Zbadali, co wydarzyło się przed Wielkim Wybuchem
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Pomimo tego, że jest milion razy mniejszy, pojedynczy neutron może wpływać na energię molekuły. Teraz fizykom z MIT i innych uczelni udało się zmierzyć wpływ neutronu na radioaktywną molekułę, co może mieć fundamentalne znaczenie dla badań nad ciemną materią czy naruszeniem symetrii.
Naukowcy opracowali technikę wytwarzania i badania krótko żyjących radioaktywnych molekuł z precyzyjnie kontrolowaną liczbą neutronów. Wybrali liczne izotopy tej samej molekuły, a w każdym z nich był o 1 neutron mniej, niż w poprzednim. Następnie mierzyli energię każdej z molekuł i byli w stanie wykryć minimalne, niemal niewidoczne różnice pomiędzy nimi.
Możliwość zarejestrowania takich różnic oznacza, że naukowcy będą w stanie badać radioaktywne molekuły pod kątem występowania w nich zjawisk wywoływanych przez obecność ciemnej materii lub też przyczyn naruszenia symetrii we wszechświecie.
Jeśli prawa fizyki są symetryczne, a sądzimy, że są, to w wyniku Wielkiego Wybuchu powinno powstać tyle samo materii i antymaterii. Jednak fakt, że obserwujemy niemal wyłącznie materię, a antymateria to jedynie jedna część na miliard, oznacza, że coś narusza podstawową symetrię fizyki w sposób, którego nie potrafimy wyjaśnić, mówi profesor Ronald Fernando Garcia Ruiz z MIT.
Teraz mamy szansę zmierzyć te naruszenia symetrii, używając przy tym ciężkich radioaktywnych molekuł, które są niezwykle czułe na zjawiska, jakich nie obserwujemy w innych molekułach. Może to nam dostarczyć odpowiedzi na najwięsze tajemnice dotyczące powstania wszechświata, dodaje.
Większość jąder atomowych ma kształt sfery z równo rozłożonymi protonami i neutronami. Jednak niektóre pierwiastki radioaktywne, jak rad, mają jądra o kształcie gruszki. Protony i neutrony są w nich rozłożone nierównomiernie. Fizycy uważają, że takie zaburzenie kształtu może zwiększać naruszenie symetrii, które spowodowało, iż wszechświat składa się z materii. "Jądra pierwiastków radioaktywnych mogą pozwolić nam na obserwowanie tego naruszenia", uważa współautor najnowszych badań, Silviu-Marian Udrescu. "Problem w tym, że są one bardzo niestabilne i krótkotrwałe. Potrzebujemy więc bardzo czułych metod, które pozwolą nam na ich szybkie wytwarzania i badanie.
Naukowcy umieszczali radioaktywne pierwiastki w molekule, co dodatkowo zwiększa zaburzenie symetrii. Każda z radioaktywnych molekuł składa się z co najmniej jednego radioaktywnego atomu związanego z co najmniej jednym innym atomem. Każdy z atomów otoczony jest chmurą elektronów, które tworzą pole bardzo silne elektryczne molekuły. Naukowcy uważają, że pole to może dodatkowo wzmacniać subtelne zjawiska, jak np. zaburzenie symetrii.
Autorzy badań tworzą molekuły, które nie istnieją w naturze. W ubiegłym roku poinformowali u uzyskaniu monofluorku radu (RaF), radioaktywnej molekuły składającej się z atomu radu i atomu fluoru. Teraz zaczęli uzyskiwać izotopy tej molekuły, zawierające różną liczbę neutronów.
Podczas swojej pracy wykorzystali urządzenie ISOLDE (Isotope mass Separator On-Line) z CERN-u. Powstaje w nim cała grupa molekuł, w tym RaF, które są oddzielane od reszty za pomocą laserów, pól elektromagnetycznych i pułapek jonowych. Następnie naukowcy badają masę molekuł, dzięki czemu poznają liczbę neutronów w jądrach radu. Następnie sortują molekuły w zależności od liczby neutronów. W ten sposób uzyskali pięć grup identycznych izotopów RaF. Izotopy w każdej z grup mają inną liczbę neutronów niż w pozostałych grupach. Następnie dokonywali pomiarów poziomów energetycznych cząsteczek.
Wyobraźmy sobie molekułę, która wibruje jak dwie piłki na sprężynie. Posiada ona pewną energię. Jeśli w jednej z tych piłek zmienimy liczbę neutronów, może zmieć się poziom energetyczny. Jednak każdy z neutronów jest 10 milionów razy mniejszy niż molekuła. Więc różnice są tutaj minimalne. Szczerze mówiąc, nie spodziewaliśmy się, że za pomocą współczesnych technik będziemy w stanie je zauważyć. Ale się udało. I bardzo wyraźnie to widać, mówi Udrescu.
Naukowiec porównuje czułość eksperymentu do możliwości zaobserwowania, jak Mount Everest, umieszczony na powierzchni Słońca, zmienia promień naszej gwiazdy. Dodaje, że zaobserwowanie naruszenia symetrii wymaga czułości odpowiadającej obserwacji wpływu ludzkiego włosa na zmianę promienia Słońca.
Uzyskane wyniki pokazują, że radioaktywne molekuły, takie jak RaF, są niezwykle czułe na pewne zjawiska, dzięki czemu możemy badać te zjawiska. Bardzo ciężkie radioaktywne molekuły są wyjątkowe. Są wrażliwe na zjawiska, jakich nie możemy zaobserwować w innych molekułach. Jeśli więc szukamy tego, co narusza symetrię, jest spora szansa, że zauważymy to w takich właśnie molekułach, dodaje Udrescu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teoria pętlowej grawitacji kwantowej (LQG) pozwala wyjaśnić pewne anomalie mikrofalowego promieniowania tła, z którymi nie poradziły sobie dotychczas inne teorie, twierdzi zespół naukowy pracujący pod kierunkiem Abhaya Ashtekara z Pennsylvania State University. Wyniki badań zostały opisane na łamach Physical Review Letters.
Teoria grawitacji kwantowej opisuje historię wszechświata w kategorii „Wielkiego Odbicia”. Bardziej znana teoria Wielkiego Wybuchu mówi, że wszechświat powstał z osobliwości, niezwykle małego punktu, z którego się rozszerzył. W teorii kwantowej grawitacji mamy zaś do czynienia ze stałą Plancka, najmniejszym możliwym rozmiarem. Zgodnie z nią wszechświat po okresie rozszerzania zacznie się kurczyć, a gdy osiągnie wielkość stałej Plancka, nastąpi odbicie i znowu zacznie się rozszerzać. Zatem wszechświat jest zjawiskiem cyklicznym. W teorii tej Wielki Wybuch jest albo pierwszym, albo kolejnym z serii Wielkich Odbić.
Autorzy najnowszych badań skupili się na dwóch anomaliach mikrofalowego tła (CMB), zwanym też promieniowaniem reliktowym. To obecne w całym wszechświecie promieniowanie jest pozostałością po wczesnym etapie formowania się wszechświata.
Jedna z tych anomalii ma związek z rozkładem energii CMB, w którym widoczne są niewielkie różnice temperatury. Druga anomalia ma związek z amplitudą soczewkowania CMB, czyli jego zagięcia podczas podróży w przestrzeni. Soczewkowanie to jest wynikiem rozkładu i gęstości materii, co z kolei jest związane z kwantowym fluktuacjami, do których dochodziło jeszcze przed rozszerzaniem się wszechświata.
Jeśli teoria pętlowej grawitacji kwantowej jest prawdziwa, to Wielkie Odbicie powinno wpłynąć na CMB. Teoria ta stwierdza, że w momencie Wielkiego Odbicia zagięcie czasoprzestrzeni było większe niż kiedykolwiek później. Pętlowa grawitacja kwantowa przewiduje konkretną wartość zagięcia czasoprzestrzeni w momencie odbicia. Wartość ta jest podstawowym elementem tego, co obecnie obserwujemy. Innymi słowy, jeśli przewidywanie te są prawdziwe, to i obecnie powinniśmy obserwować pewne konkretne modyfikacje rozszerzającego się wszechświata, mówi Ashtekar.
Olbrzymie zakrzywienie czasoprzestrzeni, jakie miało miejsce w momencie Wielkiego Odbicia, pozostawiło trwały ślad w mikrofalowym promieniowaniu tła. Długość fali fluktuacji wywołanych tym zjawiskiem jest większa niż część wszechświata, jaką obserwujemy, więc nie jesteśmy w stanie wykryć jej bezpośrednio. Jednak jest ona skorelowana z falami o mniejszych długościach, które objawiają się w anomaliach CMB, których teoria Wielkiego Wybuchu nie potrafi wyjaśnić.
Istnieje sześć podstawowych parametrów, które decydują o tym, co widzimy przyglądając się mikrofalowemu promieniowaniu tła. Dwa to pierwotne parametry związane z końcem okresu inflacji, a ich wartości wpływają na zakres mocy CMB. Dwa kolejne pochodzą z czasu pomiędzy końcem inflacji, gdy wszechświat liczył sobie 10-32 sekundy, a momentem, gdy około 379 000 lat później pojawiło się CMB. Dwa ostatnie parametry opisują to, co wydarzyło się pomiędzy pierwszą emisją CMB a dniem dzisiejszym.
Chociaż teoria Wielkiego Wybuchu jest w stanie określić wartości tych parametrów, to LQC wprowadza do nich modyfikacje, które wyjaśniają obserwowane anomalie.
W mikrofalowym promieniowaniu tła istnieje też trzecia anomalia, hemisferyczna. Otóż obie hemisfery CMB mają różną średnią energię. Tę anomalię wyjaśnił już Ivan Agullo z Louisiana State University, który również wykorzystał przy tym teorię pętlowej grawitacji kwantowej.
Sam Agullo zapoznał się z pracą grupy Ashtekara i określił ją jako fantastyczną. Dowodzi ona, że fizyczne procesy, które miały miejsce w odległej przeszłości, przed epoką inflacji, mogą pozostawić ślady na współczesnym niebie, stwierdził.
Ostatnią, wciąż niewyjaśnioną anomalią, jest różnica w pomiarach stałej Hubble'a. O problemie tym informowaliśmy już wcześniej. Ashtekar wskazuje jednak na pracę Alejandro Pereza z Aix-Marseille Universite, która jego zdaniem stanowi pierwszy krok ku wyjaśnieniu tej anomalii na gruncie LQC.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie, astrofizycy i fizycy cząstek zgromadzeni w Kavli Institute for Theoretical Physics na Uniwersytecie Kalifornijskim zastanawiają się, na ile poważne są różnice w pomiarach dotyczących stałej Hubble'a. Zagadnienie to stało się jednym z ważniejszych problemów współczesnej astrofizyki, gdyż od rozstrzygnięcia zależy nasza wiedza np. od tempie rozszerzania się wszechświata.
Problem polega na tym, że wyliczenia stałej Hubble'a w oparciu o badania promieniowania wyemitowanego podczas Wielkiego Wybuchu różnią się od stałej Hubble'a uzyskiwanej na podstawie obliczeń opartych na badaniu supernowych. Innymi słowy, obliczenia oparte na najstarszych danych różnią się od tych opartych na danych nowszych. Jeśli specjaliści nie znajdą wyjaśnienia tego fenomenu może się okazać, że nie rozumiemy wielu mechanizmów działania wszechświata.
W latach 20. XX wieku Edwin Hubble zauważył, że najdalsze obiekty we wszechświecie wydają się oddalać od siebie szybciej niż te bliższe. Pojawiła się więc propozycja stworzenia stałą Hubble'a opisującej tempo rozszerzania się wszechświata.
Eksperymenty mające na celu określenie warto tej stałej dają jednak różne wyniki. Jedna z technik jej poszukiwania zakłada wykorzystanie mikrofalowego promieniowania tła, czyli światła powstałego wkrótce po Wielkim Wybuchu. Prowadzone na tej podstawie pomiary i obliczenia wykazały, że stała Hubble'a to 67,4 km/s/Mpc ± 0,5 km/s/Mpc. Jednak badania oparte o dane z supernowych pokazują, że stała Hubble'a to 74,0 km/s/Mpc. Obie wartości nie mogą być prawdziwe, chyba, że przyjmiemy, że coś niezwykłego stało się na początku rozszerzania się wszechświata. Niektórzy fizycy sugerują, że u zarania dziejów istniał inny rodzaj ciemnej energii powodującej rozszerzanie się wszechświata.
Na razie jednak fizycy nie wszczynają alarmu i uważają, że obecne teorie dotyczące działania wszechświata są nadal ważne.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wszystko ma gdzieś swój początek. Także wszechświat. W wyniku Wielkiego Wybuchu powstało niewiele pierwiastków, takich jak różne odmiany jąder wodoru, helu i litu. Naukowcy wiedzą więc, jak mogły wyglądać pierwsze atomy i pierwsze molekuły. Jednak dotychczas nie udawało się odnaleźć w przestrzeni kosmicznej pierwszych molekuł. Z teoretycznych przewidywań wynika, że powinien nią być zhydratowany jon helu (HeH+), jednak dotychczas nie udało się go zaobserwować.
Na łamach najnowszego numeru Nature właśnie doniesiono o pierwszym niezaprzeczalnym odkryciu molekuły HeH+ w przestrzeni kosmicznej.
Eksperci poszukiwali HeH+ od lat 70. ubiegłego wieku w mgławicach. Szczególnie interesowały ich mgławice planetarne. Jednak przez kilkadziesiąt lat niczego nie znaleziono, a wcześniejsze doniesienia o odkryciu HeH+ okazywały się wątpliwe. Jednym z problemów był fakt, że światło emitowane przez zhydratowany jon helu jest łatwo absorbowane w atmosferze Ziemi. Teleskopy nie mogły więc go zarejestrować. Nie dały sobie rady nawet te umieszczone wysoko w górach.
Naukowcy postanowili więc wykorzystać Stratospheric Observatory for Infrared Astronomy (SOPHIA) czyli obserwatorium umieszczone na pokładzie samolotu. W końcu, dzięki wyniesieniu instrumentów w startosferę, udało się zaobserwować HeH+. Molekułę znaleziono w mgławicy planetarnej NGC 7027 oddalonej od Ziemi o 2900 lat świetlnych.
Odkrycie rzuca nowe światło na mgławice planetarne oraz na samą molekułę. Dzięki niemu można będzie udoskonalić obecne teorie i modele. Przede wszystkim zaś znalezienie HeH+ potwierdziło pewne przypuszczenia dotyczące najwcześniejszego wszechświata. Cała chemia wszechświata rozpoczęła się od tego jonu. Przed dekady astronomia zmagała się z brakiem dowodów na jego istnienie w przestrzeni kosmicznej. Jednoznaczne odkrycie to szczęśliwy koniec długotrwałych badań.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.