Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Odkryto setki wielkich bakteriofagów. Zacierają one granice pomiędzy wirusami a organizmami żywymi

Recommended Posts

Naukowcy odkryli setki gigantycznych bakteriofagów, wirusów zabijających bakterie. Okazało się, że mają one cechy przynależne żywym organizmom, co zaciera granicę pomiędzy mikroorganizmami a wirusami. Ich rozmiary i złożoność budowy dorównują strukturom, które bezspornie uznajemy za żywe. W nowo odkrytych bakteriofagach znaleziono geny typowe dla bakterii, które bakterie używają przeciwko swoim gospodarzom.

Niezwykłego odkrycia dokonali uczeni z University of California, Berkeley (UCB). Najpierw pobrali oni liczne próbki z 30 różnych ziemskich środowisk, od przewodu pokarmowego wcześniaków i ciężarnych kobiet, przez tybetańskie gorące źródło, południowoafrykański bioreaktor po pokoje szpitalne, oceany, jeziora obszary położone głęboko pod ziemią. Na podstawie tych próbek utworzyli wielką bazę DNA i zaczęli ją analizować.

Analiza wykazała obecność 351 różnych gatunków gigantycznych bakteriofagów. Każdy z nich miał genom co najmniej 4-krotnie dłuższy niż genom przeciętnego znanego dotychczas bakteriofaga. Rekordzistą był tutaj bakteriofag o genomie złożonym z 735 000 par bazowych. To 15--krotnie więcej niż genom przeciętnego faga. Ten genom jest bardziej rozbudowany niż genomy wielu bakterii, którymi żywią się fagi.

Badamy mikrobiomy Ziemi i czasem znajdujemy coś niespodziewanego. Te gigantyczne fagi zacierają różnice pomiędzy bakteriofagami, które nie są uważane za organizmy żywe, a bakteriami i archeonami. Natura znalazła sposób na istnienie czegoś, co jest hybrydą pomiędzy tego, co uznajemy za tradycyjne wirusy, a tradycyjne żywe organizmy, mówi profesor Jill Banfield.

Innym zdumiewającym odkryciem było spostrzeżenie, że w DNA tych olbrzymich fagów znajdują się fragmenty CRISPR, czyli systemu używanymi przez bakterie do obrony przed bakteriofagami. Prawdopodobnie gdy fag wprowadza swoje DNA do wnętrza bakterii jego system CRISPR zwiększa możliwość bakteryjnego CRISPR, prawdopodobnie po to, by lepiej zwalczać inne fagi.
Te fagi tak przebudowały system CRISPR, który jest używany przez bakterie i archeony, by wykorzystać go przeciwko własnej konkurencji i zwalczać inne fagi, mówi Basem Al-Shayeb, członek zespołu badawczego.

Okazało się również, że jeden z nowo odkrytych fagów wytwarza proteinę analogiczną do Cas9, proteiny wykorzystywanej w unikatowej technologii edycji genów CRISPR-Cas9. Odkrywcy nazwali tę proteinę Cas(fi), gdyż grecką fi oznacza się bakteriofagi. Badając te wielkie fagi możemy znaleźć nowe narzędzia, które przydadzą się na polu inżynierii genetycznej. Znaleźliśmy wiele nieznanych dotychczas genów. Mogą być one źródłem nowych protein dla zastosowań w przemyśle, medycynie czy rolnictwie, dodaje współautor badań Rohan Sachdeva.

Nowe odkrycie może mieć też znaczenie dla zwalczania chorób u ludzi. Niektóre choroby są pośrednio wywoływane przez fagi, gdyż fagi są nosicielami genów powodujących patogenezę i antybiotykooporność. A im większy genom, tym większa zdolność do przenoszenia takich genów i tym większe ryzyko, że takie szkodliwe geny zostaną przez fagi przeniesione na bakterie żyjące w ludzkim mikrobiomie.

Jill Banfield od ponad 15 lat bada różnorodność bakterii, archeonów i bakteriofagów na całym świecie. Teraz, na łamach Nature, poinformowała o zidentyfikowaniu 351 genomów bakteriofagów o długości ponad 200 kilobaz. To czterokrotnie więcej więc długość genomu przeciętnego bakteriofaga. Udało się też określić dokładną długość 175 nowo odkrytych genomów. Najdłuższy z nich, i absolutny rekordzista w świecie bakteriofagów, ma 735 000 par bazowych. Uczeni sądzą, że genomy, których długości nie udało się dokładnie ustalić, mogą być znacznie większe niż 200 kilobaz.

Większość z genów nowo odkrytych bakteriofagów koduje nieznane białka. Jednak naukowcom udało się zidentyfikować geny kodujące proteiny niezbędne do działania rybosomów. Tego typu geny nie występują u wirusów, a u bakterii i archeonów. Tym co odróżnia cząstki nie będące życiem od życia jest posiadanie rybosomów i związana z tym zdolność do translacji białek. To właśnie jedna z najważniejszych cech odróżniających wirusy od bakterii, czyli cząstki nie będące życiem od organizmów żywych. Okazuje się, że niektóre z tych olbrzymich fagów posiadają znaczną część tej maszynerii, zatem nieco zacierają te granice, przyznaje Sachdeva.

Naukowcy przypuszczają, że olbrzymie fagi wykorzystują te geny do pokierowania bakteryjnymi rybosomami tak, by wytwarzały kopie protein potrzebnych fagom, a nie bakteriom. Niektóre z tych fagów posiadają tez alternatywny kod genetyczny, triplety, które kodują specyficzne aminokwasy, co może zmylić bakteryjne rybosomy.

Jakby tego było mało, nowo odkryte bakteriofagi posiadają geny kodujące różne odmiany protein Cas. Niektóre mają też macierze CRISPR, czyli takie obszary bakteryjnego genomu, gdzie przechowywane są fragmenty genomu wirusów, służące bakteriom do rozpoznawania i zwalczania tych wirusów.

Uczeni stwierdzili, że fagi z wielkimi genomami są dość rozpowszechnione w ekosystemach Ziemi. Ich obecność nie ogranicza się do jednego ekosystemu.

Odkryte wielkie fagi zostały przypisane do 10 nowych kladów. Każdy z nich posiada w nazwie słowo „wielki” w języku jednego z autorów badań. Te nowe klady to Mahaphage (z sanskrytu), Kabirphage, Dakhmphage i Jabbarphage (z arabskiego), Koydaiphage (japoński), Biggiephage (angielski z Australii), Whopperphage (angielski z USA), Judaphage (chiński), Enormephage (francuski) oraz Keampephage (duński).


« powrót do artykułu

Share this post


Link to post
Share on other sites
10 minut temu, Ergo Sum napisał:

czyli w zasadzie są to cyborgi

Cyborg (od ang. cybernetic organism – organizm cybernetyczny[1]) – organizm, którego procesy życiowe realizowane są lub wspomagane przez urządzenia techniczne[2].

Zatem co miałaś na myśli?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      DNA komórek macicy kobiet cierpiących na endometriozę wykazuje inne wzorce metylacji, niż DNA kobiet zdrowych, donoszą naukowcy z zespołu Lindy C. Giudice z Uniwersytetu Kalifornijskiego w San Francisco. Być może w przyszłości te różnice w metylacji będą używane do diagnozowania endometriozy i do rozwoju zindywidualizowanych planów leczenia pacjentek, mówi doktor Stuart B. Moss.
      Okazało się, że nie tylko istnieją różnice w metylacji pomiędzy kobietami zdrowymi a chorymi, ale różnice te widoczne są również w zależności od stopnia rozwoju choroby, a poddane metylacji regiony kodu genetycznego w różny sposób reagują na hormony związane z cyklem menstruacyjnym.
      Endometrioza to choroba, w wyniku której wyściółka macicy osadza się poza macicą. Jej komórki trafiają do jajników, pęcherza, osadzają się na jelitach czy organach wewnętrznych. Jednym z głównych jej objawów jest silny ból, szczególnie podczas miesiączkowania, kiedy to również złuszcza się nieprawidłowo osadzona tkanka i dochodzi do krwawień z miejsc, w których się ona znajduje. Endometrioza często powoduje bezpłodność, dochodzi również do uszkodzeń organów wewnętrznych, poważnych zaburzeń hormonalnych i wielodniowych epizodów olbrzymiego bólu.
      Podczas najnowszych badań naukowcy skupili się na fibroblastach zrębu błony śluzowej macicy. Komórki te regulują pracę komórek wyściełających macicę. Uczeni porównywali metylację w różnych regionach DNA oraz sprawdzili różnice w funkcjonowaniu genów w komórkach u kobiet, które nie mają endometriozy ani żadnej innej choroby ginekologicznej z kobietami z I i IV stadium endometriozy. Zbadali również, jak przebiega proces metylacji i jak działają genu po poddaniu komórek działaniu samego estradiolu, samego progesteronu oraz mieszanki obu hormonów. Poziomy hormonów dobrano tak, by odpowiadały one ich zmianom w czasie cyklu menstruacyjnego.
      Uczeni stwierdzili m.in., że widoczne różnice w metylacji i funkcjonowaniu genów pomiędzy I a IV stadium endometriozy mogą oznaczać, że mamy do czynienia z dwoma różnymi podtypami, a nie różnymi stadiami rozwoju choroby.
      Uzyskane przez nas dane wskazują, że prawidłowa interakcja hormonów oraz wzorce metylacji DNA są kluczowe, dla normalnego funkcjonowania macicy. Zmiany, jakie zaobserwowaliśmy, mogą odgrywać kluczową rolę w rozwoju bezpłodności, która często towarzyszy endometriozie, stwierdził główny autor badań, Sahar Houshdaran.
      Ze szczegółami badań można zapoznać się na łamach PLOS Genetics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół naukowców Uniwersytetu Warszawskiego pod kierunkiem dr hab. Joanny Kowalskiej opublikował na łamach czasopisma Nucleic Acids Research artykuł opisujący syntezę i zastosowanie fluorowanych cząsteczek DNA do badań funkcji i właściwości kwasów nukleinowych z wykorzystaniem fluorowego magnetycznego rezonansu jądrowego. Publikacja ta została uznana przez recenzentów za Breakthrough Paper – artykuł przełomowy dla rozwoju nauki.
      Zespół naukowców z Wydziału Fizyki UW oraz Centrum Nowych Technologii UW, który tworzą: dr hab. Joanna Kowalska, dr Marcin Warmiński, prof. Jacek Jemielity oraz Marek Baranowski, opublikował na łamach prestiżowego czasopisma naukowego Nucleic Acids Research (NAR) wyniki eksperymentów dotyczące syntezy i charakterystyki oligonukleotydów znakowanych atomem fluoru na jednym z końców nici kwasu nukleinowego (DNA) oraz ich zastosowań w badaniach metodą fluorowego jądrowego rezonansu magnetycznego (19F NMR).
      Opisane związki stanowią nowy rodzaj sond molekularnych do prostego wykrywania różnych wariantów przestrzennych DNA (tzw. struktur drugorzędowych), takich jak fragmenty dwuniciowe (dupleksy), a także bardziej nietypowe struktury – tzw. struktury niekanoniczne (G-kwadrupleksy i i-motywy). Znakowane fluorem fragmenty DNA umożliwiają badanie tych struktur za pomocą wrażliwej na zmiany strukturalne metody, jaką jest spektroskopia 19F NMR.
      Publikacja badaczy Uniwersytetu Warszawskiego otrzymała od recenzentów czasopisma Nucleic Acids Research status Breakthrough Paper – artykułu przełomowego dla rozwoju nauki. Recenzenci docenili połączenie prostego i wydajnego podejścia syntetycznego, umożliwiającego otrzymanie fluorowanych cząsteczek DNA, z wykorzystaniem metody 19F NMR. Połączenie to zaowocowało opracowaniem metody badawczej o szerokim spektrum zastosowań: od śledzenia zmian strukturalnych dupleksów DNA do monitorowania oddziaływań pomiędzy kwasem nukleinowym, a białkami i małymi cząsteczkami.
      Rezultaty opisane w publikacji otwierają nowe możliwości w badaniach poznawczych kwasów nukleinowych, a także mogą znaleźć zastosowanie w odkrywaniu leków oddziałujących, poprzez specyficzne wiązanie, z określonymi sekwencjami lub strukturami przestrzennymi w DNA. Większość opracowywanych dotychczas leków działa poprzez oddziaływanie z białkami. Leki oddziałujące z DNA są natomiast mało selektywne, a przez to toksyczne. Opracowanie metod umożliwiających odkrywanie cząsteczek oddziałujących tylko z wybranymi sekwencjami DNA otwiera drogę do powstania leków charakteryzujących się znacznie mniejszą toksycznością – komentuje dr hab. Joanna Kowalska z Wydziału Fizyki UW, współautorka artykułu.
      Nucleic Acids Research to czasopismo naukowe, którego celem jest popularyzacja najwyższej jakości badań, których rezultaty oceniane są przez grono naukowców-recenzentów w zakresie biologii molekularnej i komórkowej. Status Breakthrough Paper otrzymują publikacje opisujące badania, które rozwiązują istniejący od dawna problem lub wskazują nowe możliwości i kierunki rozwoju nauki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjaliści coraz bardziej obawiają się zjawiska „odwrotnej zoonozy”, które może w przyszłości przynieść nam kolejne, bardzo niebezpieczne epidemie. Na razie epidemie zoonoz wśród ludzi zdarzają się rzadko, jednak już teraz widać, że jest to zjawisko coraz częstsze. „Odwrotna zoonoza” może spowodować u zwierząt epidemie chorób pochodzących od człowieka, ale choroby takie mogą powracać do ludzi.
      Coraz większa liczba ludności wywołuje dwa zjawiska groźne z interesującego nas tutaj epidemiologicznego punktu widzenia. Po pierwsze rośnie liczba zwierząt hodowlanych, które żyją w coraz większym zagęszczeniu. Po drugie, ludzie niszczą kolejne habitaty i wkraczają na kolejne tereny zajmowane przez dzikie zwierzęta. Oba czynniki zwiększają ryzyko wymiany patogenów pomiędzy ludźmi a zwierzętami.
      Obecnie naukowcy szacują, że około 60% ludzkich patogenów i 75% patogenów powodujących nowe niebezpieczne choroby pochodzi od zwierząt. Mimo to przypadki przejścia patogenu na ludzi są niezwykle rzadkie. Zdaniem specjalistów w naturze istnieje od 260 000 do ponad 1,6 miliona wirusów zwierzęcych. Jednak na ludzi przeszło zaledwie ponad 200 takich patogenów.
      Żeby wirus mógł przeskoczyć ze zwierzęcia na człowieka, a następnie być zdolnym do przeżycia, replikacji i infekcji, musi zostać spełnionych szereg warunków. Dlatego też przy dużej liczbie zwierzęcych wirusów, tak mało z nich spowodowało kiedykolwiek choroby u ludzi. Jednak sytuacja się zmienia. Intensywna hodowla zwierząt, zaburzenie równowagi ekologicznej i niszczenie habitatów zmieniło ten tak zwany interfejs człowiek-zwierzę. Z tego powodu ostatnich dekadach doświadczyliśmy epidemii różnych zoonoz: Eboli, świńskiej i ptasiej grypy oraz epidemii kilku koronawirusów.
      Mikroorganizmy nie „wędrują” jednak tylko w jedną stronę. Podczas najnowszej epidemii dowiedzieliśmy się o przypadkach zarażenia psów i kotów przez ludzi. Od człowieka zaraził się też tygrys i siedem innych dużych kotów w Bronx Zoo. Z kolei analizy genetyczne wykazały, że podczas epidemii SARS z lat 2002–2003 doszło do licznych zarażeń małych mięsożernych zwierząt przez ludzi. Warto też przypomnieć, że w 2009 roku podczas epidemii ptasiej grypy aż 21 krajów poinformowało o zarażaniu się  zwierząt od ludzi. Zjawisko takie nie jest całkiem nowe. Od lat 80. ubiegłego roku naukowcy informują, że od ludzi zarażają się zwierzęta domowe, hodowlane oraz dzikie. To przenoszone przez ludzi choroby stały się jednym z czynników, przez który goryle górskie z Ugandy znalazły się na skraju zagłady.
      Takie „odwrotne zoonozy” mogą być śmiertelnie groźne dla zwierząt. Ale eksperci martwią się, że mogą one stanowić też poważne zagrożenie dla ludzi.
      Nowe wirusy i ich szczepy pojawiają się zwykle w wyniku mutacji lub wymiany materiału genetycznego w wirusem, który w tym samym czasie zaraził tego samego gospodarza. I to ten drugi proces – w przypadku wirusów grypy jest to skok antygenowy, w przypadku koronawirusów jest to rekombinacja genetyczna – powoduje, że patogeny przechodzące z człowieka na zwierzęta są tak niebezpieczne. Jak zauważa Casey Barton Behravesh, dyrektor w CDC National Center for Emerging and Zoonotic Infectious Diseases, za każdym razem gdy wirusy mogą się mieszać z innymi, mogą powodować poważne choroby, szczególnie, gdy mogą przeskakiwać pomiędzy ludźmi a zwierzętami.
      Jednym z najlepszych „naczyń” do takiego mieszania się wirusów są jedne z najbardziej rozpowszechnionych zwierząt hodowlanych – świnie. W roku 2009 wirus H1N1 zabił od 150 do 575 tysięcy ludzi w ciągu roku. Wirus ten zawiera segmenty genetyczne pochodzące od ludzi, ptaków, świń z Ameryki Północnej oraz świń z Eurazji. W ostatnich latach zidentyfikowano wiele ludzkich wirusów, które krążą wśród świń. Wiemy o ptasich wirusach, które zarażają świnie. Do tego mamy dziesiątki, jeśli nie setki ludzkich wirusów, które pochodzą od ludzi. Skład genetyczny wirusów świńskiej grypy pochodzi więc większości od ludzi, mówi Martha Nelson z amerykańskich Narodowych Instytutów Zdrowia.
      Wiemy, że od roku 2011 wirusy świńskiej grypy pochodzące od wirusów ludzkiej grypy zaraziły ponad 450 osób w samych tylko USA. Do większości infekcji doszło na targach rolniczych. Szczegółowe badania tych wirusów wykazały, że w bardzo ograniczonym stopniu są one w stanie przenosić się między ludźmi. Jenak im większa różnorodność genetyczna wirusów u gospodarza, w tym przypadku u świń, tym większe ryzyko pojawienia się wirusa, który będzie w stanie przenosić się między ludźmi. To jak gra w rosyjską ruletkę. Wiemy, że te wirusy, które przeszły ze świń, są w stanie infekować ludzi. Jest tylko kwestią czasu pojawienie się szczepu zdolnego do transmisji pomiędzy ludźmi, dodaje Nelson.
      Mamy tutaj więc kilka poważnych czynników ryzyka. Świnie są świetnym naczyniem do mieszania się wirusów, wiemy, że ludzie zarażają je wirusami i wiemy, że następnie wirusy, po zmianach genetycznych, zarażają ludzi. Jeśli do tego dodamy fakt, że obecnie hoduje się na świecie niemal 700 milionów świń, a zwierzęta te są przemieszczane pomiędzy regionami i kontynentami, mają częsty kontakt z ludźmi i wieloma innymi świniami, to musimy przyznać, że istnieje tutaj wiele okazji do pojawienia się szczepu wirusa, który nie tylko zarazi ludzi, ale również będzie też przenosił się między nimi.
      Na razie jednak nie wiemy, na ile duże jest realne ryzyko wybuchu epidemii w wyniku „odwrotnej zoonozy”. Dotychczas większość nowych zoonoz pojawia się w wyniku kontaktu ludzi z dzikimi zwierzętami. Jednak interakcja pomiędzy ludźmi i zwierzętami jest niezwykle złożona.
      Jak dotychczas nie wydaje się, by „odwrotna zoonoza” miała miejsce podczas COVID-19. Wiemy o nielicznych przypadkach zwierząt, które zaraziły się od ludzi. Być może, chociaż nie jest to pewne, koty żyjące blisko siebie mogą przekazywać sobie nowego koronawirua. Jednak nie ma dotychczas żadnych dowodów, by zarażony nowym koronawirusem kot mógł przekazać go człowiekowi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Bakteria Stenotrophomonas maltophilia naturalnie występuje w ekosystemie w otoczeniu człowieka. Do niedawna była uważana za nie sprawiającą większych problemów. Teraz okazuje się, że jest to coraz bardziej rozpowszechniony wieloantybiotykooporny patogen powodujący ciężkie infekcje układu oddechowego. S. maltophilia stała się, obok gronkowca złocistego czy E. coli, jednym z najgroźniejszych patogenów powodujących zakażenia szpitalne.
      Bakteria ta jest szczególnie niebezpieczna dla pacjentów z osłabionym układem odpornościowym lub leczonym z powodu stanu zapalnego układu oddechowego. Może ona zaatakować każdy organ, jednak najczęściej dochodzi do infekcji układu oddechowego, bakteremii oraz infekcji wywołanych przez użycie cewnika.
      Jako, że to stosunkowo nowe, bardzo poważne i coraz bardziej rozpowszechnione zagrożenie, konieczne jest lepsze zrozumie wirulencji tego patogenu oraz jego lokalnej i globalnej transmisji.
      Międzynarodowa grupa naukowa pracująca pod nadzorem niemieckiego Centrum Badawczego w Borstel (Forschungszentrum Borstel – Leibniz Lungenzentrum), przeprowadziła pierwsze badania światowego drzewa filogenetycznego S. maltophilia. Naukowcy z ośmiu krajów odkryli, że w 22 krajach istnieją 23 linie S. maltophilia o różnym stopniu rozpowszechnienia, z których większość zawiera szczepy o każdym możliwym stopniu wirulencji. Jedna z tych linii jest obecna na całym świecie i zawiera największą liczbą szczepów infekujących ludzi. Chodzi tutaj o linię Sm6. Stwierdzono w niej istnienie kluczowych genów zwiększających wirulencję i odporność na działanie antybiotyków. To sugeruje, że specyficzna konfiguracja genetyczna może ułatwiać rozpowszechnianie się różnych podtypów S. maltophilia w środowisku szpitalnym, mówi główny autor badań, Matthias Gröschel.
      Analiza sposobu przenoszenia się bakterii ujawniła, że w szpitalach na przestrzeni zaledwie dni i tygodni mogą rozpowszechniać się blisko spokrewnione szczepy.
      Ze szczegółami badań można zapoznać się na łamach Nature Communications.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Koronawirus zmutował i obecnie mamy do czynienia z nową, bardziej zaraźliwą i niebezpieczną odmianą, twierdzą naukowcy z Los Alamos National Laboratory (LANL). Pojawiła się ona w Europie na początku lutego. Stamtąd zaczęła się rozprzestrzeniać i pod koniec marca dominowała na całym świecie. Naukowcy ostrzegają, że jeśli epidemia SARS-CoV-2 nie wygaśnie w sezonie letnim, jak ma to miejsce w przypadku grypy sezonowej, może nadal mutować, co znakomicie może utrudnić opracowanie szczepionki.
      To złe wiadomości, mówi główna autorka badań, Bette Korber. Nie powinno nas to jednak zniechęcać. Nasz zespół z LANL udokumentował te mutacja, a było to możliwe dzięki ogólnoświatowemu wysiłkowi naukowców, którzy natychmiast udostępniają genom lokalnie występującego wirusa.
      Przypomnijmy, że na początku marca chińscy naukowcy informowali o zidentyfikowaniu dwóch typów koronawirusa SARS-CoV-2, z których bardziej agresywny powodował 70% infekcji, a starszy i mniej agresywny – 30%. Typ bardziej agresywny miał być też bardziej rozpowszechniony w Wuhan na wczesnych etapach epidemii.
      Teraz naukowcy z Los Alamos, we współpracy z uczonymi z Duke University i brytyjskiego University of Sheffield przeanalizowali tysiące genomów SARS-CoV-2 zebranych przez Global Initiative for Sharing All Influenza Database (GISAID).
      Analizą zajął się zespół, który dotychczas zajmował się tworzeniem bazy danych nt. wirusa HIV. Od dwóch miesięcy specjaliści ci rozwijają narzędzia do śledzenia i analizy SARS-CoV-2 w czasie rzeczywistym. Bo bazy GISAID trafiają obecnie setki genomów koronawirusa dziennie, a eksperci z Los Alamos na bieżąco je analizują.
      Dotychczas zidentyfikowano mutacje w 14 miejscach proteiny S, za pomocą której wirus przyłącza się do komórek. Najbardziej niepokojące są dwie z nich. Są too mutacja D614G, czyli zmiana nukleotydów G na A w pozycji 23403 w szczepie referencyjnym z Wuhan. Z nieznanych obecnie przyczyn wiąże się ona z większą zaraźliwością wirusa. Naukowców martwi też mutacja S943P. Co prawda występuje ona wyłącznie na terenie Belgii, ale wiele wskazuje na to, że jest ona skutkiem rekombinacji. Ten proces wymaga zaś jednoczesnej infekcji organizmu gospodarza dwoma odmiennymi szczepami wirusa.
      Cała praca, wraz ze szczegółowym opisem wszystkich mutacji, została opublikowana w biorxiv [PDF].

      « powrót do artykułu
×
×
  • Create New...