczas na tyle mocno, że powinno zapewnić Ingenuity wystarczającą ilość energii do lotu. Jednak nie można lotu odkładać na późniejszą porę dnia, gdyż wówczas powierzchnia Marsa mocniej się nagrzewa przez co atmosfera unosi się, rozrzedza i lot byłby wówczas jeszcze trudniejszy.
      Jeśli misja Ingenuity się powiedzie, NASA będzie wyposażała w śmigłowce kolejne misje marsjańskie. Drony będą służyły łazikom, i w przyszłości ludziom, jako zwiadowcy, pokazujący, co znajduje się w trudnych do osiągnięcia miejscach, jak klify czy wulkany. Obecnie możemy obserwować Marsa albo z powierzchni, albo z orbity. A 90-sekukndowy lot drona pozwoli nam na obejrzenie setek metrów terenu znajdującego się przed nami, mówi Ravich.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      BAE Systems wyprodukowało bezzałogowy ultralekki samolot (UAV), który może konkurować z satelitami czy dronami. PHASA-35 (Persistent High-Altitude Solar Aircraft) może pochwalić się skrzydłami o rozpiętości 35 metrów, a więc dorównującej rozpiętości skrzydeł Boeinga, ale waży przy tym 150 kg, w tym 15 kg stanowi ładunek. Samolot został po raz pierwszy oblatany 10 lutego na poligonie australijskich sił powietrznych Woomera.
      Latał przez nieco mniej niż godzinę. To jednak wystarczyło do przetestowania jego aerodynamiki, autopilota i manewrowości. Wcześniej testowaliśmy te elementy na mniejszych modelach samolotu, więc większość problemów już poprawiliśmy,mówi Phil Varty z BAE Systems.
      Prototyp pokryty jest ogniwami fotowoltaicznymi firmy MicroLink Devices. Ich producent twierdzi, że skuteczność konwersji paneli sięga 31%.
      Na potrzeby testu tylko część skrzydeł pokryliśmy panelami. Urządzenia te o grubości kartki papieru generowały 4 kW. W ostatecznej wersji samolotu panele umieścimy na całej powierzchni skrzydeł i dostarczą one 12 kW, zapewnia Varty.
      Energia słoneczna napędza dwa silniki elektryczne i zasila zestaw ponad 400 akumulatorów, które pozwalają samolotowi na lot w nocy. Jak mówi Varty, akumulatory – w przeciwieństwie do paneli słonecznych – nie są ostatnim krzykiem techniki. Firma postawiła na znane, niezbyt wydajne i tanie rozwiązanie, podobne do tego, jakie możemy spotkać w smartfonach. Chodzi o to, żeby łatwo można było wymienić akumulatory na nowe, gdy pojawi się lepsza sprawdzona wersja.
      Przedstawiciele BAE Systems zauważają też, że pomimo tego, iż test samolotu był prowadzony latem w Australii, to pojazd zaprojektowano tak, by mógł latać podczas najmniej sprzyjającej pory roku – przesilenia zimowego. Dlatego też PHASA-35 może potencjalnie pozostawać w powietrzu nieprzerwanie przez cały rok. Będzie latał w stratosferze na wysokości około 20 kilometrów. Tam jest niewiele wiatru, nie chmur i turbulencji, mówi Varty.
      Samolot może być sterowany z Ziemi. Jest też wyposażony w autopilota, któremu można wgrać wcześniej przygotowaną trasę. Urządzenie może pozostawać w określonym punkcie lub wykonywać złożone manewry. Można go wyposażyć w aparaty fotograficzne, czujniki i różnego rodzaju urządzenia śledzące. Dlatego też PHASA-35 w wielu zastosowaniach może zastąpić drony czy satelity.
      Najlepsze wojskowe drony mogą pozostawać w powietrzu maksymalnie przez 3 doby. Z kolei satelity muszą utrzymać prędkość co najmniej 7 km/s, by pozostać na wyznaczonej orbicie. Samolot BAE Systems będzie mógł bez przerwy monitorować określone miejsce, a dzięki temu, że znajduje się niżej nad Ziemią, dostarczy dokładniejszych obrazów. Jednak jego przydatność i czas pozostawania w powietrzu będą w dużej mierze zależały od masy ładunku. Osobną kwestią jest odporność na awarie przez cały rok.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...