-
Similar Content
-
By KopalniaWiedzy.pl
Wystarczy jeden dzień kontaktu z powietrzem zanieczyszczonym przez spaliny samochodowe czy dymy z pożarów lasów, by nasze dziecko było w przyszłości narażone na większe ryzyko chorób serca i innych schorzeń. Badania przeprowadzone m.in. przez naukowców z Uniwersytetu Stanforda są pierwszymi, podczas których oceniono wpływ zanieczyszczenia powietrza na pojedyncze komórki, a jednocześnie zbadano jego wpływ na układy krążenia i odporności u dzieci.
Badania te potwierdzają, że zanieczyszczone powietrze wpływa na sposób działania naszych genów w sposób, który ma negatywne długoterminowe skutki zdrowotne. Mamy tutaj wystarczające dowody, by powiedzieć pediatrom, że zanieczyszczenie powietrza wpływa nie tylko na astmę i choroby układu oddechowego, ale również na układy krwionośny i odpornościowy, mówi główna autorka badań, Mary Prunicki. Wygląda na to, że nawet krótkie wystawienie dziecka na oddziaływanie zanieczyszczonego powietrza zmienia regulację oraz ekspresję genów i być może ciśnienie krwi, kładąc w ten sposób podstawy pod zwiększone ryzyko chorób serca w późniejszym życiu.
Naukowcy zbadali dzieci w wieku 6–8 lat mieszkające we Fresno w Kalifornii. Powietrze w tym mieście należy – ze względu na okoliczną działalność rolniczą, przemysłową, pożary lasów i inne czynniki – do najbardziej zanieczyszczonych w całych USA. Uczeni wykorzystali dane z monitoringu powietrza do oceny średniej ekspozycji na zanieczyszczenie, którą obliczono dla każdego z dzieci na 1 dzień, 1 tydzień oraz 1, 3, 6 i 12 miesięcy przed rozpoczęciem badań. Po raz pierwszy też przy takich badaniach wykorzystano spektrometrię mas do oceny komórek układu odpornościowego.
Wnioski z badań są alarmujące. Okazało się, że wystawienie na oddziaływanie pyłu zawieszonego PM2.5, tlenku azotu oraz ozonu są powiązane ze zwiększoną metylacją DNA. To zmienia aktywność genów, a zmiana ta może być przekazywana kolejnym pokoleniom. Naukowców zauważyli też korelację pomiędzy zanieczyszczeniem powietrza a wzrostem liczby monocytów, które biorą udział w odkładaniu się blaszek miażdżycowych w naczyniach krwionośnych. To może narażać dziecko na większe ryzyko chorób serca w przyszłości.
W badaniach brały udział przede wszystkim dzieci o hiszpańskich korzeniach. Z innych badań wiemy, że z jednej strony są one narażone na ponadprzeciętne poziomy zanieczyszczeń powietrza spalinami samochodowymi, z drugiej zaś, że dorośli o hiszpańskich korzeniach częściej niż inne grupy etniczne cierpią na nadciśnienie. Wiemy też, że choroby układu oddechowego każdego roku zabijają coraz więcej osób i są drugą najczęstszą przyczyną zgonów na całym świecie.
To problem każdego z nas. Niemal połowa Amerykanów i większość ludzi na świecie oddycha niezdrowym powietrzem. Poradzenie sobie z tym problemem może ocalić życie wielu osobom, mówi profesor Kari Nadeau.
« powrót do artykułu -
By KopalniaWiedzy.pl
Rosyjscy naukowcy rozpoczynają poszukiwania paleowirusów, które mogły przetrwać w wiecznej zmarzlinie. Badania będą prowadzone w Państwowym Centrum Wirusologii i Biotechnologii „Wektor” w Kołcowie we współpracy z Północno-Wschodnim Uniwersytetem Federalnym (SWFU). Laboratorium „Wektor” to jedno z dwóch miejsc na świecie, w których przechowywane są aktywne wirusy ospy prawdziwej, jednej z najbardziej śmiercionośnych chorób w historii ludzkości.
Uczeni będą badali tkanki miękkie przechowywane w uniwersyteckim Muzeum Mamutów w poszukiwaniu materiału genetycznego mikroorganizmów, który mógłby się tam zachować. Eksperci z laboratorium „Wektor” chcą znaleźć paleowirusy, które pozwolą im na rozpoczęcie programu rozwoju rosyjskiej paleowirusologii oraz badań nad ewolucją wirusów.
Olesja Ochlopkowa z SWFU mówi, że laboratorium „Wektor” od około 10 lat próbuje rozpocząć badania z zakresu paleowirusologii. Obecnie przeszliśmy od planowania do działania.
Najpierw w badanym materiale wykonuje się otwór, z którego pobierane są tkanki. Te umieszczane są w próbówce, w której są transportowane do laboratorium „Wektor”. Tam, za pomocą standardowych technik biologii molekularnej izoluje się kwasy nukleinowe i prowadzi sekwencjonowanie genomu. Jeśli kwasy nie uległy zniszczeniu, będziemy mogli uzyskać dane o ich składzie, ustalić, w jaki sposób się zmieniały, określić całą sekwencję wydarzeń. Dzięki temu będziemy w stanie opisać trendy, w wyniku których powstał obecnie istniejący ekosystem wirusów i określić potencjał epidemiologiczny obecnie współczesnych mikroorganizmów, dodaje uczona.
Pierwszym zwierzęciem, którego tkanki zostały poddane badaniom jest koń sprzed 4450 lat, znaleziony w Wierchojańsku w 2009 roku. Będziemy badali też inne zwierzęta: jelenia znad rzeki Omołoj, mamuta z Małej Wyspy Lachowskiej, czarnego psa z Tumat, kurowate, gryzonie i wiele innych zwierząt. Mamy tutaj znaleziska z okresu ostatnich 10 lat, które były badane tylko pod kątem. Po raz pierwszy będziemy poszukiwali w nich paleowirusów, wyjaśnia Maksim Czeprasow, szef laboratorium w Muzeum Mamutów.
Siergiej Fiodorow, dyrektor ds. ekspozycji, wyjaśnia, że zwierzęta nadają się do badań, gdyż są przechowywane w specjalnych lodówkach w temperaturze od -16 do -18 stopni Celsjusza. Muzeum Mamutów od dawna współpracuje z laboratorium „Wektor”. Już na początku obecnego wieku specjaliści z „Wektora” przyjechali do nas, by wspólnie pracować nad próbkami. Technologia nie stoi w miejscu. Mamy nadzieję, że dzięki nowym metodom badawczym znajdziemy paleowirusy.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z Pittsburgh University opisali, w jaki sposób ewoluuje SARS-CoV-2 by uniknąć ataku ze strony przeciwciał. Okazuje się, że wirus usuwa fragmenty swojego kodu genetycznego. Jako, że fragmenty te częściowo należą do sekwencji opisującej kształt proteiny szczytowej (białka S), to po pewnym czasem zmiany w tej proteinie są na tyle duże, iż przeciwciała nie mogą się do białka przyczepić.
Jako, że dochodzi tutaj do usunięcia fragmentu kodu genetycznego, to nie działają w tym przypadku mechanizmy, które naprawiają błędy w kodzie. Nie ma tutaj bowiem czego naprawiać. Nie możesz naprawić czegoś, czego nie ma. Gdy fragment znika, to znika na dobre. A jeśli znika coś, co decyduje o ważnej części wirusa, widzianej przez przeciwciało, to przeciwciała nie działają, mówi jeden z autorów badań, doktor Paul Duprex, dyrektor Center for Vaccine Research.
Zespół Duprexa po raz pierwszy obserwował taką „grę w kotka i myszkę” pomiędzy wirusem a przeciwciałami u pewnego pacjenta z osłabionym układem odpornościowym, który przez 74 dni był zarażony SARS-CoV-2, aż w końcu zmarł an COVID-19. Te 74 dni to bardzo długi czas, w którym obie strony – wirus i układ odpornościowy – toczą między sobą swoistą wojnę ewolucyjną.
Duprex poprosił następnie o pomoc doktora Kevina McCatharty'ego, który specjalizuje się w badaniu wirusa grypy, mistrza w unikaniu układu odpornościowego. Razem postanowili sprawdzić, czy to, co obserwowano u wspomnianego wyżej pacjenta jest szerszym trendem.
Badania rozpoczęły się latem 2020 roku. Wówczas sądzono, że SARS-CoV-2 jest dość stabilnym wirusem. Duprex i McCarthy zaczęli analizować bazę danych, w której laboratoria z całego świata umieszczają informacje o zbadanych przez siebie wirusach. Im bardziej przyglądali się bazie, tym wyraźniej widzieli, że wirus cały czas usuwa fragmenty kodu, wzorzec powtarzał się wszędzie. Do delecji dochodziło w tych samych miejscach sekwencji genetycznej. Miejscach, w których wirus może tolerować utratę fragmentu kodu bez ryzyka, że straci możliwość dostania się do komórki.
Już w październiku ubiegłego roku McCarthy zauważył delecje, które obecnie znamy pod nazwą „brytyjskiego wariantu”, czyli B.1.1.7. Wtedy jeszcze wariant ten nie miał nazwy, nie został zidentyfikowany, nie zarażał powszechnie. Jednak w bazie danych już został umieszczony. Nikt wówczas nie wiedział, że odegra on jakąś rolę w epidemii.
Opublikowany w Science artykuł pokazuje, że SARS-CoV-2 prawdopodobnie poradzi sobie w przyszłości z istniejącymi obecnie szczepionkami i lekami. W tej chwili jednak nie jesteśmy w stanie stwierdzić, kiedy to nastąpi. Nie wiemy, czy dostępne obecnie szczepionki ochronią nas przez pół roku, rok czy pięć lat. Dopiero musimy określić, jak bardzo delecje te wpłyną na skuteczność szczepionek. W pewnym momencie będziemy musieli rozpocząć prace nad zmianą szczepionek, a przynajmniej przygotować się do tego, mówi McCarthy.
« powrót do artykułu -
By KopalniaWiedzy.pl
Rogoząb australijski (Neoceratodus forsteri) to zwierzę o najdłuższym zsekwencjonowanym dotąd genomie. Ten najbardziej pierwotny gatunek ryby dwudysznej ma DNA wielokrotnie dłuższe od DNA człowieka. Należy do grupy mięśniopłetwych, które w dewonie wyszły na ląd i dały początek czworonogom.
Siegfried Schloissnig i jego koledzy z austriackiego Instytutu Badawczego Patologii Molekularnej poinformowali, że genom rogozęba składa się z 43 miliardów par bazowych, czyli jest 14-krotnie dłuższy od genomu Homo sapiens. Jest też o 30% dłuższy od dotychczasowego rekordzisty, genomu axolotla, który został zsekwencjonowany w 2018 roku przez ten sam zespół naukowy.
Podczas badań uczeni wykorzystali komputer o wysokiej wydajności, by poskładał analizowane fragmenty DNA w jedną całość. Genom rogozęba australijskiego był bowiem sekwencjonowany we fragmentach. Co więcej, by wyeliminować błędy, jakie wprowadza sekwencer, naukowcy użyli wielu kopii genomu. Złożeniem wszystkich części w całość zajął się komputer.
Rogoząb australijski żyje w południowo-wschodnim Queensland. Zwierzę niewiele się zmieniło od czasu, kiedy przed milionami lat przeszło przeobrażenia umożliwiające mu oddychanie powietrzem atmosferycznym. Rogoząb ma dobrze rozwinięte płetwy piersiowe i brzuszne, które przypominają łapy. Ma też pojedyncze prymitywne płuco, przekształcone z pęcherza pławnego. W czasie suszy, gdy zanikają zbiorniki wodne, rogoząb oddycha powietrzem atmosferycznym.
Dotychczas nie było jasne, czy z kręgowcami lądowymi jak ptaki i ssaki bliżej spokrewniony jest rogoząb czy też prymitywne ryby z rzędu celakantokształtnych, z których najbardziej znane są latimerie. Obecnie wykonana analiza jednoznacznie wykazała, że to rogozęby są bliżej spokrewnione ze zwierzętami czworonożnymi. Celakantokształtne oddzieliły się wcześniej, natomiast drogi rogozęba i linii ewolucyjnej, która dała początek lądowym czworonogom rozeszły się około 420 milionów lat temu.
Żeby wyjść z wody, musisz przygotować się do życia na lądzie. Musisz być w stanie oddychać powietrzem oraz czuć zapachy, mówi Schloissnig. Uczony dodaje, że rogoząb jest podobny płazów pod względem liczby genów związanych z rozwojem płuc, kończyn oraz zdolności do odbierania zapachów z powietrza.
Jeśli popatrzymy na rogozęba z perspektywy genetycznej, to znajduje się on w połowie drogi pomiędzy rybami a kręgowcami lądowymi, stwierdza uczony.
Szczegóły pracy Austriaków poznamy na łamach Nature.
« powrót do artykułu -
By KopalniaWiedzy.pl
Ponad dekadę temu genetycy roślin zauważyli coś dziwnego. Badając szczepione rośliny stwierdzili, że w komórkach każdej z nich istnieją sygnały wskazujące, że doszło między nimi do wymiany dużych ilości DNA. Samo w sobie nie jest to niczym dziwnym, nie od dzisiaj wiemy o horyzontalnym transferze genów. Jednak w tym wypadku wydało się, że doszło do transferu całego nietkniętego genomu chloroplastów. To już była zagadka, gdyż komórki roślinne otoczone są ochronną ścianą i nie ma oczywistego sposobu wymiany tak dużej ilości DNA.
Potrzeba było ponad 10 lat, by rozwiązać tę zagadkę. Naukowcy z Instytutu Molekularnej Fizjologii Roślin im. Maxa Plancka w Poczdamie zarejestrowali właśnie film dokumentujący taki transfer genów. Okazało się, nie tylko, że ściany komórkowe roślin są czasem bardziej porowate niż sądziliśmy, ale że istnieje mechanizm, dzięki całe organelle wędrują pomiędzy sąsiadującymi komórkami. Nowością jest tutaj wykazanie, że całe fizyczne organelle przemieszczają się pomiędzy komórkami. Dwie różne rośliny mogą wymienić organelle, mówi Charles Melnyk z Uniwersytetu Nauk Rolniczych w Uppsali.
Szczepienie roślin jest stosowane co najmniej od czasów starożytnego Rzymu. Technika ta pozwala np. młodym roślinom na wcześniejsze owocowanie i poprawia ich odporność. Do zaszczepienia może też dojść w sposób naturalny.
Przed około dekadą Ralph Bock z Instytutu Molekularnej Fizjologii Roślin, zaszczepił dwa gatunki tytoniu, a następnie zsekwencjonował geny rośliny z obu stron modzela, czyli miejsca połączenia roślin. Okazało się, że rośliny wymieniły całe genomy chloroplastów.
Tego się nie można było spodziewać, mówi Pal Maliga, genetyk roślin z Rutgers University, który niezależnie znalazł dowody na transfer chloroplastów i mitochondriów. Komórki roślinne otoczone są sztywnymi ścianami, więc wyobrażałem sobie komórki roślinne jako cytoplazmę w klatce, z której nie może się wydostać, mówi Maliga.
Dowody na wymianę dużej ilości materiału genetycznego stanowiły się prawdziwą zagadkę dla specjalistów. Jedynymi znanymi otworami w ścianie komórek roślinnych były niewielkie plazmodesmy, pomosty o średnicy około 0,05 mikrometra, dzięki którym sąsiadujące komórki mogą wymieniać proteiny i molekuły RNA. Tymczasem typowy chloroplast ma zaś średnicę około 5 mikrometrów. Jest więc zdecydowanie zbyt duży, by przedostać się przez plazmodesmę.
Zagadkę udało się rozwiązać, gdy Bock rozpoczął współpracę z Alexandrem Hertlem, który specjalizuje się w obrazowaniu komórek w czasie rzeczywistym. Najpierw naukowcy zauważyli, że otwory w komórkach mogą mieć średnicę nawet 1,5 mikrometra. To jednak nadal zbyt mało, by przedostał się przez nie chloroplast. Naukowcy przyjrzeli się też komórkom w modzelu i wówczas zauważyli przemieszczający się chloroplast. Okazało się, że niektóre chloroplasty mogą zmieniać się w bardziej prymitywne proto-plastydy, których średnica może wynosić jedynie 0,2 mikrometra. Naukowcy ze zdumieniem obserwowali, jak takie proto-plastydy przemieszały się się w kierunku właśnie odkrytych większych otworów w ścianach komórkowych. Przeciskały się się przez nie i powracały do normalnych rozmiarów dla chloroplastów.
Hertle przyznaje, że naukowcy nie rozumieją dobrze metamorfozy chloroplastów, jednak wydaje się, że jest to reakcja na niedobór węgla i zmniejszoną fotosyntezę. Gdy bowiem wyłączano światło, zaobserwowano aż 5-krotny wzrost transferu organelli.
To, jak dobrze plastydy funkcjonują w nowej roślinie, zależy od tego, na ile rośliny są spokrewnione genetycznie. Im są sobie bliższe, tym lepiej plastydy działają.
Maliga podejrzewa, że proto-plastydy mogą zawierać lub wytwarzać molekuły sygnałowe, które pomagają w leczeniu miejsca szczepienia. Wydaje się też, że powstające duże otwory w ścianach komórkowych również są efektem reakcji rośliny na szczepienie. Nie można jednak wykluczyć, że formują się też na którymś z etapów normalnego wzrostu rośliny, uważa uczony.
Swoje badania naukowcy opisali na łamach Science Advances.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.