Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Dwie małe misje przy okazji większej. NASA oferuje „autostop” dla małych misji badawczych

Rekomendowane odpowiedzi

Testy żagla słonecznego oraz badania zewnętrznych warstw atmosfery Ziemi będą dwiema misjami, które zostaną zabrane „autostopem” przy okazji misji IMAP (Interstellar Mapping and Acceleration Probe). Urządzenia typu SmallSat trafią w przestrzeń kosmiczną dzięki temu, że IMAP nie wykorzysta całych możliwości rakiety nośnej. Ich wybór to jednocześnie początek realizacji przez NASA „naukowego autostopu” o nazwie RideShare.

Wspomniane małe misje to GLIDE (Global Lyman-alpha Imagers of the Dynamic Exosphere), w ramach której badany będzie obszar, gdzie atmosfera styka się z przestrzenią kosmiczną, oraz Solar Cruiser, misja testowa żagla słonecznego.

Zostaną one wystrzelone wraz z IMAP w 2025 roku. Sonda IMAP zostanie umieszczona w punkcie libracyjnym L1 i stamtąd będzie badała przyspieszenie cząstek pochodzących z heliosfery oraz interakcję wiatru słonecznego z lokalnym medium. Dane będą przesyłane na Ziemię w czasie rzeczywistym i posłużą do prognozowania pogody kosmicznej.

W ramach projektu RideShare NASA ma zamiar wykorzystywać nadmiarową moc rakiet nośnych używanych przy dużych misjach do zabierania na ich pokład mniejszych urządzeń, na przykład typu SmallSat. To zwiększy możliwości badawcze i ułatwi organizowanie niewielkich misji naukowych.

GLIDE ma uzupełnić nasze luki w wiedzy na temat egzosfery. Dysponujemy co prawda wykonanymi w ultrafiolecie zdjęciami tego obszaru, ale wszystkie one zostały zrobione spoza egzosfery. GLIDE ma obserwować całą egzosferę, dostarczając globalnych i spójnych danych na jej temat. Badania, w jaki sposób Słońce wpływa na najbardziej zewnętrzne warstwy atmosfery, pozwolą na zrozumienie wpływu naszej gwiazdy na systemy telekomunikacyjne oraz opracowanie technik, pozwalających na uniknięcie zakłóceń ze strony Słońca. Główną badaczką misji jest Lara Waldrop z University of Illinois at Urbana-Champaign, a budżet GLIDE wynosi 75 milionów USD.

Z kolei Solar Cruiser to typowa misja testowa nowej technologii. W jej skład wchodzi żagiel słoneczny o powierzchni 1700 m2, a celem misji będzie wykazanie przydatności tego typu urządzeń do napędzania pojazdów z wykorzystaniem promieniowania słonecznego. Odpowiedzialnym za ten projekt jest Les Johnson z Marshall Space Flight Center, a budżet misji to 65 milionów USD.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
11 godzin temu, KopalniaWiedzy.pl napisał:

W ramach projektu RideShare NASA ma zamiar wykorzystywać nadmiarową moc rakiet nośnych używanych przy dużych misjach do zabierania na ich pokład mniejszych urządzeń, na przykład typu SmallSat. To większy możliwości badawcze i ułatwi organizowanie niewielkich misji naukowych.

No masz, a z miesiąc temu o tym myślałem, że byłoby fajnie jakby tak robili, nawet z nanosat. Ciekawe czy tylko "amerykańce" będą mogły się załapać. Może ESA też podłapie ten pomysł...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Myślę, że będą to oferowali wszystkim swoim partnerom. W ramach standardowej współpracy.  Wydaje mi się, że komercyjnych zleceń NASA nie przyjmuje. Może więc tutaj byłoby pole do zarobku dla ESA.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ten żagiel jest kuszący - ale trudno mi sobie wyobrazić jak działa. Cząstki wiatru są tak szybkie że raczej będą przebijać żagiel. Im cieńszy żagiel tym mniejsza masa - więc tym większy wpływ. Ale im cieńszy tym większa przepuszczalność. Może rozwiązaniem byłyby jakieś ultralekkie aerożele ale generujące jakieś pole chwytające? Czy ktoś kto się lepiej zna może przybliżyć tę ideę?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Właściwości lustra zależą od długości fali i rozmiaru "dziur" w reflektorze. Fale radiowe odbijają się od siatki z drutu, fale mikrofalowe od siateczki na drzwiach mikrofalówki, światło widzialne od praktycznie wszystkiego z czym mamy kontakt na co dzień, a promieniowanie gamma jest przenikliwe i przebija kilka metrów betonu.https://youtube.com/

JAXA wysłała już prototypowy pojazd (NASA i The Planetary Society z resztą też), który działa na tej zasadzie i udowodnił, że możemy wysłać satelitę do dowolnego miejsca w Układzie Słonecznym. Podróże to jedno, ale żagiel może też utrzymać satelitę bliżej Słońca z mniejszą prędkością orbitalną, na przykład pojazd na orbicie Wenus, ale zsynchronizowany z Ziemią.

 

Widzę, że zamotałem z linkiem do YT. Może jakiś życzliwy moderator poratuje i usunie pusty link do YT z poprzedniej wiadomości :)

Chciałem wrzucić to video, ale jest masa ciekawych filmów w internecie. Szukaj "light sail" albo "photon drive". Ten drugi nie działa w oparciu o żagiel, ale tez jest ciekawy.

 

 

Jest jeszcze ciekawy przegląd misji tego typu od Scotta. Wrzucam, bo może kogoś zainteresują szczegóły. Nie wiedziałem, że The Planetary Society przechodziło przez takie perypetie podczas szukania misji, z którą mogliby wystrzelić cubesata z żaglem na wystarczająco wysoką orbitę.

 

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      NASA zaprezentowała pierwsze zdjęcia pełnowymiarowego prototypu sześciu teleskopów, które w przyszłej dekadzie rozpoczną pracę w kosmicznym wykrywaczu fal grawitacyjnych. Budowane przez ekspertów z NASA teleskopy to niezwykle ważne elementy misji LISA (Laser Interferometer Space Antenna), przygotowywanej przez Europejską Agencję Kosmiczną (ESA).
      W skład misji LISA będą wchodziły trzy pojazdy kosmiczne, a na pokładzie każdego z nich znajdą się po dwa teleskopy NASA. W 2015 roku ESA wystrzeliła misję LISA Pathfinder, która przetestowała technologie potrzebne do stworzenia misji LISA. Kosmiczny wykrywacz fal grawitacyjnych ma rozpocząć pracę w 2035 roku.
      LISA będzie składała się z trzech satelitów, tworzących w przestrzeni kosmicznej trójkąt równoboczny. Każdy z jego boków będzie miał długość 2,5 miliona kilometrów. Na pokładzie każdego z pojazdów znajdą się po dwa identyczne teleskopy, przez które do sąsiednich satelitów wysyłany będzie impuls z lasera pracującego w podczerwieni. Promień będzie trafiał w swobodnie unoszące się na pokładzie każdego satelity pokryte złotem kostki ze złota i platyny o boku 46 mm. Teleskopy będą odbierały światło odbite od kostek i w ten sposób, z dokładnością do pikometrów – bilionowych części metra – określą odległość pomiędzy trzema satelitami. Pojazdy będą umieszczone w takim miejscu przestrzeni kosmicznej, że na kostki nie będzie mogło wpływać nic oprócz fal grawitacyjnych. Zatem wszelkie zmiany odległości będą świadczyły o tym, że przez pojazdy przeszła fala grawitacyjna. Każdy z pojazdów będzie miał na pokładzie dwa teleskopy, dwa lasery i dwie kostki.
      Formacja trzech pojazdów kosmicznych zostanie umieszczona na podobnej do ziemskiej orbicie wokół Słońca. Będzie podążała za naszą planetą w średniej odległości 50 milionów kilometrów. Zasada działania LISA bazuje na interferometrii laserowej, jest więc podobna do tego, jak działają ziemskie obserwatoria fal grawitacyjnych, takie jak np. opisywane przez nas LIGO. Po co więc budowanie wykrywaczy w kosmosie, skoro odpowiednie urządzenia istnieją na Ziemi?
      Im dłuższe ramiona wykrywacza, tym jest on bardziej czuły na fale grawitacyjne o długim okresie. Maksymalna czułość LIGO, którego ramiona mają długość 4 km, przypada na zakres 500 Hz. Tymczasem w przypadku LISY będzie to zakres 0,12 Hz. Kosmiczny interferometr będzie więc uzupełnienie urządzeń, które posiadamy na Ziemi, pozwoli rejestrować fale grawitacyjne, których ziemskie urządzenia nie zauważą.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Darwin był pierwszym naukowcem, który zwrócił uwagę na ruchy nutacyjne roślin. Od tamtej pory badający je uczeni dowiedzieli się, że te zwykle koliste lub wahadłowe ruchy służą, między innymi, poszukiwaniu podpory przez pędy. Jednak ruchy nutacyjne wykonuje też podążający za słońcem słonecznik. I, jak wszyscy wiemy, chodzi tutaj o zwrócenie się w stronę źródła światła. Jednak, jak dowodzą naukowcy z Izraela i USA, nie jest to działanie wyłącznie samolubne. Okazuje się bowiem, że gęsto rosnące słoneczniki poruszają się tak, by rzucać jak najmniej cienia na sąsiadujące rośliny.
      Już wcześniejsze badania pokazały, że jeśli słoneczniki są gęsto zasiane, ich wzorzec wzrostu przypomina zygzak. Jedna rośilna jest wychylona do przodu, sąsiednia do tyłu. W ten sposób cała społeczność maksymalizuje dostęp do światła słonecznego. Co więcej, potrafią odróżnić cień rzucany na przykład przez budynek, od cienia innych roślin. Jeśli wyczują cień budynku, nie zmieniają kierunku wzrostu, bo wiedzą, że to nic nie da. Jeśli jednak wyczują cień innej rośliny, rosną tak, by od tego cienia się oddalić, bo i ta roślina będzie się oddalała, wyjaśnia główna autorka badań, profesor Yasmine Meroz z Uniwersytetu w Tel Awiwie.
      Autorzy badań prowadzili eksperyment, w czasie którego co kilka minut fotografowali gęsto zasiane słoneczniki. Mogli w ten sposób śledzić ruchy każdej z roślin. Przeanalizowaliśmy ruch każdej z roślin w grupie, obserwowaliśmy ich taniec podczas wzrostu i przekonaliśmy się, że każda roślina stara się rosnąć tak, by nie blokować światła swojemu sąsiadowi. Zaskoczeniem dla nas był olbrzymi zakres ruchów, sięgający trzech rzędów wielkości. W zależności od sytuacji rośliny albo niemal nie zmieniały swojej pozycji, albo przesuwały się nawet o 2 centymetry co kilka minut w różnych kierunkach, dodaje uczona.
      Ta duża elastyczność ruchów pozwala słonecznikom na zadbanie o sąsiada i zmaksymalizowanie jego fotosyntezy. Gdyby słoneczniki były zdolne do wykonywania tylko ruchów o dużym zakresie, lub tylko tych o małym zakresie, częściej by się przesłaniały i rzucały cień na sąsiadów. To przypomina taniec w zatłoczonym miejscu, gdzie każdy z tancerzy porusza się tak, by wokół było jak najwięcej miejsca.[...] Dynamika ruchu słoneczników to połączenie reakcji na cień innych roślin z przypadkowymi ruchami niezależnymi od zewnętrznego bodźca, stwierdza Meroz.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      We wrześniu 2022 roku NASA przeprowadziła pierwszy w historii, i od razu udany, test obrony Ziemi przed asteroidami. W ramach misji DART niewielki pojazd uderzył w asteroidę Dimorphos i zmienił jej orbitę wokół asteroidy Didymos. Od tamtego czasu naukowcy badają obie asteroidy oraz skutki testu. Na łamach Nature Communications ukazało się właśnie 5 interesujących artykułów na temat Dimorphos i Didymos.
      Dzięki obrazom przekazanym przed zderzeniem przez DART i towarzyszący mu pojazd LICIACube naukowcy z Applied Physics Laboratory na Uniwersytecie Johnsa Hopkinsa mogli przeanalizować geologię obu asteroid. Olivier Barnouin i Ronald-Louis Ballouz stwierdzili, że mniejsza Dimorphos była pokryta głazami o różnych rozmiarach, natomiast Didymos jest bardziej gładka na mniejszych szerokościach i kamienista na większych, ma też więcej kraterów. Obaj autorzy uważają, że Dimorphos pochodzi od Didymos, od której się oderwała. Istnieją bowiem naturalne procesy, które przyspieszają obrót niewielkich asteroid. Mogą one być o odpowiedzialne za nadawanie im kształtu i odrywanie się materiału z ich powierzchni. Barnouin i Ballouz uważają, że powierzchnia Didymos ukształtowała się 12,5 miliona lat temu, a Dimorphos zyskała swój obecny kształt przed mniej niż 300 000 lat.
      Autorami kolejnej pracy są Maurizio Pajola z włoskiego Narodowego Instytutu Astrofizyki (INAF) i jego międzynarodowy zespół naukowy. Tutaj porównano kształt, rozmiary oraz rozkład głazów na powierzchni obu asteroid. Badacze stwierdzli, że Dimorphos formowała się etapami, prawdopodobnie z materiału pochodzącego z Didymos. Wyniki takie potwierdzają dominującą teorię, która mówi, że niektóre układy podwójne asteroid powstają w wyniku kumulowania się materiału z większej asteroidy na mniejszej, która staje się jej księżycem.
      Analizy zmęczenia cieplnego – stopniowego osłabiania i pękania materiału powodowanego przez zmiany temperatury – podjęła się Alice Lucchetti z INAF. Wraz z zespołem stwierdziła, że w wyniku takiego procesu tempo pękania powierzchni Dimorphos i oddzielania się od niej głazów może zachodzić znacznie szybciej, niż dotychczas sądzono.
      Naomi Murdoch z Uniwersytetu w Tuluzie oceniła nośność gruntu Didymos i stwierdziła, że jest ona co najmniej 1000-krotnie mniejsza niż suchego piasku czy gruntu na Księżycu. To bardzo ważny parametr, który pozwala nam zrozumieć i przewidzieć reakcję powierzchni na, na przykład, uderzenie pojazdu, który ma zmienić orbitę asteroidy.
      Autorem ostatniego z opublikowanych badań jest kolega Murdoch z uczelni, Colas Robin. Wraz z zespołem analizował on głazy znajdujące się na powierzchni Dimorphos i porównywał je z głazami z asteroid Itokawa, Ryugu oraz Bennu. Naukowcy zauważyli podobieństwa sugerujące, że wszystkie te asteroidy powstały i ewoluowały w podobny sposób.
      Wspomniane badania pozwalają nam lepiej zrozumieć pochodzenie, ewolucję i budowę Didymos i Dimorphos. Możemy też dowiedzieć się z nich, dlaczego misja DART okazała się tak wielkim sukcesem. Wiedza ta przyda się już wkrótce. Jeszcze w bieżącym roku wystartuje misja Hera Europejskiej Agencji Kosmicznej, która poleci do układu Didymos-Dimorphos. W 2026 roku wejdzie ona na orbitę asteroid i będzie je szczegółowo badała, uwzględniają przy tym wpływ misji DART.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzisiaj o godzinie 16:19 czasu polskiego ma wystartować misja Psyche. Jej celem jest wyjątkowy obiekt – największa w Układzie Słonecznym metaliczna asteroida Psyche. Znajduje się ona w głównym pasie planetoid, a wystrzelony pojazd będzie musiał przebyć 3,5 miliarda kilometrów zanim do niej dotrze. Dotychczas wysłane przez ludzi pojazdy odwiedzały obiekty zbudowane ze skał czy lodu. NASA wysyła zaś satelitę do asteroidy o wysokiej zawartości żelaza. W przeszłości Psyche mogła być jądrem planetozymalu, zalążka planety. Może być też pozostałością po obiekcie nieznanego obecnie typu, który był bogaty w żelazo i formował się gdzieś w Układzie Słonecznym.
      Badania Psyche – jeśli rzeczywiście jest to jądro planetozymalu – mogą pokazać, jak wygląda jądro Ziemi lub innych podobnych planet. Z tego punktu widzenia misję można uznać za wyprawę do wnętrza Ziemi. Nie jesteśmy w stanie bezpośrednio obserwować ziemskiego jądra. Psyche może dać nam taką możliwość i stanowić jedyną w swoim rodzaju okazję do badania początków planet typu ziemskiego.
      Psyche ma nieregularny kształt, jeśli wyobrazimy sobie ją jako owal, to wymiary asteroidy wyniosą 280x232 kilometry. Powierzchnia asteroidy wynosi 165 800 km2, czyli ponad połowę powierzchni Polski. Asteroida jest bardzo gęsta. Jej metr sześcienny ma masę 3400–4100 kilogramów. Odległość planetoidy od Ziemi waha się od 300 do 600 milionów kilometrów. Dla porównania warto pamiętać, że średnia odległość Ziemi od Słońca to 150 milionów kilometrów.
      Dotychczasowe badania, dokonywanie za pomocą radarów i mierzenia inercji termalnej wskazują, że Psyche to połączenie skał i metalu, a metal stanowi od 30 do 60 procent objętości asteroidy. Obserwacje radarowe i za pomocą teleskopów optycznych pozwoliły naukowcom na stworzenie trójwymiarowego modelu asteroidy. Wynika z niego, że znajdują się na niej dwa obniżenia podobne do kraterów, a na powierzchni występują znaczne różnice w kolorze i zawartości metalu. Dopóki jednak ludzkość nie wyśle na Psyche sondy, nie może być pewna, jak asteroida w rzeczywistości wygląda.
      Pojazd Psyche ma wielkość półciężarówki. Dotrze do celu w lipcu 2029 roku i przez 2 lata będzie krążył wokół asteroidy, prowadząc badania. Wyposażono go w kamerę multispektralną, która wykona zdjęcia zarówno w paśmie widzialnym, jak i w podczerwieni. Spektrometr rentgenowski i neutronowy pozwoli na badanie składu powierzchni asteroidy, a za pomocą magnetometru można będzie zmierzyć jej pole magnetyczne. Skaliste planety, takiej jak Ziemia, generują pole magnetyczne w płynnych metalicznych jądrach. Niewielkie zamrożone obiekty, jak asteroidy. Nie mają pola magnetycznego. Jeśli zaś magnetometr wykryje na Psyche pozostałości pola magnetycznego, będzie to silnym potwierdzeniem hipotezy, że asteroida to pozostałość jądra formującej się planety. Naukowcy liczą też na to, że na Psyche znajdą ślady ferrowulkanizmu. To nigdy nie obserwowane zjawisko, polegające na erupcji płynnego żelaza, do której dochodziło, gdy stygł odłupany od planety fragment jądra.
      Przy okazji misji Psyche NASA przetestuje system kosmicznej komunikacji laserowej (DSOC – Deep Space Optical Communications). Obecnie kontakt z pojazdami pracującymi poza Ziemią zapewniają fale radiowe. Mają one częstotliwość od 3 Hz do 3 THz. Tymczasem częstotliwość lasera podczerwonego sięga 300 THz, zatem transmisja danych za pośrednictwem laserów byłaby nawet 100-krotnie szybsza niż za pomocą fal radiowych. Ponadto laserowe systemy komunikacji są znacznie mniejsze i lżejsze, niż systemy komunikacji radiowej, co ma olbrzymie znaczenie podczas misji w kosmosie. Psyche nie będzie polegała na DSOC, a na standardowej komunikacji radiowej. Jeśli jednak testy systemu laserowego wypadną pomyślnie, będzie może zacząć stosować lasery w misjach kosmicznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Za nieco ponad tydzień wystartuje misja Psyche, która ma za zadanie zbadanie pochodzenia jąder planetarnych. Celem misji jest asteroida 16 Psyche, najbardziej masywna asteroida typu M, która w przeszłości – jak sądzą naukowcy – była jądrem protoplanety. Jej badanie to główny cel misji, jednak przy okazji NASA chce przetestować technologię, z którą eksperci nie potrafią poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera.
      Ludzkość planuje wysłanie w dalsze części przestrzeni kosmicznej więcej misji niż kiedykolwiek. Misje te powinny zebrać olbrzymią ilość danych, w tym obrazy i materiały wideo o wysokiej rozdzielczości. Jak jednak przesłać te dane na Ziemię? Obecnie wykorzystuje się transmisję radiową. Fale radiowe mają częstotliwość od 3 Hz do 3 THz. Tymczasem częstotliwość lasera podczerwonego sięga 300 THz, zatem transmisja z jego użyciem byłaby nawet 100-krotnie szybsza. Dlatego też naukowcy od dawna próbują wykorzystać lasery do łączności z pojazdami znajdującymi się poza Ziemią.
      Olbrzymią zaletą komunikacji laserowej, obok olbrzymiej pojemności, jest fakt, że wszystkie potrzebne elementy są niewielkie i ulegają ciągłej miniaturyzacji. A ma to olbrzymie znaczenie zarówno przy projektowaniu pojazdów wysyłanych w przestrzeń kosmiczną, jak i stacji nadawczo-odbiorczych na Ziemi. Znacznie łatwiej jest umieścić w pojeździe kosmicznym niewielkie elementy do komunikacji laserowej, niż podzespoły do komunikacji radiowej, w tym olbrzymie anteny.
      Gdyby jednak było to tak proste, to od dawna posługiwalibyśmy się laserami odbierając i wysyłając dane do pojazdów poza Ziemią. Tymczasem inżynierowie od dziesięcioleci próbują stworzyć system skutecznej komunikacji laserowej i wciąż im się to nie udało. Już w 1965 roku astronauci z misji Gemini VII próbowali wysłać z orbity sygnał za pomocą ręcznego 3-kilogramowego lasera. Próbę podjęto na długo zanim w ogóle istniały skuteczne systemy komunikacji laserowej. Późniejsze próby były bardziej udane. W 2013 roku przesłano dane pomiędzy satelitą LADEE, znajdującym się na orbicie Księżyca, a Ziemią. Przeprowadzono udane próby pomiędzy Ziemią a pojazdami na orbicie geosynchronicznej, a w bieżącym roku planowany jest test z wykorzystanim Międzynarodowej Stacji Kosmicznej. Psyche będzie pierwszą misją, w przypadku której komunikacja laserowa będzie testowana za pomocą pojazdu znajdującego się w dalszych partiach przestrzeni kosmicznej.
      Psyche będzie korzystała ze standardowego systemu komunikacji radiowej. Na pokładzie ma cztery anteny, w tym 2-metrową antenę kierunkową. Na potrzeby eksperymentu pojazd wyposażono w zestaw DSOC (Deep Space Optical Communications). W jego skład wchodzi laser podczerwony, spełniający rolę nadajnika, oraz zliczająca fotony kamera podłączona do 22-centymetrowego teleskopu optycznego, działająca jak odbiornik. Całość zawiera matrycę detektora składającą się z nadprzewodzących kabli działających w temperaturach kriogenicznych. Dzięki nim możliwe jest niezwykle precyzyjne zliczanie fotonów i określanie czasu ich odbioru z dokładnością większa niż nanosekunda. To właśnie w fotonach, a konkretnie w czasie ich przybycia do odbiornika, zakodowana będzie informacja. Taki system, mimo iż skomplikowany, jest mniejszy i lżejszy niż odbiornik radiowy. A to oznacza chociażby mniejsze koszty wystrzelenia pojazdu. Również mniejsze może być instalacja naziemna. Obecnie do komunikacji z misjami kosmicznymi NASA korzysta z Deep Space Network, zestawu 70-metrowych anten, które są drogie w budowie i utrzymaniu.
      Komunikacja laserowa ma wiele zalet, ale nie jest pozbawiona wad. Promieniowanie podczerwone jest łatwo blokowane przez chmury i czy dym. Mimo tych trudności, NASA nie rezygnuje z prób. System do nadawania i odbierania laserowych sygnałów ma znaleźć się na pokładzie misji Artemis II, która zabierze ludzi poza orbitę Księżyca. Jeśli się sprawdzi, będziemy mogli na żywo obserwować to wydarzenie w kolorze i rozdzielczości 4K.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...