Search the Community
Showing results for tags ' stratosfera'.
Found 4 results
-
Erupcja podwodnego wulkanu Hunga Tonga-Hunga Ha'apai była jednym z najpotężniejszych wydarzeń tego typu w czasach współczesnych oraz największą erupcją obserwowaną przez naukę. Teraz dowiadujemy się, że wyrzuciła ona do atmosfery rekordowo dużo wody. Na tyle dużo, że przejściowo może ona wpłynąć na średnie temperatury na całej planecie. Nigdy czegoś takiego nie widzieliśmy, mówi Luis Millán z Jet Propulsion Laboratory, który wraz z zespołem zbadał ilość wody, jaka po erupcji trafiła do stratosfery. Na łamach Geophysical Research Letters Millán i jego koledzy informują, że w wyniku erupcji do stratosfery – warstwy atmosfery znajdującej się na wysokości od 12 do 53 kilometrów – trafiło 146 milionów ton wody. To 10% tego, co już było obecne w stratosferze. Naukowcy przeanalizowali dane z urządzenia MLS (Microwave Limb Sounder), które znajduje się na pokładzie satelity Astra. Bada ono gazy atmosferyczne. Po erupcji Hunga Tonga-Hunga Ha'apai pojawiły się niezwykle wysokie odczyty wartości pary wodnej. Musieliśmy dokładnie sprawdzić wszystkie pomiary, by upewnić się, że możemy im ufać, podkreśla Millán. Erupcje wulkanów rzadko dostarczają znaczące ilości wody do stratosfery. NASA prowadzi odpowiednie pomiary od 18 lat i tylko w dwóch przypadkach – w roku 2008 (wulkan Kasatochi) i 2015 (wulkan Calbuco) – odnotowano wyrzucenie przez wulkany dużych ilości wody do stratosfery. Oba te wydarzenia były jednak niczym, w porównaniu z tegoroczną erupcją, w obu przypadkach para wodna szybko zniknęła ze stratosfery. Teraz jednak może być inaczej. Nadmiarowa wilgoć z erupcji Hunga Tonga może pozostać w stratosferze przez lata. Dodatkowa para wodna będzie wpływała na procesy chemiczne w atmosferze, czasowo przyczyniając się do zubożenia warstwy ozonowej. Może też wpłynąć na temperatury przy powierzchni. Erupcje wulkaniczne, wyrzucając do atmosfery popiół, pył i różne gazy, zwykle przyczyniają się do przejściowego schłodzenia powierzchni naszej planety. Tymczasem Hunga Tonga nie dostarczył do stratosfery zbyt dużej ilości aerozoli. Natomiast tak duża ilość dodatkowej wody może przejściowo przyczynić się do niewielkiego zwiększenia temperatury na powierzchni planety, gdyż para wodna jest gazem cieplarnianym. Wpływ ten zaniknie, gdyż ta nadmiarowa para zniknie ze stratosfery. Millán i jego zespół stwierdzają, że gigantyczna ilość pary wodnej wyrzuconej przez wulkan to wynik „odpowiedniej” głębokości, na jakiej znajdowała się kaldera wulkanu. Nad nią znajdowało się 150 metrów wody. Gdyby kaldera była płycej, wulkan wyrzuciłby mniej wody, gdyby była głębiej, ciśnienie wody spowodowałoby, że erupcja nie wyrzuciłaby jej aż tyle. « powrót do artykułu
-
- Hunga Tonga
- wulkan
-
(and 3 more)
Tagged with:
-
Polski startup pracuje nad uniwersalnymi stratosferycznymi dronami. W kwietniu wykonał lot elektrycznym, bezzałogowym samolotem na wysokości ponad 24 km. Takie drony mają niedługo pozwalać na prowadzenie licznych badań naukowych, obrazowanie Ziemi, a nawet zastępowanie satelitów. W niedzielę, 18 kwietnia, bezzałogowy samolot firmy Cloudless, o pięciometrowej rozpiętości skrzydeł, po godzinnym wznoszeniu pod specjalnym balonem rozpoczął autonomiczny lot na wysokości ponad 24 km. Po 2,5 godzinnej podróży precyzyjnie wylądował w założonym wcześniej miejscu. Celem lotu było przebadanie w warunkach rzeczywistych prototypu najnowszego, relatywnie dużego samolotu o wysokim udźwigu, który będzie mógł zabierać na pokład aparaturę badawczą – mówi PAP inż. Piotr Franczak, który jest także pilotem. To już kolejny stratosferyczny lot drona przeprowadzony przez dwójkę inżynierów Piotra Franczaka i Krzysztofa Bujwida. Wcześniej udało im się wprowadzić mniejszy, bezzałogowy samolot na wysokość 27 km. Taki pułap stanowi szczególne wyzwanie ze względu na wyjątkowo rozrzedzone powietrze, w którym samolot musi się utrzymać. Twórcy Cloudless wyjaśniają, że na tej wysokości panują nieco podobne warunki, jak na Marsie. To jednak nie rekordy wysokości są tym, na czym nam zależy. Chcemy latać powyżej zjawisk pogodowych, ponieważ to gwarantuje 100 proc. dostęp do promieni słonecznych niezależnie od pogody, a docelowo nasze drony mają być zasilane słonecznie – wyjaśnia inż. Franczak. Stratosferyczne bezzałogowce będą mogły bowiem prowadzić rozmaite badania naukowe z różnych dziedzin – np. meteorologii, ochrony środowiska, czy inżynierii kosmicznej. Wystarczy tylko podpiąć do samolotu odpowiednią aparaturę, aby zmierzyć np. stężenie ozonu czy pyłów. Pierwsze badania mogą rozpocząć się już niedługo. Nawiązaliśmy już współpracę z Instytutem Technologiczno-Przyrodniczym. Wspólnie analizujemy dziedziny, w których można wykorzystać naszego drona – opowiada współzałożyciel Cloudless. Inny temat to teledetekcja, czyli obrazowanie Ziemi. Docelowo chcielibyśmy prowadzić obserwacje Ziemi z pomocą kamer, czy nawet tworzyć mapy o większej dokładności niż tworzone z pomocą technik satelitarnych. Na przykład podczas jednego lotu można byłoby stworzyć precyzyjną mapę całego miasta i to całkowicie polskim sprzętem – wyjaśnia specjalista. Twórcy Cloudless mają jednak jeszcze ambitniejszy cel - chcą stworzyć stratosferyczne drony, które staną się pseudosatelitami. Solarne samoloty teoretycznie może bowiem unosić się w przestworzach nawet rok bez lądowania. Będą pełniły podobne funkcje, jak orbitalne satelity, tylko poruszając się wielokrotnie bliżej Ziemi. W wielu dziedzinach da im to przewagę - np. będą mogły fotografować powierzchnię z bliższej odległości. Stratosferyczne drony są przy tym nieporównanie tańsze od satelitów. To jest największy cel tego projektu. Mamy już przeprowadzone odpowiednie obliczenia i według analiz takie pseudosatelity będą mogły działać. Będą mogły latać całą dobę - w ciągu dnia panele słoneczne będą dawały energie do lotu, jak i do ładowania akumulatorów wykorzystywanych nocą – wyjaśnia inż. Franczak. Nad podobnymi konstrukcjami pracuje już m.in. Airbus i BAE systems. Chcemy pokazać, że w Polsce też można to zrobić – dodaje. Cloudless zapewnia, że do rozpoczęcia wielu badań naukowych, np. z zakresu meteorologii czy badań kosmicznych, firma jest gotowa już dzisiaj. Rozpoczęcie działań z zakresu teledetekcji, czyli zdalnej obserwacji Ziemi, ma być możliwe za rok. Na budowę unoszących się miesiącami pseudosatelitów potrzeba nieco więcej czasu. Zajmie to więcej niż rok lub dwa. Wiele zależy też od inwestorów, których właśnie poszukujemy – mówi inż. Franczak. « powrót do artykułu
-
Grupa astronomów bezpośrednio zmierzyła prędkość wiatró wiejących w stratosferze Jowisza. Zespół kierowany przez Thibaulta Cavalie z Laboratorium Astrofizyki w Bordeux wykorzystał Atacama Large Milimeter/submilimeter Array (ALMA) do obserwacji ruchu nowych molekuł, jakie powstały w atmosferze Jowisza po uderzeniu w nią komety Shoemaker-Levy 9 w roku 1994. Uzyskane wyniki wskazują, że badane wiatry mogą być najpotężniejszym zjawiskiem meteorologicznym w Układzie Słonecznym. Do pomiarów prędkości wiatru w stratosferze Jowisza nie można wykorzystać chmur, gdyż ich tam nie ma. Na szczęście naukowcy wpadli na alternatywą metodę pomiaru. Postanowili zbadać prędkość ruchu molekuł cyjanowodoru, które pojawiły się w prądach strumieniowych atmosfery Jowisza po kolizji z Shoemaker-Levy 9. Najbardziej spektakularnym z dokonanych przez nas odkryć jest zaobserwowanie silnych prądów strumieniowych, których prędkość sięga 400 metrów na sekundę. Wieją one pod zorzami w pobliżu biegunów, mówi Cavalie. Te 400 m/s to 1440 km/h, czyli ponaddwukrotnie szybciej niż największa prędkość wiatru zarejestrowana w Wielkiej Czerwonej Plamie na Jowiszu. To jednocześnie ponaddtrzykrotnie więcej niż prędkość najszybszego zarejestrowanego wiatru na Ziemi. Nasze badania wskazują, że te prądy strumieniowe zachowują się jak olbrzymie wiry o średnicy nawet czterokrotnie większej od średnicy Ziemi i o wysokości sięgającej 900 kilometrów, mówi współautor badań Bilal Benmahi. Tak duży wir to wydarzenie meteorologiczne unikatowe w skali Układu Słonecznego, dodaje Cavalie. Naukowcy od pewnego czasu wiedzą, że w pobliżu biegunów Jowisza wieją silne wiatry, jednak są one obecne setki kilometrów wyżej, niż obszar badany przez zespół Cavalie. Dotychczas sądzono, że wiatry te znacznie słabną, zanim dotrą w głębsze partie atmosfery. Dane z ALMA mówią coś wręcz przeciwnego, stwierdza Cavalie. Uczeni wykorzystali 42 z 66 anten ALMA ulokowanych na pustyni Atacama. Dzięki nim zmierzyli efekt Dopplera, niewielkie zmiany w częstotliwości promieniowania emitowanego przez molekuły. Zmiany te powodowane są ruchem molekuł. Obserwując te zmiany mogliśmy wyliczyć prędkość wiatru tak, jak można wyliczyć prędkość poruszającego się pociągu ze zmiany częstotliwości jego sygnału ostrzegawczego, wyjaśnia Vincent Hue z Southwest Research Institute. Uczeni zmierzyli nie tylko prędkości w stratosferze w pobliżu biegunów. Dokonali również pierwszych bezpośrednich pomiarów prądów strumieniowych w stratosferze wokół równika. Okazało się, że wieją one średnio z prędkością 600 km/h. « powrót do artykułu
-
Niezwykłe wzorce pogodowe w górnych warstwach atmosfery nad Antarktyką znacząco zmniejszyły utratę ozonu powodując, że w ostatnim czasie dziura ozonowa była najmniejsza od czasu rozpoczęcia jej obserwowania w roku 1982, poinformowali naukowcy z NOAA i NASA. Największą tegoroczną powierzchnię dziura ozonowa osiągnęła 8 września, kiedy to obejmowała 16,4 miliona kilometrów kwadratowych. Później skurczyła się do 10 milionów km2 i tak już pozostało. Zwykle dziura ozonowa rozrasta się do niemal 21 milionów kilometrów kwadratowych i utrzymuje taką wielkość jeszcze na początku października. To świetna wiadomość dla ozonu na półkuli południowej. Musimy jednak pamiętać, że to, co obserwujemy, to skutek wyższych temperatur w stratosferze, a nie oznaka szybkiego odradzania się ozonu, mówi Paul Newman z Goddard Space Flight Center. Dziura ozonowa formuje się nad Antarktyką późną zimą, gdy wskutek promieniowania słonecznego w atmosferze rozpoczynają się reakcje pozbawiające ją ozonu. W reakcjach tych biorą udział wyemitowane przez człowieka aktywne formy związków chloru i bromu. Reakcja odpowiedzialne za niszczenie ozonu zachodzą na powierzchni chmur tworzących się w zimnych warstwach stratosfery. Gdy jest cieplej, formuje się mniej chmur, które są ponadto nietrwałe, dzięki czemu proces niszczenia ozonu jest mniej intensywny. Dziura ozonowa jest monitorowana za pomocą satelitów i balonów stratosferycznych. W tym roku podczas pomiarów ozonu nad Biegunem Południowym nie znaleziono żadnej części atmosfery, która byłaby całkowicie pozbawiona ozonu, mówi Bryan Johnson z Earth System Research Laboratory. W bieżącym roku po raz trzeci od niemal 40 lat zdarzyło się tak, że wyższe temperatury w stratosferze ograniczyły rozmiary dziury ozonowej. Dwa podobne takie wydarzenia miały miejsce w roku 1988 i 2002. To rzadki przypadek, który wciąż staramy się zrozumieć. Gdyby nie było tego ocieplenia, prawdopodobnie obserwowalibyśmy typową dziurę ozonową, mówi Susan Strahan z Universities Space Research Association. Naukowcy dotychczas nie znaleźli żadnego związku pomiędzy tymi trzema wydarzeniami, a zmianami klimatu. Warstwa ozonowa nad Antarktyką zaczęła powoli zmniejszać się w latach 70., a na początku lat 80. zaczęto rejestrować duże ubytki ozonu. W 1985 roku naukowcy z British Antarctic Survey odkryli dziurę ozonową, którą potwierdził później satelita NASA. W 1987 roku podpisano Protokół montrealski, który wszedł w życie w roku 1989. W jego ramach państwa zobowiązały się stopniowo ograniczać, a w końcu zaprzestać produkcji substancji niszczących warstwę ozonową. Protokół ten okazał się najbardziej skuteczną globalną umową w historii. Podpisało go 196 państw oraz Unia Europejska. Szczyt produkcji związków niszczących warstwę ozonową przypadł na rok 2000. Wtedy też dziura ozonowa była największa i sięgnęła niemal 30 milionów km2. Od tamtej pory się zmniejsza. Naukowcy oceniają, że do roku 2070 poziom ozonu nad Antarktyką powinien powrócić do poziomu z roku 1980. « powrót do artykułu
- 1 reply
-
- dziura ozonowa
- stratosfera
-
(and 1 more)
Tagged with: