Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Po erupcji Hunga Tonga do stratosfery trafiło rekordowo dużo wody. Może to nieco ogrzać Ziemię

Recommended Posts

Erupcja podwodnego wulkanu Hunga Tonga-Hunga Ha'apai była jednym z najpotężniejszych wydarzeń tego typu w czasach współczesnych oraz największą erupcją obserwowaną przez naukę. Teraz dowiadujemy się, że wyrzuciła ona do atmosfery rekordowo dużo wody. Na tyle dużo, że przejściowo może ona wpłynąć na średnie temperatury na całej planecie. Nigdy czegoś takiego nie widzieliśmy, mówi Luis Millán z Jet Propulsion Laboratory, który wraz z zespołem zbadał ilość wody, jaka po erupcji trafiła do stratosfery.

Na łamach Geophysical Research Letters Millán i jego koledzy informują, że w wyniku erupcji do stratosfery – warstwy atmosfery znajdującej się na wysokości od 12 do 53 kilometrów – trafiło 146 milionów ton wody. To 10% tego, co już było obecne w stratosferze. Naukowcy przeanalizowali dane z urządzenia MLS (Microwave Limb Sounder), które znajduje się na pokładzie satelity Astra. Bada ono gazy atmosferyczne. Po erupcji Hunga Tonga-Hunga Ha'apai pojawiły się niezwykle wysokie odczyty wartości pary wodnej. Musieliśmy dokładnie sprawdzić wszystkie pomiary, by upewnić się, że możemy im ufać, podkreśla Millán.

Erupcje wulkanów rzadko dostarczają znaczące ilości wody do stratosfery. NASA prowadzi odpowiednie pomiary od 18 lat i tylko w dwóch przypadkach – w roku 2008 (wulkan Kasatochi) i 2015 (wulkan Calbuco) – odnotowano wyrzucenie przez wulkany dużych ilości wody do stratosfery. Oba te wydarzenia były jednak niczym, w porównaniu z tegoroczną erupcją, w obu przypadkach para wodna szybko zniknęła ze stratosfery. Teraz jednak może być inaczej. Nadmiarowa wilgoć z erupcji Hunga Tonga może pozostać w stratosferze przez lata.

Dodatkowa para wodna będzie wpływała na procesy chemiczne w atmosferze, czasowo przyczyniając się do zubożenia warstwy ozonowej. Może też wpłynąć na temperatury przy powierzchni. Erupcje wulkaniczne, wyrzucając do atmosfery popiół, pył i różne gazy, zwykle przyczyniają się do przejściowego schłodzenia powierzchni naszej planety. Tymczasem Hunga Tonga nie dostarczył do stratosfery zbyt dużej ilości aerozoli. Natomiast tak duża ilość dodatkowej wody może przejściowo przyczynić się do niewielkiego zwiększenia temperatury na powierzchni planety, gdyż para wodna jest gazem cieplarnianym. Wpływ ten zaniknie, gdyż ta nadmiarowa para zniknie ze stratosfery.

Millán i jego zespół stwierdzają, że gigantyczna ilość pary wodnej wyrzuconej przez wulkan to wynik „odpowiedniej” głębokości, na jakiej znajdowała się kaldera wulkanu. Nad nią znajdowało się 150 metrów wody. Gdyby kaldera była płycej, wulkan wyrzuciłby mniej wody, gdyby była głębiej, ciśnienie wody spowodowałoby, że erupcja nie wyrzuciłaby jej aż tyle.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Nie od dzisiaj wiemy, że na Wenus są wulkany. Naukowcy spierali się jednak o to, czy nadal są one aktywne. To bardzo istotne pytanie, gdyż Wenus jest planetą bliską Ziemi, miała niegdyś wodę na powierzchni, więc warto odpowiedzieć sobie na pytanie, dlaczego na Ziemi kwitnie życie, podczas gdy na Wenus panują temperatury z piekła rodem. Ustalenie czy wulkany Wenus są aktywne pozwoliłoby nam lepiej określić ewolucję planety. Właśnie poznaliśmy odpowiedź na to pytanie.
      Wczoraj, podczas Lunar and Planetary Science Conference oraz na łamach Science przedstawiono wnioski z analiz obrazów radarowych powierzchni Wenus, uzyskanych przez misję Magellan w latach 1990–1992. Naukowcy zauważyli, że na obszarze Atla Regio, gdzie znajdują się dwa z największych wenusjańskich wulkanów, komin jednego z nich zmienił kształt. Widoczna jest różnica na dwóch obrazach wykonanych w odstępie 8 miesięcy. To zaś sugeruje, że w międzyczasie doszło do erupcji lub wypływu lawy.
      Odkrycie przyszło w samą porę. W czerwcu 2021 roku NASA ogłosiła, że w latach 2028–2030 wyśle dwie misje na Wenus. Będą to pierwsze od ponad 30 lat misje NASA poświęcone wyłącznie tej planecie. Każdej z nich przyznano już finansowanie. W ramach misji DAVINCI+ będzie zbadanie składu atmosfery i sprawdzenie, czy na Wenus istniał ocean. Misja wyśle też próbnik, który wleci w atmosferę planety i dotrze do jej powierzchni. Ma on przysłać pierwsze zdjęcia Wenus w wysokiej rozdzielczości. Z kolei w ramach misji VERITAS wysłany zostanie orbiter, który wykona trójwymiarową rekonstrukcję topografii planety, zbada czy występują tam zjawiska tektoniczne i wulkanizm oraz określi typy skał na powierzchni Wenus.
      Wiadomo jednak, że zdobycie jakichkolwiek danych nie będzie proste. Wenus ma bardzo gęstą atmosferę, panuje na niej ciśnienie 92-krotnie wyższe niż na Ziemi, a temperatury na jej powierzchni sięgają 450 stopni Celsjusza. Takie warunki to olbrzymie wyzwanie dla wszelkich próbników czy łazików.
      Dotychczas najdokładniejszych danych na temat powierzchni planety dostarczyła misja Magellan z lat 1989–1994. W jej trakcie za pomocą radaru trzykrotnie obrazowano te obszary Wenus, na których podejrzewano istnienie aktywnych wulkanów. Za każdym razem obrazy były uzyskiwane pod innym kątem. Ponadto obrazy mają niską rozdzielczość. Stąd też olbrzymie problemy w jednoznacznym stwierdzeniu, czy rzeczywiście widać na nich zmiany komina wulkanicznego. Część specjalistów uważa, że tak. Inni twierdzą, że nie. Spór może ostatecznie rozstrzygnąć misja VERITAS.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Spacerowicze odwiedzający jedną z plaż w San Diego mogli ostatnio oglądać... różową wodę. Niezwykły widok nie był jednak niczym groźnym ani niepokojący. Woda została celowo zabarwiona na różowo przez naukowców, którzy badają, w jaki sposób wody rzek mieszają się z wodami oceanów.
      Rzeki i ich estuaria odgrywają ważną rolę w dostarczaniu słodkiej wody oraz osadów i zanieczyszczeń do przybrzeżnych regionów oceanów. Niewiele jednak wiadomo o tym, jak przebiega interakcja lżejszych wód słodkich z cięższymi, gęstszymi i często chłodniejszymi wodami przybrzeżnymi oceanu.
      Od początku roku naukowcy ze Scripps Institution of Oceanography i University of Washington kilkukrotnie kolorowali wody bezpiecznym dla środowiska różowym barwnikiem, by obserwować, jak niewielkie estuarium wpływa na przybrzeżne wody oceanu.
      Jestem bardzo podekscytowana, bo dotychczas nie prowadzono tego typu badań. To naprawdę unikatowy eksperyment, mówi kierująca eksperymentem oceanograf Sarah Giddings. Zgromadziło się tutaj wielu ekspertów z różnych dziedzin. Sądzę, że uzyskamy naprawdę interesujące dalekosiężne wyniki. Połączymy je z wynikami starszych badań oraz z symulacjami komputerowymi. Chcemy zrozumieć, jak rozprzestrzenia się w oceanie woda z niewielkich estuariów, dodaje. Interesuje mnie, w jaki sposób interakcja sił fizycznych – zderzenia fal oceanu z wpływającą doń wodą z rzeki – wpływa na to, co dzieje się z wodą rzeczną, mówi doktor Alex Simpson.
      Barwnik, który zabarwiono wodę rzeki, jest śledzony z lądu, wody i powietrza. Specjalne czujniki zostały umieszczone między innymi na palach wbitych w dno i na samym dnie. Dane zbierane są poprzez pomiary fluoroscencji barwnika, a naukowcy mierzą prądy oceaniczne, wysokość fal, zasolenie i temperaturę wody oraz badają ich zmiany w czasie i wpływ na nie wód słodkich. W ten sposób zyskają informację o konkretnym miejscu badań, ale dzięki temu lepiej można będzie zrozumieć, jak niewielkie i średniej wielkości estuaria wpływają na rozprzestrzenianie się osadów, zanieczyszczeń, narybku i innych istotnych elementów środowiska przybrzeżnego.
      Wiele z wcześniejszych badań tego typu skupiało się na dużych rzekach, dlatego też niewiele wiemy o mniejszych ciekach wodnych. Na miejsce eksperymentów wybrano Los Peñasquitos Lagoon, gdyż jest to bardzo reprezentatywny przykład niewielkiego estuarium, z którego woda przedostaje się na dość jednorodne wybrzeże.
      Barwnik wypuszczany jest w czasie odpływu, gdyż naukowcy chcą mieć gwarancję, że zostanie on poniesiony w głąb oceanu. Gołym okiem widać go przez wiele godzin, a instrumenty naukowe są w stanie wykryć go przez około 24 godziny.
      Badania prowadzone są w ramach projektu Plumes in Nearshore Conditions (PiNC).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki współpracy naukowców z University of Cambridge i University College London powstała nowa forma lodu, która najbardziej ze wszystkich form przypomina ciekłą wodę. Jej badanie może doprowadzić do lepszego zrozumienia wody.
      Do uzyskania nowej formy lodu naukowcy wykorzystali młyn kulowy, w którym zmielili lód krystaliczny. Takie młyny są standardowo wykorzystywane w przemyśle czy w nauce do uzyskiwania materiałów amorficznych, ale nie używano ich dotychczas do mielenia lodu. Okazało się, że w młynie powstał amorficzny lód o gęstości podobnej do gęstości ciekłej wody, który swoim stanem przypomina jednak wodę z stanie stałym. Naukowcy nazwali uzyskany materiał amorficznym lodem o średniej gęstości (MDA – medium-density amorphous ice).
      Naukowcy stworzyli też symulację komputerową, która pozwoliła im lepiej zrozumieć proces poddawania MDA. Odkrycie MDA każe nam postawić wiele pytań o naturę ciekłej wody, dlatego dokładne zbadanie struktury MDA jest bardzo ważne. Znaleźliśmy uderzające podobieństwa pomiędzy MDA a wodą w stanie ciekłym, mówi doktor Michael Davies, który odpowiadał za modelowanie komputerowe.
      Już od dłuższego czasu uważa się, że lód amorficzny może być dobrym modelem do lepszego poznania ciekłej wody. Dotychczas znaliśmy dwie formy amorficznego lodu: lód amorficzny o wysokiej gęstości oraz o niskiej gęstości. Pomiędzy nimi, jak same nazwy wskazują, istnieje luka. A luka ta, w połączeniu z faktem, że gęstość ciekłej wody znajduje się po środku gęstości obu znanych wcześniej form lodu amorficznego, pokazuje, że zrozumienie MDA może pomóc w rozumieniu ciekłej wody. Doprowadziło to też do powstania hipotezy, że woda składa się z dwóch cieczy: jednej o dużej gęstości i jednej o niskiej gęstości.
      Zakładano, że nie istnieje lód o średniej gęstości. My wykazaliśmy, że MDA znajduje się dokładnie w tej „luce gęstości”, a odkrycie to może mieć daleko idące konsekwencje dla zrozumienia ciekłej wody i jej niezwykłych właściwości, mówi profesor Christoph Salzmann.
      Odkrycie MDA każe zadać sobie pytanie, czy taka forma lodu istnieje w nauce. Odkrywcy mówią, że podobnym siłom jak te działające w młynie kulowym może być poddawany lód na księżycach olbrzymich planet, jak Jowisz. Pod wpływem sił pływowych planety może więc on przyjmować formę MDA.
      Okazało się też, że MDA ma pewną właściwość, jakiej nie zauważono w przypadku innych form lodu. Otóż gdy zachodzi jego rekrystalizacja to standardowego lodu, uwalniana jest wyjątkowo duża ilość ciepła. Ciepło to może odgrywać rolę w ruchach tektonicznych. Odkrycie to pokazuje, że woda może być wysoko energetycznym materiałem geofizycznym.
      Uważa się, że lód amorficzny jest najbardziej rozpowszechnioną formą wody we wszechświecie. Teraz musimy zrozumieć, ile z tego lodu to MDA i jak bardzo aktywny pod względem geofizycznym jest MDA, mówi profesor Angelos Michaelides.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zmiany orbity ziemskiej mogły być czynnikiem wyzwalającym gwałtowne ocieplenie klimatu sprzed 56 milionów lat. To paleoceńsko-eoceńskie maksimum termiczne (PETM) jest wydarzeniem geologicznym najbardziej podobnym do zmian klimatycznych, których obecnie doświadczamy. Dlatego też od dawna stanowi przedmiot zainteresowania naukowców.
      Naukowcy z Pennsylvania State University przyjrzeli się rdzeniom z PETM pobranym u wybrzeży stanu Maryland. Datowali je techniką astrochronologii polegającą na kalibrowaniu w odniesieniu do skali czasowej odnoszącej się do zjawisk astronomicznych, na przykład do cykli Milankovicia. Cykle te to okresowe zmiany trzech parametrów orbity ziemskiej: ekscentryczności, precesji i nachylenia ekliptyki. Okres tych zmian jest różny, ale raz na jakiś czas zbiegają się one i były, jak się uważa, dominującym mechanizmem paleoklimatycznym. Być może to właśnie ich zbieg był odpowiedzialny za epoki lodowe.
      Z ostatnich badań przeprowadzonych na Penn State dowiadujemy się, że zmiany ekscentryczności i precesji orbity Ziemi faworyzowały pojawienie się wyższych temperatur. Ten orbitalny wyzwalacz mógł doprowadzić do uwolnienie się węgla, co z kolei skutkowało globalnym ociepleniem znanym jako PETM. Stawiamy taką hipotezę w opozycji do bardziej popularnej interpretacji mówiącej, że PETM został wywołany przez gwałtowny wulkanizm, mówi profesor Lee Kump.
      Analizy pokazały też, że początkowy etap PETM, ten w którym temperatury rosły, trwał około 6000 lat. Wartość ta mieści się w dotychczasowych szacunkach mówiących o kilkuset do dziesiątków tysięcy lat. Jej określenie jest ważne po to, byśmy mogli zrozumieć, jak szybko następowało wówczas globalne ocieplenie. W czasie tych 6000 lat do atmosfery dostało się 10 000 gigaton węgla w postaci CO2 i metanu, co oznacza roczną emisję rzędu 1,5 gigatony. Średnia globalna temperatura wzrosła o około 6 stopni.
      Ówczesne tempo emisji węgla do atmosfery było o około rząd wielkości mniejsze niż obecnie. Emitujemy rocznie od 5 do 10 razy więcej węgla niż w czasie wydarzenia, które 56 milionów lat temu pozostawiło trwały ślad na naszej planecie, dodaje Kump.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Super-ziemia TOI-1452 b może być w całości pokryta oceanem, uważa międzynarodowy zespół astronomów. Na łamach The Astronomical Journal uczeni poinformowali o odkryciu planety krążącej wokół czerwonego karła TOI-1452 znajdującego się w układzie podwójnym w Gwiazdozbiorze Smoka. Układ ten jest odległy od Ziemi o 99,5 lat świetlnych.
      TOI-1452 b jest nieco większa i bardziej masywna od naszej planety. Obiega swoją gwiazdę w ciągu 11 dni. Mimo że jej gwiazda jest mniejsza i chłodniejsza od Słońca, to planeta otrzymuje mniej więcej dwukrotnie więcej promieniowania niż Ziemia. Jest go tyle, że odpowiada ono temperaturze 52,85 stopni Celsjusza na powierzchni planety.
      Woda stanowi mniej niż 1% masy Ziemi. Gęstość niektórych egzoplanet wskazuje, że w większym stopniu zbudowane są z lżejszych materiałów niż nasza planeta. Najprawdopodobniej znaczy to, że zawierają więcej wody.
      TOI-1452 to jedna z najlepszych znanych nam kandydatek na wodny świat. Jej średnica i masa wskazują, że ma ona znacznie mniejszą gęstość niż planeta zbudowana ze skał i metali, jak Ziemia, stwierdził główny autor badań, Charles Cadieux. Analizy wykazały, że planeta może aż w 30% składać się z wody.
      TOI-1452 b z pewnością będzie badana za pomocą Teleskopu Webba. Znajduje się bowiem stosunkowo blisko Ziemi, co ułatwia badanie jej atmosfery, ponadto jest w takim miejscu nieboskłonu, który jest widoczny dla Webba przez większą część roku. Jak tylko zarezerwujemy sobie czas obserwacyjny na JWST rozpoczniemy pracę nad lepszym zrozumieniem tej planety, dodaje profesor René Doyon z Uniwersytetu w Montrealu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...