Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Odkryto zaskakujące zjawisko: oceany absorbują mniej CO2, gdy spada jego emisja

Recommended Posts

Oceany są tak czułe na poziom dwutlenku węgla w atmosferze, że zmniejszenie jego emisji szybko prowadzi do mniejszego pochłaniania go przez wodę. Autorzy najnowszych studiów uważają, że w bieżącym roku oceany pochłoną mniej CO2, gdyż w związku z epidemią COVID-19 ludzkość mniej go wyemitowała.

Galen McKinley z należącego do Columbia University Lamont-Doherty Earth Observatory uważa, że w bieżącym roku oceany nie będą kontynuowały obserwowanego od wielu lat trendu, zgodnie z którym każdego roku pochłaniają więcej węgla niż roku poprzedniego. Nie zdawaliśmy sobie sprawy z tego zjawiska, dopóki nie przeprowadziliśmy badań na temat wymuszania zewnętrznego. Sprawdzaliśmy w ich ramach, jak zmiany wzrostu koncentracji atmosferycznego dwutlenku węgla wpływają na zmiany jego pochłaniania przez ocean. Uzyskane wyniki nas zaskoczyły. Gdy zmniejszyliśmy emisję i tempo wzrostu koncentracji CO2, oceany wolniej go pochłaniały.

Autorzy raportu, którego wyniki opublikowano właśnie w AGU Advances, chcieli sprawdzić, co powoduje, że w ciągu ostatnich 30 lat oceany pochłaniały różną ilość dwutlenku węgla. Takie badania pozwalają lepiej przewidywać zmiany klimatyczne i reakcję oceanów na nie.

Oceany są tym środowiskiem, które absorbuje największą ilość CO2 z atmosfery. Odgrywają więc kluczową rolę w ochronie planety przed ociepleniem spowodowanym antropogeniczną emisją dwutlenku węgla. Szacuje się, że oceany pochłonęły niemal 40% całego CO2 wyemitowanego przez ludzkość od początku epoki przemysłowej. Naukowcy nie rozumieją jednak, skąd bierze się zmienne tempo pochłaniania węgla. Od dawna zastanawiają się np., dlaczego na początku lat 90. przez krótki czas pochłaniały więcej CO2, a później tempo pochłaniania zwolniało do roku 2001.

McKinley i jej koledzy wykorzystali różne modele za pomocą których sprawdzali i analizowali różne scenariusza pochłaniania dwutlenku węgla i porównywali je z tym, co działo się w latach 1980–2017. Okazało się, że zmniejszenie pochłaniania dwutlenku węgla w latach 90. najlepiej można wyjaśnić przez zmniejszenie jego emisji. W tym bowiem czasie z jednej strony poprawiono wydajność procesów przemysłowych i doszło do upadku ZSRR, a gospodarki jego byłych satelitów przeżywały poważny kryzys. Stąd spowolnienie pochłaniania w latach 90. Skąd zaś wzięło się krótkotrwałe przyspieszenie tego procesu na początku lat 90? Przyczyną była wielka erupcja wulkanu Pinatubo na Filipinach z roku 1991.

Jednym z kluczowych odkryć było stwierdzenie, że takie wydarzenia jak erupcja wulkanu Pinatubo mogą odgrywać ważną rolę w zmianach reakcji oceanów na obecność węgla w atmosferze, wyjaśnia współautor badań Yassir Eddebbar ze Scripps Institution of Oceanography.

Erupcja Pinatubo była drugą największą erupcją wulkaniczną w XX wieku. Szacuje się, że wulkan wyrzucił 20 milionów ton gazów i popiołów. Naukowcy odkryli, że z tego powodu w latach 1992–1993 oceany pochłaniały więcej dwutlenku węgla. Później ta ilość zaczęła spadać i spadała do roku 2001, kiedy to ludzkość zwiększyła emisję, co pociągnęło za sobą też zwiększenie pochłaniania przez oceany.

McKinley i jej zespół chcą teraz bardziej szczegółowo zbadać wpływ Pinatubo na światowy klimat i na oceany oraz przekonać się, czy rzeczywiście, zgodnie z ich przewidywaniami, zmniejszenie emisji z powodu COVID-19 będzie skutkowało zmniejszeniem pochłaniania CO2.

Uczona zauważa, że z powyższych badań wynika jeszcze jeden, zaskakujący wniosek. Gdy obniżymy antropogeniczną emisję dwutlenku węgla, oceany będą mniej go wchłaniały, więc nie będą kompensowały emisji w tak dużym stopniu jak w przeszłości. Ten dodatkowy, niepochłonięty przez oceany, węgiel pozostanie w atmosferze i przyczyni się do dodatkowego ocieplenia.

Musimy przedyskutować ten mechanizm. Ludzie muszą rozumieć, że po obniżeniu emisji nastąpi okres, gdy i ocean obniży swoją efektywność jako miejsce pochłaniania węgla, mówi McKinley.


« powrót do artykułu

Share this post


Link to post
Share on other sites
35 minut temu, KopalniaWiedzy.pl napisał:

Musimy przedyskutować ten mechanizm. Ludzie muszą rozumieć, że po obniżeniu emisji nastąpi okres, gdy i ocean obniży swoją efektywność jako miejsce pochłaniania węgla, mówi McKinley.

Nie rozumiem. Strumień wymienianej masy zależy od różnicy stężeń (dokładniej: aktywności). Nie ma nic dziwnego w tym, że zmniejsza się prąd przy mniejszej różnicy potencjałów. Jeśli to prawo przestaje działać (ruch proporcjonalny do różnicy) to znaczy, że w grę wchodzą inne czynniki, np transport. Przy tak dużych powierzchniach chłonących, być może nie nadążamy z transportem CO2 z rejonów uprzemysłowionych nad oceany. Wtedy kinetyka nie będzie się zgadzać. Chyba że działają tam jakieś dziwne progi, coś jak nadnapięcie wodoru w polarografii.

Share this post


Link to post
Share on other sites
22 minuty temu, Jajcenty napisał:

Nie rozumiem

ja też nie.

Myślałem że każdy fan wody sodowej wie że dmuchając przez słomkę strasznie długo będzie tą szklankę z bąbelkami tworzyć, szybciej pójdzie biorąc większe stężenie CO2 np z butli w saturatorze :)

z oceanami jest więcej zmiennych bo bardzo ważna jest temperatura i cyrkulacja wody zimnej/ciepłej, wiązanie węgla w minerałach, pochłanianie przez organizmy i wiele innych. Ale generalnie im więcej CO2 w powietrzy tym więcej woda może go rozpuścić, myślałem że to oczywistość. 

 

 

 

Share this post


Link to post
Share on other sites
Godzinę temu, KopalniaWiedzy.pl napisał:

Ludzie muszą rozumieć, że po obniżeniu emisji nastąpi okres, gdy i ocean obniży swoją efektywność jako miejsce pochłaniania węgla, mówi McKinley.

Zapomniałem: jak mocno zejdziemy ze stężeniem CO2 w powietrzu to w ogóle nie będzie pochłaniał, wręcz panicznie zacznie uzupełniać braki dwutlenku węgla w atmosferze :)

Share this post


Link to post
Share on other sites
53 minuty temu, Jajcenty napisał:

Zapomniałem: jak mocno zejdziemy ze stężeniem CO2 w powietrzu to w ogóle nie będzie pochłaniał, wręcz panicznie zacznie uzupełniać braki dwutlenku węgla w atmosferze :)

nie ma śmiacia!

To poważne sprawy są, nie dopijesz piwa i na drugi dzień będzie klops, wygazuje się! no chyba że przez noc jakieś drożdże czy inne stwory zmagazynują ten węgiel w jakiejś innej, trwalszej  formie. Ale to nie zmieni faktu że nie będzie tych fajnych bąbelków które można nosem wypuszczać, i smak napoju pogorszy się znacznie. Jak żyć?

 

Share this post


Link to post
Share on other sites
53 minuty temu, tempik napisał:

Jak żyć?

Ciężki temat, ale może zainwestuj w paprykę - w końcu dało wymierny efekt (tyle lat wiadomego ugrupowania przy korycie).

Poważniej, to rozwala mnie od lat jak MY (głupi ludzie) traktujemy to wszystko. Nasze komentarze to tylko drobnostka. Całkiem jednak dobrze oddająca sedno sprawy. Gówno wiemy, gówno mówimy, gówno nam na sercu...

Share this post


Link to post
Share on other sites
3 godziny temu, KopalniaWiedzy.pl napisał:

oceany absorbują mniej CO2, gdy spada jego emisja

[...]Uzyskane wyniki nas zaskoczyły.

Hmmm, mnie by zaskoczyły, gdyby było odwrotnie. Ale może powinienem się częściej czymś zaskakiwać, nawet czymś oczywistym, to nauka byłaby bardziej ekscytująca?

6 minut temu, Astro napisał:

G[...] wiemy, g[...] mówimy, g[...] nam na sercu...

Astro, ale weź ... może daruj sobie takie teksty. Szanuj siebie i innych.

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
2 godziny temu, tempik napisał:

ja też nie.

Myślałem że każdy fan wody sodowej wie że dmuchając przez słomkę strasznie długo będzie tą szklankę z bąbelkami tworzyć, szybciej pójdzie biorąc większe stężenie CO2 np z butli w saturatorze :)

z oceanami jest więcej zmiennych bo bardzo ważna jest temperatura i cyrkulacja wody zimnej/ciepłej, wiązanie węgla w minerałach, pochłanianie przez organizmy i wiele innych. Ale generalnie im więcej CO2 w powietrzy tym więcej woda może go rozpuścić, myślałem że to oczywistość. 

 

 

 

Ja to rozumiem tak, że przecież saturacja ciągle się zwiększa, a mimo to wchłanianie się zmniejsza. Mamy poziom X nasycenia CO2 i oceany wchłaniają Y. W kolejnym roku mamy X1=X+20, oceany biorą Y+10, a potem mamy X1+10, to oceany biorą Y+5. Dobrze myślę?

Share this post


Link to post
Share on other sites
Posted (edited)
20 minut temu, Mariusz Błoński napisał:

Ja to rozumiem tak, że przecież saturacja ciągle się zwiększa, a mimo to wchłanianie się zmniejsza. Mamy poziom X nasycenia CO2 i oceany wchłaniają Y. W kolejnym roku mamy X1=X+20, oceany biorą Y+10, a potem mamy X1+10, to oceany biorą Y+5. Dobrze myślę?

Widzę to tak. Jak wzrasta stężenie CO2 w powietrzu, to wzrasta również wchłanianie. Oczywiście do czasu, aż otrzymamy roztwór nasycony, wówczas dalszy wzrost stężenia CO2 w powietrzu nie będzie już powodować wchłaniania. Gdy obniżymy stężenie w powietrzu, to gaz będzie ulatniał się z wody do atmosfery. Ten prosty proces mógłby zostać zniekształcony, albo nawet odwrócony, tylko za sprawą jakiś reakcji chemicznych zachodzących w wodzie, ewentualnie jakaś przemiana fazowa. Ale raczej byłyby to wówczas reakcje niezależne od stężenia CO2 w powietrzu.

Edited by Sławko

Share this post


Link to post
Share on other sites
Godzinę temu, Sławko napisał:

Astro, ale weź ... może daruj sobie takie teksty. Szanuj siebie i innych.

To mój wyraz miłości i współczucia; również stwierdzenie tego jak jest. Niestety. Bardzo chciałbym, aby było inaczej, ale ze statystyką nie bardzo da się dyskutować. ;)
Serio; bez złośliwości, ze szczerymi dobrymi życzeniami dla Ciebie, KW, i wszystkich innych.

P.S. Patrząc jednak na takich ludzi jak Ty Sławko wiem, że jednak jeszcze mogę trochę popisać, i może będzie miało to sens. ;)
Zatem wszystkiego dobrego, a właściwie tego, czego sobie mógłbym życzyć (o ile miałbym o sobie lepsze zdanie), czyli NAJLEPSZEGO!

Share this post


Link to post
Share on other sites
44 minuty temu, Mariusz Błoński napisał:

oceany biorą Y+10, a potem mamy X1+10, to oceany biorą Y+5. Dobrze myślę?

Ja się kompletnie nie znam :) ale ta krzywa na pewno nie będzie prostą. Pewnie jakiś teoretyczny model da się wygrzebać w sieci. Tutaj jeszcze zasolenie może mocno komplikować to wchłanianie

9 minut temu, Astro napisał:

Zatem wszystkiego dobrego, a właściwie tego, czego sobie mógłbym życzyć (o ile miałbym o sobie lepsze zdanie), czyli NAJLEPSZEGO!

I jeszcze jeden... I jeszcze raz....

Zaraz, zaraz, jesteśmy na urodzinach czy sylwestrze? Bo nie wiem co wam życzyć :D

 

Share this post


Link to post
Share on other sites
8 minut temu, tempik napisał:

Zaraz, zaraz, jesteśmy na urodzinach czy sylwestrze? Bo nie wiem co wam życzyć

Generalnie urodziny. Obudziłem się, żyję, czyli urodziłem się na nowo. :)
Flachy nie musisz stawiać. ;)

Share this post


Link to post
Share on other sites
13 minut temu, Astro napisał:

Bardzo chciałbym, aby było inaczej, ale ze statystyką nie bardzo da się dyskutować.

[...]

Serio; bez złośliwości, ze szczerymi dobrymi życzeniami dla Ciebie, KW, i wszystkich innych.

Wiem co miałeś na myśli i chciałeś być dosadny, ale czasami warto trochę mniej ekspresyjnie wyrażać myśli. Mnie też czasami kusi, żeby coś takiego napisać (a nawet mi się to zdarzało), jednak staram się powstrzymać, bo po pierwsze obniża to jednak poziom dyskusji i kultury, a po drugie, może być źle zrozumiane i odebrane przez innych. Za dużo tego "g" na raz było.

Ja się nie obrażam na Ciebie. Po prostu poczułem "dyskomfort", dlatego pozwoliłem sobie na małą uwagę.

Również życzę wszystkiego najlepszego!

Share this post


Link to post
Share on other sites
2 minuty temu, Sławko napisał:

Wiem co miałeś na myśli i chciałeś być dosadny

O nie drogi Sławko. Dosadność mam w rzyci. ;)
Zwyczajnie myślę, że to poprawia czytelnictwo KW. :D
Poważniej, to ja prosty człowiek jestem; co na sercu to na dłoni i na języku. Nie pamiętam tego po tygodniu.

4 minuty temu, Sławko napisał:

Ja się nie obrażam na Ciebie.

Uff. Nie przypuszczałbym jednak, że inteligentni ludzie mogliby się na coś takiego obrażać. :)

6 minut temu, Sławko napisał:

Po prostu poczułem "dyskomfort"

Dyskomfort to jak widzę niedzielną mszę, ale nie wchodźmy w szczegóły...

7 minut temu, Sławko napisał:

Również życzę wszystkiego najlepszego!

Tu z kolegą się zgodzić nie mogę stanowczo, bo życzę zdecydowanie lepiej. :)

Share this post


Link to post
Share on other sites

Jak bada się pochłanianie CO2 przez oceany? Przecież nie mierzy się całej ich wagi na początku i na końcu roku. Sprawność pochłaniania wynika raczej z obliczeń na podstawie ilości CO2 w atmosferze. Jeśli tak jest to wniosek jest zwyczajną tautologią i niczego nie dowodzi.

Share this post


Link to post
Share on other sites

A mnie to jakoś nie dziwi, że "modelarze" nie rozumieją elementarnej fizyki zjawisk które modelują.
IIRC oceany wchłaniają 2ppm na rok i spadek emisji w żadnym wypadku nie jest w stanie szybko tego zmienić w widoczny sposób, wody oceaniczne reagują z opóźnieniem.
Drobne wahania absorbcji to może być tylko kwestia wysycenia warstwy powierzchniowej, to ile CO2 wejdzie do wody jest prostą funkcją atmosferycznego stężenia i jej temperatury.

W dniu 4.06.2020 o 11:20, KopalniaWiedzy.pl napisał:

Musimy przedyskutować ten mechanizm. Ludzie muszą rozumieć, że po obniżeniu emisji nastąpi okres, gdy i ocean obniży swoją efektywność jako miejsce pochłaniania węgla,

Raczej modelarze muszą zrozumieć podstawy fizyki. Zwłaszcza prawo Henry'ego i prostą zasadę że układy fizyczne zmierzają do stanu równowagi.
Zwykłym ludziom taka wiedza do niczego nie jest potrzebna.

W dniu 4.06.2020 o 11:20, KopalniaWiedzy.pl napisał:

Uczona zauważa, że z powyższych badań wynika jeszcze jeden, zaskakujący wniosek.

"Zaskakiwalność" to raczej pochodna poziomu intelektualnego uczonej, a nie rezultatów.
To w sumie bardzo ciekawy mechanizm w którym pieniądz gorszy wypiera lepszy: leszcze mogą dostarczać osobom postronnym "przełomowych" wyników co dwa tygodnie w psychologicznie wiarygodny sposób.

leszczu + komputer = autorytet

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Fizycy z Niemiec i Ameryki Północnej poinformowali o planach wybudowania u wybrzeży Kanady największego na świecie obserwatorium neutrin. The Pacific Ocean Neutrino Experiment (P-ONE) ma rejestrować najbardziej energetyczne neutrina pochodzące z ekstremalnych zjawisk w Drodze Mlecznej.
      Obserwatoria neutrin rejestrują promieniowanie Czerenkowa, które pojawia się, gdy neutrino przechodzące przez Ziemię trafi w jądro atomu, co powoduje powstanie szybko poruszających się cząstek. Obecnie największym tego typu urządzeniem jest opisywane przez nas IceCube, które korzysta z licznych fotodetektorów zawieszonych na linach, które są opuszczone głęboko w lód na Biegunie Południowym. Całość zajmuje 1 km3. W 2013 roku to właśnie IceCube zarejestrował pierwsze neutrino pochodzące spoza naszej galaktyki. Niedawno informowaliśmy o wykryciu tajemniczych sygnałów, które mogą doprowadzić do rewolucji w Modelu Standardowym.
      Jak mówi Elisa Resconi w Uniwersytetu w Monachium, która stoi na czele P-ONE, wyniki uzyskane dotychczas przez IceCube dowodzą, że potrzebne są dodatkowe obserwatoria neutrin oraz rozbudowa samego IceCube. Stoimy w przededniu istnienia astronomii opartej o neutrino. Jeśli jednak będzie się ona opierała o jedno obserwatorium, to jej rozwój potrwa bardzo długo, być może całe dekady.
      P-ONE ma składać się z 7 grup po 10 lin z czujnikami. Całość ma mieć objętość 3 km3. Dzięki temu, że będzie większe, obserwatorium będzie w stanie wyłapać rzadsze neutrina o większej energii. Będzie najbardziej czułe w zakresie dziesiątku teraelektronowoltów, podczas gdy IceCube jest w stanie zarejestrować neutrina o energiach rzędu pojedynczych TeV. P-ONE będzie obserwowało też inną część nieboskłonu, wyłapując głównie neutrina z południowej hemisfery. Częściowo jednak zakres prac obu obserwatoriów będzie się nakładał, zatem możliwa będzie niezależna weryfikacja obserwacji.
      Nowe obserwatorium zostanie umieszczone na głębokości około 2,6 km, w Cascadia Basin około 200 kilometrów od wybrzeży Kolumbii Brytyjskiej. Jego budowniczowie chcą wykorzystać już istniejącą infrastrukturę. Znajduje się tam bowiem 800-kilometrowe okablowanie używane przez Ocean Networks Canada, które zasila i przesyła dane ze znajdujących się na dnie oceanu urządzeń badawczych.
      Pierwsze eksperymenty w tym miejscu rozpoczęto w 2018 roku, kiedy to opuszczono dwie liny z czujnikami i stwierdzono, że wybrane miejsce ma odpowiednie właściwości optyczne do wykrywania neutrin. Obecnie P-ONE planuje opuszczenie dodatkowej stalowej liny zawierającej spektrometry, lidary i wykrywacze mionów. Pod koniec 2023 roku ma zostać zainstalowana pierwsza część obserwatorium, pierścień z 7 linami o długości kilometra każda. Jeśli to się uda, naukowcy zwrócą się z wnioskiem o grant w wysokości 50–100 milionów USD na dokończenie budowy obserwatorium. Koszty osobowe pochłoną kolejne 100 milionów USD.
      Resconi ma nadzieję, że prace nad budową P-ONE zakończą się przed rokiem 2030, jednak przyznaje, że jest to plan bardzo ambitny. Główną niewiadomą jest działanie czujników w warunkach dużego ciśnienia, obecności soli i stworzeń morskich.
      To nie pierwszy pomysł, by umieścić obserwatorium neutrin w morzu. Już w 2014 roku pracę miał rozpocząć umieszczony w Morzu Śródziemnym KM3NeT. Dotychczas udało się zainstalować jedynie 2 z 230 lin. Obecnie planuje się, że rozpocznie on pracę w 2026 roku. Z kolei u wybrzeży Francji powstaje jeszcze inny wykrywacz. Z planowanych 115 lin umieszczono dotychczas jedynie 6. Uruchomienie planowane jest na rok 2024.
      Jak mówi Resconi, jedną z największych trudności w budowie obserwatoriów neutrin jest brak odpowiednio przeszkolonych fachowców. Fizycy wiele rzeczy robią samodzielnie. Na przykład zbudowane przez nich skrzynki, które służą do łączenia kabli na dnie morza, zawiodły. Uczona ma nadzieję, że dzięki doświadczeniu pracowników Ocean Networks Canada uda się uniknąć kolejnych błędów. Dzięki zespołowi 30–40 osób zajmujących się budową infrastruktury, fizycy mogą zająć się stroną naukową przedsięwzięcia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Lodowce szelfowe mogą zniknąć błyskawicznie, czasami wystarczą minuty lub godziny, by się rozpadły. Proces ten jest napędzany przez wodę, która wdziera się w pęknięcia lodowca. Wiele z lodowców szelfowych znajduje się bezpośrednio przy wybrzeżach Antarktyki i stanowią fizyczną barierę zapobiegającą spływaniu ludowców z lądu do oceanu. Autorzy najnowszych badań, opublikowanych właśnie w Nature, twierdzą, że od 50 do 70 procent antarktycznych lodowców szelfowych jest zagrożonych rozpadem z powodu globalnego ocieplenia.
      Odkryliśmy, że tempo topnienia jest ważne, ale równie ważne jest to, gdzie to topnienie zachodzi mówi główna autorka najnowszych badań, Ching-Yao Lai z Columbia University. Największą zagadką jest to, kiedy lodowiec może się rozpaść, dodaje Christine Dow z kanadyjskiego University of Waterloo, która nie była zaangażowana w najnowsze badania.
      Niektóre z lodowców szelfowych pływają na otwartych wodach i nie mają wpływu na to, co dzieje się z lodowcami na lądzie.
      Jednak lodowce szelfowe znajdujące się np. w zatokach stanowią fizyczną barierę, która spowalnia spływanie do oceanu lodowców z lądu. W takim przypadku na lodowce szelfowe działają potężne siły. Z jednej strony są one poddawane naciskowi ze strony lodu spływającego z lądu, z drugiej strony napierają na ląd, z trzeciej zaś są rozciągane, gdy przemieszczają się na wodzie. W wyniku tych procesów na lodowcach szelfowych pojawiają się liczne pęknięcia. Jeśli nad taki lodowiec napłynie ciepłe powietrze i lodowiec zacznie się topić, pojawi się woda, która będzie wdzierała się w pęknięcia. Może ona błyskawicznie doprowadzić do rozpadu lodowca szelfowego. A w takim wypadku znika bariera między oceanem a lodowcem na lądzie, więc lodowiec może przyspieszyć spływanie do oceanu.
      Naukowcy spekulują, że ofiarą takiego procesu pękania i wdzierania się wody padł lodowiec szelfowy Larsen B, który w 2002 roku w ciągu zaledwie kilku tygodni stracił 3250 km2 powierzchni.
      Lai i jej zespół chcieli wiedzieć, które z lodowców szelfowych są najbardziej narażone na rozpad. Opracowali więc model maszynowego uczenia się, który był trenowany na zdjęciach lodowców z przeszłości. Celem treningu było nauczenie algorytmu rozpoznawania cech charakterystycznych prowadzących do rozpadu lodowców. Algorytm uczono na podstawie zdjęć satelitarnych lodowców szelfowych Larsen C i Jerzego VI. Następnie algorytm zaimplementowano do zdjęć całej Antarktyki.
      Na tej podstawie zidentyfikowali te pęknięcia, które – po uwzględnieniu nacisku wywieranego przez masy lodu oraz ruchy lodowca na wodzie – z największym prawdopodobieństwem będą się powiększały. Teraz uczonych czeka odpowiedź na pytanie, kiedy może dojść do rozpadu poszczególnych lodowców szelfowych. W tym celu naukowcy będą musieli połączyć swój model z modelami klimatycznymi oraz modelami opisującym spływanie lodowców z lądu. Na razie grupa Lai nie jest w stanie zakreślić ram czasowych, w których może dojść do masowego rozpadania się lodowców szelfowych. Jednak inna grupa naukowa już w 2015 roku stwierdziła, że stanie się to w perspektywie najbliższych dekad.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Lodowce na Grenlandii skurczyły się tak bardzo, że nawet gdyby dzisiaj globalne ocieplenie zostało zatrzymane, to lodowce te nadal będą traciły więcej masy niż jej zyskują. Analiza danych satelitarnych z niemal 40 lat wykazała, że lodowce pokrywa lodowa Grenlandii przekroczyła punkt zwrotny, poza którym opady śniegu nie są w stanie zrównoważyć utraty lodu.
      Chcieliśmy zbadać, w jaki sposób w zmieniają się w czasie akumulacja i utrata lodu. A odkryliśmy, że ilość lodu, która spływa do oceanów jest znacznie większa niż ilość śniegu akumulującego się na powierzchni lodowców, mówi główna autorka badań, Michalea King z Ohio State University.
      King wraz z zespołem analizowała dane satelitarne z ponad 200 dużych lodowców, które spływają do oceanu otaczającego Grenlandię. Dane te pokazują, ile lodu odrywa się od lodowców oraz ile się topi i spływa do wody. Widać w nich też, ile śniegu opada na lodowce. Naukowcy zauważyli, że w latach 80. i 90. masa lodowców zwiększała się. Masa zyskiwana dzięki opadom nieco przewyższała masę traconą w wyniku cielenia się i topnienia. We wspomnianych dekadach średnia roczna utrata lodu wynosiła około 450 gigaton, co było równoważone opadami.
      Później zaś, zaledwie w ciągu 5–6 lat doszło do znacznego przyspieszenia utraty lodu. Około roku 2000 lodowce zaczęła się zwiększać i osiągnęła poziom około 500 gigaton. Jednak opady śniegu nie zwiększyły się, w związku z czym obecnie lodowce więcej masy tracą, niż jej zyskują.
      Naukowcy wyliczyli, że przed rokiem 2000 szansa, że lodowce zyskają lub stracą na masie była taka sama dla każdego roku. Jednak w obecnym klimacie prawdopodobieństwo rocznego przyrostu netto masy lodowców pojawia się raz na 100 lat. King zauważa, że od roku 1985 lodowce Grenlandii cofnęły się średnio o 3 kilometry. Do tak dużej utraty masy doszło, gdyż wiele z nich ma kontakt z wodą oceaniczną. Ciepła woda z jednej strony prowadzi do topnienia lodowców, z drugiej zaś utrudnia ich przyrost. I to właśnie wysoka temperatura wód oceanicznych jest przyczyną, dla której Grenlandia nadal będzie tracić pokrywę lodową, nawet jeśli globalne ocieplenie zostałoby natychmiast powstrzymane.
      Szczegóły badań zostały opublikowane na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niedźwiedzie polarne umierają z głodu. Jeśli obecny trend globalnego ocieplenia będzie kontynuowany, do roku 2100 wyginą niemal wszystkie populacje tych zwierząt. Jak donoszą autorzy badań opublikowanych właśnie w Nature Climate Change, niektóre populacje niedźwiedzi polarnych już teraz skazane są na zagładę. Tam, gdzie mieszkają, znacząco zmniejszyła się liczba dni z taką pokrywą lodową na oceanie, by zwierzęta mogły polować na foki. Wydłużył się więc okres postu i zwierzęta umierają z głodu.
      Czas pomiędzy ponownym pojawieniem się lodu wydłuża się. A to oznacza dłuższy post, mówi Steven Amstrup, główny naukowiec organizacji Polar Bears International.
      Amstrup kierował badaniami, które wykazały, że w ciągu najbliższych 80 lat aż 12 z 13 badanych populacji zostanie zdziesiątkowanych przez globalne ocieplenie. Dla 6 innych populacji brak jest odpowiedniej liczby danych.
      Do roku 2100 narodziny młodych niedźwiedzi będą niemożliwe lub niezwykle utrudnione we wszystkich populacjach z wyjątkiem – być może – populacji zamieszkującej Wyspę Królowej Elżbiety, mówi Amstrup.
      Rozważany przez naukowców scenariusz zakłada, że do roku 2100 średnie temperatury na Ziemi zwiększą się o 3,3 stopnia w porównaniu z okresem sprzed rewolucji przemysłowej. Dotychczas ogrzaliśmy Ziemię o około 1 stopień Celsjusza, a już wiąże się to z pojawieniem się fal upałów, susz i innymi gwałtownymi zjawiskami atmosferycznymi.
      Nawet jeśli uda się zatrzymać globalne ocieplenie na poziomie 2,4 stopnia Celsjusza to i tylko oddali to chwilę załamania się populacji niedźwiedzi polarnych. To większe zmiany, niż to, czego niedźwiedzie doświadczyły w ciągu ostatniego miliona lat swojej ewolucji, mówi Amstrup.
      Problemem nie są same rosnące temperatury, a to, co ze sobą niosą oraz niezdolność niedźwiedzi do dostosowania się do tak szybkich zmian. Jeśli w jakiś magiczny sposób morska pokrywa lodowa zostałaby utrzymana na dotychczasowym poziomie, niedźwiedzie polarne mogłyby sobie poradzić, stwierdza uczony. Problem w tym, że ich habitat się po prostu roztapia, dodaje.
      Obecnie połowa lądowej megafauny jest zagrożona wyginięciem. Jednak tylko niedźwiedzie polarne są zagrożone głównie z powodu zmian klimatycznych. Taki stan nie potrwa jednak długo. Autorzy raportu ostrzegają, że w najbliższych dekadach zmiany klimatu mogą zagrozić kolejnym gatunkom wielkich ssaków.
      Amstrup i jego zespół badali szanse niedźwiedzi polarnych korzystając z dwóch rodzajów danych. Pierwszy z nich to informacje, jak długo w poszczególnych regionach trwa czas przymusowego postu, gdy morski lód jest na tyle skąpy, że niedźwiedzie nie mogą polować. Okazuje się, że w niektórych regionach stan taki trwa nawet ponad pół roku. Drugi zestaw danych to prognozy dotyczące zmian zasięgu lodu morskiego.
      Szacując jak chude i jak grube mogą być niedźwiedzie polarne oraz modelując ich zużycie energii, byliśmy w stanie obliczyć, jak długo niedźwiedzie mogą pościć zanim odsetek przeżycia młodych i dorosłych zacznie spadać, mówi profesor Peter Molnar z University of Toronto. Z badań nad niedźwiedziami wiemy, że na przykład samiec z populacji West Hudson Bay, który w momencie rozpoczęcia postu ma 80% normalnej wagi ciała, może przetrwać 125 dni zamiast normalnych 200 dni. W jeszcze gorszej sytuacji są młode, szczególnie, gdy ich matka pościła zbyt długo i nie jest w stanie zapewnić im mleka odpowiedniej jakości. Najbardziej wytrzymałe na długotrwały post są samice, które nie posiadają młodych.
      Naukowcy mówią, że obecna klasyfikacja niedźwiedzi polarnych, które Międzynarodowa Unia Ochrony Przyrody (IUCN) uznaje za gatunek narażony – a nie zagrożony czy krytycznie zagrożony – nie oddaje powagi sytuacji. IUCN bierze bowiem pod uwagę głównie takie zagrożenia jak kłusownictwo czy wkraczanie człowieka na tereny zajęta przez dany gatunek. Tymczasem niedźwiedziom zagrażają zmiany klimatu, a nie możemy wybudować płotu, by chronić ocean przed wzrostem temperatury, mówi Amstrup.
      Pomyślmy o tym w ten sposób: jeśli zepchniemy Cię z dachu 100-piętrowego budynku, to czy należy uznać, że Twój poziom zagrożenia życia jest tylko "narażony" dopóki nie miniesz 10. piętra czy też będziesz „zagrożony” przez całą drogę w dół?, wyjaśnia Amstrup. W przypadku niedźwiedzi polarnych nie istnieje żaden Plan B. Jedynym sposobem ochrony ich habitatu jest zatrzymanie globalnego ocieplenia, dodaje uczony.
      Szczegóły badań zostały zaprezentowane w artykule Fasting season length sets temporal limits for global polar bear persistence

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół naukowy prowadzony przez profesor Lindy Elkins-Tanton z Arizona State University zdobył pierwszy dowód na to, że intensywne palenie się węgla na Syberii mogło być główną przyczyną największego wymierania w historii Ziemi – wymierania permskiego. Wyniki badań opublikowano na łamach pisma Geology.
      Naukowcy skupili się na badaniach skał wulkanicznych w syberyjskich trapach. Trapy te to największe na Ziemi pokrywy lawowe. Powstały one w wyniku jednego z najbardziej intensywnych okresów erupcji wulkanicznych z ostatnich 500 milionów lat. Erupcje trwały przez niemal 2 miliony lat i wyznaczyły granicę pomiędzy permem a triasem. Trapy syberyjskie pokrywają obecnie 2 miliony kilometrów kwadratowych, a ich miąższość sięga 3700 metrów. Pierwotnie trapy mogły pokrywać nawet 7 milionów km2.
      Do powstania trapów doszło około 252 miliony lat temu, a w wyniku erupcji, które je utworzyły, zginęło nawet 96% gatunków morskich i do 70% lądowych kręgowców. Obliczenia dotyczące temperatury oceanów wskazują, że w szczytowym okresie wymierania na Ziemi doszło do śmiercionośnego ocieplenia klimatu, a temperatura wody w oceanach na równiku sięgnęła 40 stopni Celsjusza. Po takiej katastrofie ekosystem odradzał się przez miliony lat.
      Jedna z obecnie obowiązujących hipotez mówi, że globalne ocieplenie zostało spowodowane przez zapłon olbrzymich pokładów węgla. Elkins-Tanton i jej zespół postanowili poszukać potwierdzenia tej hipotezy właśnie w trapach syberyjskich. W jednym z artykułów naukowych trafili na informację o istnieniu wypiętrzeń trapów w okolicach rzeki Angara. Naukowcy udali się więc w tamten region. Znaleźliśmy rzeczne klify składające się wyłącznie ze skał wulkanicznych. Otaczały one brzegi rzeki na długości setek kilometrów. Z geologicznego punktu widzenie to coś wyjątkowego, mówi Elkins-Tanton.
      Naukowcy wracali na Syberię przez sześć kolejnych lat. W czasie swoich badań zebrali około 500 kilogramów skał, które zostały poddane analizie przez zespół 30 uczonych z 8 krajów. Badania wykazały, że w skałach znajdują się ślady spalonego drewna oraz węgla. Elkins-Tanton poprosiła o pomoc Steve'a Grasby'ego z Geological Survey of Canada, który wcześniej znalazł podobne ślady w skałach zebranych na arktycznej kanadyjskiej wyspie. Okazało się, że ślady z trapów syberyjskich są bardzo podobne do tych z Kanady i pochodzą z tego samego okresu.
      Nasze badania wykazały, że magma trapów syberyjskich zawiera w sobie węgiel i materiał organiczny. To bezpośredni dowód, że podczas erupcji magmy doszło do spalenia olbrzymich ilości węgla i materiału organicznego, stwierdza Elkins-Tanton.

      « powrót do artykułu
×
×
  • Create New...