Polskie instytucje naukowe koordynują rozwój badań nad technologiami kwantowymi
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Na całym świecie rośnie liczba przypadków chorób przenoszonych przez wektory. Najbardziej znane wektory to komary, kleszcze czy pchły. Jedną z przenoszonych przez nie chorób jest denga, której liczba przypadków zwiększyła się w ciągu ostatnich 50 lat aż 30-krotnie czyniąc ją drugą, po malarii, najbardziej rozpowszechnioną chorobą wektorową. Badacze z UK Centre for Ecology & Hydrology, Uniwersytetów w Glasgow i Reading oraz Biomathematics and Statistics Scotland opracowali model, który pozwala przewidzieć rozprzestrzenianie się w Europie komara tygrysiego (Aedes albopictus) i ryzyka lokalnych zachorowań na dengę.
Komar tygrysi występował naturalnie w Azji Południowo-Wschodniej. Został jednak przez człowieka rozwleczony po całym świecie. Najnowsze dane European Centre for Disease Prevention and Control z maja bieżącego roku wskazują, że komar tygrysi jest już zadomowiony między innymi w znacznej części Hiszpanii, większości Francji, całych Włoszech, środkowych i południowo-zachodnich Niemczech oraz w Berlinie, na Węgrzech i na południu Słowacji. Jego obecność zarejestrowano też w Czechach, Austrii czy na południu Szwecji. W Polsce gatunku tego nie stwierdzono, jednak niewykluczone, że z powodu... braku danych. Zdecydowana większość obszaru naszego kraju jest oznaczona jako tereny, z których nie ma informacji.
W porównaniu z poprzednim raportem, z października 2023 roku komar tygrysi zadomowił się w kolejnych 6 regionach Francji i 1 regionie Niemiec i został zaobserwowany w nowych regionach w Hiszpanii, Holandii, Portugalii i Słowenii.
Jeszcze w 2000 roku na świecie odnotowano około 0,5 miliona zachorowań na dengę, w roku 2024 mamy już ponad 12 milionów chorych i ponad 8000 zgonów. Przyczyną jest zarówno zmiana klimatu, jak i zachowanie ludzi, dzięki którym komar łatwiej się rozmnaża i rozprzestrzenia.
Autorzy nowych badań stworzyli bardziej szczegółowy model niż dotychczas używane, który już prawidłowo przewidział miejscowości, w których w bieżącym roku nastąpią pierwsze zachorowania na dengę. Są wśród nich La Colle-sur-Loup, Baho i Montpellier-Pérols we Francji czy Vila-seca w Hiszpanii. Prognozujemy, że najbardziej narażone na dengę pozostaną południowe regiony Francji oraz północ Włoch. Są tam sprzyjające warunki klimatyczne, stabilna populacja komarów oraz duża liczba osób wracających z krajów tropikalnych, gdzie denga występuje, stwierdził główny autor badań, Dominic Brass. Dotychczas najbardziej na północ wysuniętym miastem, w którym wystąpiła denga, był Paryż. Pierwszego komara tygrysiego zaobserwowano tam w 2015 roku, a w roku ubiegłym zanotowano lokalne zachorowania. Co więcej, w bieżącym roku w Paryżu doszło też do lokalnego zachorowania na chikungunyę, inną tropikalną chorobę przenoszoną przez komary.
Autorzy badań ostrzegają jednak, że obszar występowania ryzyka zachorowań przesuwa się na północ. Z ich modelu wynika, że lokalnych zachorowań można spodziewać się też w Warszawie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Podczas badań archeologicznych na stanowisku Łysa Góra (Rembielin) w pobliżu miejscowości Chorzele w powiecie przasnyskim dokonano sensacyjnego odkrycia. Eksperci z Państwowego Muzeum Archeologicznego, pracujący pod kierunkiem doktorów Wojciecha Borkowskiego i Bartłomieja Kaczyńskiego, znaleźli celtycki hełm z IV wieku przed naszą erą. To zaledwie drugie tego typu znalezisko na terenie naszego kraju. Pierwszy hełm celtycki znaleziono ponad 50 lat temu w Siemiechowie.
Łysa Góra to piaszczysta wydma na bagnach w dolinie rzeki Orzyc. Około VI wieku przed Chrystusem osiedlili się tam przedstawiciele kultury kurhanów zachodniobałtyjskich. Osadę odkryto w 1959 roku i od tej pory, z przerwą w latach 1971–1984, jest ona przedmiotem badań archeologicznych. Podczas obecnego sezonu wykopalisk znaleziono między innymi pozostałości umocnień, w tym kamienne licowania i ślady drewnianej palisady. Świadczą one o tym, że osada miała charakter obronny. Umocnienia były zapewne szczególnie przydatne zimą, gdy mokradła zamarzały.
Najważniejszym jednak ze znalezionych artefaktów jest wspomniany hełm. Ma on łukowaty nakarczek i stożkowatą kalotę (górną część) zakończoną podwójnym guzkiem. Wstępna analiza wykazała, że to hełm z brązu zbliżony do typu Berru, co pozwoliło datować go na IV w. p.n.e. Kompletne przykłady takich hełmów można obejrzeć w Muzeum Celtów w Hallein (Keltenmuseum Hallein). Zabytek jest w złym stanie, trafił do Działu Konserwacji Muzealiów Państwowego Muzeum Archeologicznego. Będzie się nim zajmował Mikołaj Organek, który specjalizuje się w konserwacji przedmiotów z brązu i żelaza. Prace konserwatorskie potrwają kilka miesięcy, po czym hełm trafi na przygotowywaną wystawę stałą.
Oprócz hełmu i umocnień archeolodzy znaleźli nożyce, siekiery, ciosła, półkoski oraz fibule, naszyjniki i bransolety.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Elena Cornaro Piscopia to pierwsza kobieta w historii, która otrzymała tytuł doktora filozofii. Na jej sukces złożyły się osobiste talenty, postawa ojca, otwarte głowy wielu osób oraz miejsce urodzenia. Oto krótka biografia tej niezwykłej kobiety.
Wbrew powszechnie panującym poglądom, edukacja nie była przed kobietami całkowicie zamknięta. Platon przyjmował je do swojej Akademii, u kobiet uczył się Sokrates, a XVII-wieczny francuski uczony Giles Ménage znalazł w starożytnych tekstach odniesienia do 56 kobiet filozofów. W średniowieczu istniało wiele różnych szkół, od klasztornych i katedralnych, po wiejskie czy zamkowe. Nie były one niedostępne dla dziewczynek. Oczywiście formalną edukację odbierała niewielka część społeczeństwa, a im wyższa pozycja społeczna, tym większe możliwościami kształcenia. Często kobiety z rodów szlacheckich były lepiej wykształcone niż ich bracia. Je uczono czytania, pisania, poezji, muzyki czy odpowiednich manier, braci zaś przygotowywano do wojaczki i zarządzania majątkiem.
Jednak mimo tego panował pogląd, żywiony zarówno przez Arystotelesa, jak i św. Tomasza z Akwinu, o podrzędnych zdolnościach kobiet. Gdy w średniowieczu pojawiły się uniwersytety, kobiet z reguły do nich nie dopuszczano. Wyjątek stanowiły uniwersytety włoskie.
Elena Cornaro Piscopia rodziła się w 1646 roku. Była piątym nieślubnym dzieckiem Giovanniego Battisty Coronaro Piscopiusa i Zanetty Giovanni Boni. Zanetta pochodziła z rodziny rzemieślniczej. Giovanii był przedstawicielem potężnego rodu, jednego z fundatorów Republiki Weneckiej. Rodzice Eleny pobrali się dopiero, gdy jej matka była w szóstej ciąży.
Trzy lata po urodzeniu Eleny jej ojciec został naczelnym zarządcą Bazyliki św. Marka. Był to drugi pod względem prestiżu urząd w Wenecji. Ustępował jedynie doży, ale w przeciwieństwie do niego, był urzędem dożywotnim. Giovanni odziedziczył też po dziadku jedną z najwspanialszych prywatnych bibliotek swoich czasów. Gdy Elena miała 7 lat ksiądz Giovanni Fabris, przyjaciel rodziny, zwrócił uwagę na jej wyjątkową inteligencję i zapał do nauki. Zyskała miano „cudownego dziecka”. Namówił jej ojca, by zapewnił jej najlepsze możliwe wykształcenie. Ojciec sprowadził najlepszych księży i profesorów. Elena uczyła się matematyki, filozofii, teologii, astronomii i geografii. Nie zapomniano też o bardziej typowym dla kobiet wykształceniu, jak gra na instrumentach. Podobno w wieku 17 lat grała na klawesynie, klawikordzie, harfie i skrzypcach. Nie mogło też obejść się bez znajomości łaciny, a na dodatek znała grekę, hebrajski, arabski, francuski, angielski, hiszpański i aramejski.
Elena była niezwykle pobożna, chciała zostać zakonnicą. Na to jednak nie zgodził się jej ojciec, który postanowił dobrze wydać ją za mąż. W tamtych czasach wybór między klasztorem – w którym zresztą można było się kształcić – a zamążpójściem, był praktycznie jedynym wyborem kobiety. Dość wspomnieć, że pod koniec XVI wieku aż 60% kobiet ze szlacheckich rodów Wenecji żyło w klasztorach. Czasem był to ich wybór, czasem wybór rodziny, której nie stać było na posag dla córki.
Elena miała jednak inne plany. Odrzuciła wielu kandydatów i w 1665 roku została oblatką (świecką zakonnicą) benedyktyńską w Bazylice św. Justyny w Padwie. Poświęciła się studiom teologicznym i filozoficznym. Jej nauczycielem filozofii był przez 10 lat bliski przyjaciel Galileusza, Carlo Rinaldini. Jeden z pierwszych uczonych, którzy wykładali odkrycia Galileusza. Rinaldini, który stał na czele Wydziału Filozofii Uniwersytetu w Padwie, napisał książkę o geometrii, którą zadedykował 22-letniej wówczas Elenie, a po śmierci księdza Fabrisa przejął kierowanie jej edukacją.
Gdy Elena miała 23 lata już było o niej głośno zarówno ze względu na jej wiedzę, jak i zdolności. Wtedy też, w 1669 roku, Elena została członkinią Accademia dei Ricovrati w Padwie. Było to jedno z niewielu towarzystw naukowych, które przyjmowały kobiety w swe szeregi. Już osiem lat później, profesor teologii, ojciec Rotondi, uznał, że Elena posiada tak głęboką wiedzę, że jest gotowa starać się o tytuł doktora teologii. Uniwersytet zatwierdził tę propozycję. Została ona jednak odrzucona przez kanclerza Uniwersytetu biskupa Padwy, kardynała Gregorio Barbarigo. Uznał on, że kobieta nie może być doktorem teologii. Doprowadziło to do spięć pomiędzy Barbarigo, a ojcem zdolnej studentki. W końcu Rinaldini znalazł wyjście z tej sytuacji. Zaproponował, by Elena starała się o doktorat z filozofii. Propozycję przyjęto z zastrzeżeniem, że nawet w wypadku zdobycia tytułu doktora Elena nie będzie wykładała na uczelni.
Dzień przed publiczną obroną Elena została poinformowana, że jej przedmiotem będą dwa ustępy. Jeden z „Fizyki”, drugi z „Analityk wtórnych” Arystotelesa. Doktorantka miała je przeanalizować i uzasadnić. Obrona miała odbyć się w uniwersyteckim audytorium, jednak zainteresowanie było tak olbrzymie, że wydarzenie przeniesiono do największego kościoła w Padwie, pobliskiej Bazyliki św. Antoniego. Uczestniczyło w nim wielu znamienitych gości, przedstawicieli arystokracji i świata nauki. Przyjechali uczeni z Bolonii, Rzymu i Neapolu.
Dnia 25 czerwca 1678 roku Elena przez ponad godzinę po łacinie objaśniała tezy greckiego filozofa. Obrona była tak błyskotliwa, że komisja naukowa zdecydowała, iż głosowanie nie odbędzie się w sposób tajny – jak to było w zwyczaju – a jawny. Doktorem została przez aklamację. Następnego dnia odbyła się uroczysta ceremonia, podczas której otrzymała księgę dotyczącą filozofii, pierścień, mucet z gronostajów oraz wieniec laurowy. Dwa tygodnie później została przyjęta do Rady Filozofów i Lekarzy Uniwersytetu w Padwie.
Elena Cornaro Piscopia ostatnie sześć lat życia spędziła w Padwie, poświęcając się nauce i pracy charytatywnej. Zmarła prawdopodobnie na gruźlicę w 1684 roku w wieku 38 lat.
Niewiele wiemy o poglądach i pracach naukowych Eleny. Poprosiła ona swoją pokojówkę, by po śmierci spaliła wszystkie jej pisma.
Zachowany dorobek tej wyjątkowej kobiety obejmuje teksty, które były przechowywane w akademiach naukowych, u rodziny czy przez osoby, które otrzymały od niej listy. Wchodzą w to cztery debaty akademickie, kilka elogii i korespondencja. Zachował się też, wydany kilkukrotnie w Republice Wenecji, jej przekład Alloquium Jesu Christi ad animam Fidelem z hiszpańskiego na włoski.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmersa poinformowali, że są jednym z pierwszych, którym udało się stworzyć materiał zdolny do przechowywania fermionów Majorany. Fermiony Majorany mogą być stabilnymi elementami komputera kwantowego. Problem z nimi jest taki, że pojawiają się w bardzo specyficznych okolicznościach.
Na całym świecie trwają prace nad komputerami kwantowymi. Jednym z najpoważniejszych wciąż nierozwiązanych problemów jest niezwykła delikatność stanów kwantowych, które łatwo ulegają dekoherencji, tracąc superpozycję, czyli zdolność do jednoczesnego przyjmowania wielu wartości.
Jednym z pomysłów na komputer kwantowy jest wykorzystanie do jego budowy fermionów Majorany. Para takich fermionów, umieszczonych w odległych częściach materiału, powinna być odporna na dekoherencję.
Problem jednak w tym, że w ciałach stałych fermiony Majorany pojawiają się wyłącznie w nadprzewodnikach topologicznych. To nowy typ materiału, który bardzo rzadko jest spotykany w praktyce. Wyniki naszych eksperymentów zgadzają się z teoretycznymi przewidywaniami dotyczącymi topologicznego nadprzewodnictwa, cieszy się profesor Floriana Lombardi z Laboratorium Fizyki Urządzeń Kwantowych na Chalmers.
Naukowcy rozpoczęli pracę od topologicznego izolatora z tellurku bizmutu (Bi2Te3). Izolatory topologiczne przewodzą prąd wyłącznie na powierzchni. Wewnątrz są izolatorami. Uczeni z Chalmers pokryli swój izolator warstwą aluminium, które w bardzo niskiej temperaturze jest nadprzewodnikiem. W takich warunkach do izolatora topologicznego przeniknęła nadprzewodząca para elektronów, przez co topologiczny izolator wykazywał właściwości nadprzewodzące, wyjaśnia profesor Thilo Bauch.
Jednak wstępne pomiary wykazywały, że uczeni mają do czynienia ze standardowym nadprzewodnictwem w Bi2Te3. Gdy jednak naukowcy ponownie schłodzili swój materiał, by dokonać kolejnych pomiarów, sytuacja uległa nagłej zmianie. Charakterystyki nadprzewodzących par elektronów różniły się od siebie w zależności o kierunku. Takie zachowanie nie jest zgodne ze standardowym nadprzewodnictwem. Zaczęły zachodzić niespodziewane, ekscytujące zjawiska, mówi Lombardi.
Istotnym elementem tego, co się wydarzyło był fakt, że zespół Lombardi – w przeciwieństwie do wielu innych grup, które prowadziły podobne eksperymenty – użył platyny do połączenia izolatora topologicznego z aluminium. Wielokrotne chłodzenie doprowadziło do wzrostu napięć w platynie, przez co doszło do zmian właściwości nadprzewodnictwa. Analizy wykazały, że w ten sposób najprawdopodobniej uzyskano topologiczny nadprzewodnik.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Intel ogłosił, że wybuduje w Polsce supernowoczesny zakład integracji i testowania półprzewodników. Stanie on w Miękini pod Wrocławiem, a koncern ma zamiar zainwestować w jego stworzenie do 4,6 miliarda dolarów. Inwestycja w Polsce to część obecnych i przyszłych planów Intela dotyczących Europy. Firma ma już fabrykę półprzewodników w Leixlip w Irlandii i planuje budowę drugiej w Magdeburgu w Niemczech. W sumie Intel chce zainwestować 33 miliardy euro w fabrykę w Niemczech, zakład badawczo-rozwojowo-projektowy we Francji oraz podobne przedsięwzięcia we Włoszech, Hiszpanii i Polsce.
Zakład w Polsce ma rozpocząć pracę w 2027 roku. Zatrudnienie znajdzie w nim około 2000 osób, jednak inwestycja pomyślana została tak, by w razie potrzeby można było ją rozbudować. Koncern już przystąpił do realizacji fazy projektowania i planowania budowy, na jej rozpoczęcie będzie musiała wyrazić zgodę Unia Europejska.
Intel już działa w Polsce i kraj ten jest dobrze przygotowany do współpracy z naszymi fabrykami w Irlandii i Niemczech. To jednocześnie kraj bardzo konkurencyjny pod względem kosztów, w którym istnieje solidna baza utalentowanych pracowników, stwierdził dyrektor wykonawczy Intela, Pat Gelsinger. Przedstawiciele koncernu stwierdzili, że Polskę wybrali między innymi ze względu na istniejącą infrastrukturę, odpowiednio przygotowaną siłę roboczą oraz świetne warunki do prowadzenia biznesu.
Zakład w Miękini będzie ściśle współpracował z fabryką w Irlandii i planowaną fabryką w Niemczech. Będą do niego trafiały plastry krzemowe z naniesionymi elementami elektronicznymi układów scalonych. W polskim zakładzie będą one cięte na pojedyncze układy scalone, składane w gotowe chipy oraz testowane pod kątem wydajności i jakości. Stąd też będą trafiały do odbiorców. Przedsiębiorstwo będzie też w stanie pracować z indywidualnymi chipami otrzymanymi od zleceniodawcy i składać je w końcowy produkt. Będzie mogło pracować z plastrami i chipami Intela, Intel Foundry Services i innych fabryk.
Intel nie ujawnił, jaką kwotę wsparcia z publicznych pieniędzy otrzyma od polskiego rządu. Wiemy na przykład, że koncern wciąż prowadzi negocjacje z rządem w Berlinie w sprawie dotacji do budowy fabryki w Magdeburgu. Ma być ona warta 17 miliardów euro, a Intel początkowo negocjował kwotę 6,8 miliarda euro wsparcia, ostatnio zaś niemieckie media doniosły, że firma jest bliska podpisania z Berlinem porozumienia o 9,9 miliardach euro dofinansowania. Pat Gelsinger przyznał, że Polska miała nieco więcej chęci na inwestycję Intela niż inne kraje.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.