Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Google twierdzi, że zbudowany przez tę firmę komputer osiągnął kwantową supremację, czyli wykonał obliczenia, których klasyczny komputer nie jest w stanie wykonać w rozsądnym casie. Jeśli to prawda, możemy mieć do czynienia z prawdziwym przełomem na polu informatyki kwantowej. Dotychczas bowiem komputery kwantowe nie dorównywały komputerom klasycznym.
Cała sprawa jest jednak otoczona tajemnicą. Prace Google'a zostały bowiem opisane w dokumencie, który niedawno został umieszczony na serwerze NASA. Jednak dokument szybko stamtąd usunięto. Przedstawiciele Google'a odmawiają komentarza w tej sprawie.

W dokumencie opisano procesor kwantowy o nazwie Sycamore, który ma zawierać 54 kubity. To właśnie on miał osiągnąć kwantową supremację. Wymieniony został też tylko jeden autor artykułu, John Martinias z Uniwersytetu Kalifornijskiego w Santa Barbara. Wiadomo, że pracuje on dla Google'a nad sprzętem dla komputerów kwantowych. Wiadomo też, że w 2018 roku Google i NASA zawarły porozumienie, w ramach którego agencja kosmiczna miała pomóc Google'owi w testach kwantowej maszyny. Wspomniany dokument opisuje, w jaki sposób procesor Sycamore rozwiązał problem prawdziwego rozkładu losowego liczb. Tego typu problemy są niezwykle trudne dla komputerów klasycznych.

Ci, którzy czytali dokument mówią, że jeden z kubitów procesora nie działał, ale pozostałe 53 zostały splątane, wygenerowały przypadkowy zestaw liczb w systemie dwójkowym i sprawdziły, czy rzeczywiście ich rozkład jest przypadkowy. Autorzy artykułu obliczyli, że wykonanie takiego zadania zajęłoby Summitowi, najpotężniejszemu klasycznemu superkomputerowi na świecie aż 10 000 lat. Procesor Sycamore wykonał je w 200 sekund.

Autorzy artykułu przyznają, że użyty algorytm nie przyda się do niczego więcej niż do generowania prawdziwych liczb losowych. Jednak w przyszłości podobny procesor może być przydatny w maszynowym uczeniu się, chemii czy naukach materiałowych.
Osiągnięcie kwantowej supremacji przez Google'a to ważny krok w informatyce kwantowej, mówi Jim Clarke z Intel Labs. Ekspert dodaje, że wciąż jesteśmy na początku drogi. To, co osiągnął Google było jedynie demonstracją i to nie wolną od błędów. Jednak w przyszłości będą budowane większe potężniejsze procesory kwantowe, zdolne do wykonywania bardziej użytecznych obliczeń.


« powrót do artykułu

Share this post


Link to post
Share on other sites
20 minut temu, KopalniaWiedzy.pl napisał:

Autorzy artykułu przyznają, że użyty algorytm nie przyda się do niczego więcej niż do generowania prawdziwych liczb losowych.

moment, moment

21 minut temu, KopalniaWiedzy.pl napisał:

wygenerowały przypadkowy zestaw liczb w systemie dziesiętnym i sprawdziły, czy rzeczywiście ich rozkład jest przypadkowy

A "przypadkiem" algorytm taki nie będzie nadawał się do...łamiania szyfrów?

Share this post


Link to post
Share on other sites
23 minuty temu, radar napisał:

A "przypadkiem" algorytm taki nie będzie nadawał się do...łamiania szyfrów?

A coś więcej? Bo nie widzę przesłanek.

Share this post


Link to post
Share on other sites

Obawiam się jednego, że niedługo do zrozumienia jak można zastosować komputer kwantowy ze sztuczną inteligencją będzie potrzebny ... komputer kwantowy ze sztuczną inteligencją ;)

  • Upvote (+1) 2

Share this post


Link to post
Share on other sites
W dniu 23.09.2019 o 15:35, Afordancja napisał:

A coś więcej? Bo nie widzę przesłanek.

No nie widać. Jakoś tak mi się skojarzyło z generowaniem "losowych" liczb pierwszych.

W dniu 23.09.2019 o 23:33, Ergo Sum napisał:

Obawiam się jednego

A ja na prawdę się obawiam. Jako związany mocno z aj ti, jako ojciec, jako osoba dbająca o bezpieczeństwo danych czy prywatności to taki komputer mógłby zmienić bardzo dużo.

Ciekawe tylko czy to był przeciek czy "kontrolowany przeciek"? Jeśli to pierwsze to ciekawe jakie są postępy na płaszczyźnie militarnej.

Share this post


Link to post
Share on other sites
W dniu 23.09.2019 o 15:31, Wuj_Sam napisał:

Troszeczkę obszerniejszy artykuł a propos łamania szyfrów 

https://wolnemedia.net/supremacja-google-w-zakresie-informatyki-kwantowej/

Nie mam wiedzy na ten temat, ale tak na zdrowy rozsądek, to mam wrażenie, że to strachy na lachy. Powiedzmy, że Google zbudował algorytm kwantowy, który łamie dowolne losowe hasło w kilka sekund. Teraz, samo wykorzystanie tego w klasycznych komputerach staje się niemożliwe, bo (a) na takim komputerze samo sprawdzenie jednego hasła zajmuje co najmniej 1 sekundę; (b) producenci oprogramowań i aplikacji zmienią natychmiast swoje standardy i założą zabezpieczenie trochę podobne jak w bankach, gdzie można max 2 razy się pomylić przy wpisywaniu hasła, albo zrobią to co "zlewaczona" Unia Europejska, która nakazała otwierać stronę internetową banku sms-em (wg mnie zupełnie zbyteczna i nadmierna troska o bezpieczeństwo).

To oczywiście tylko przemyślenie laika w tym temacie, ale myślę, że wielu tak rozumuje i jeśli się mylę, to specjalista powinien wyjaśnić gdzie laik popełnia błąd rozumowania.

Share this post


Link to post
Share on other sites
Godzinę temu, Antylogik napisał:

to specjalista powinien wyjaśnić gdzie laik popełnia błąd rozumowania.

Jestem ekspertem, czekam na pytania:)

Godzinę temu, Antylogik napisał:

założą zabezpieczenie trochę podobne jak w bankach, gdzie można max 2 razy się pomylić przy wpisywaniu hasła

Przeczytaj sam co napisałeś wyżej, nie mylisz się wcale, bo hasło (a właściwie klucz prywatny/publiczny) znasz :) Komputer klasyczny nie ma tu nic do rzeczy, hasło możesz wklepać nawet ręcznie :)

A "zlewaczona"  EU chciała niby dobrze (uwierzytelnienie dwuskładnikowe, "coś co wiesz i coś co masz"), szkoda tylko, że w upierdliwej i niezbyt bezpiecznej (smartfon) formie.

Mnie interesuje przez ile Google byłby tego właścicielem. Żaden rząd nie pozwoliłby na coś takiego, a już na pewno nie demokratyczno-amerykański :)

Co z implikacjami na cały świat, przecież tj. uzyskanie przewagi ekonomiczno-militarnej, której nie da się skompensować inaczej niż... no właśnie, czy nie wojną i to nuklearną? "Skoro nie mogę wygrać, to nie chcę przegrać"

 

Share this post


Link to post
Share on other sites
1) Komputery kwantowe całkowicie zdemolują szyfrowanie asymetryczne i poważnie osłabią szyfrowanie symetryczne - liczba bitów klucza prywatnego podzielona przez 2.

2) Rząd i służby mają możliwość pozyskać dane zaszyfrowane, czy to poprzez fizyczne zajęcie komputera czy przechwytywanie ruchu w internecie. W najbliższej przyszłości komputer kwantowy może im umożliwić złamanie szyfrów. Szczególnie wymiana kluczy w SSL/TLS do komunikacji HTTPS jest zdaje się zagrozona.

3) Komputer kwantowy da chwilowo przewagę stronie posiadającej, do czasu kiedy to przeciwnicy czy to inne kraje czy też biznes infosec nadgoni albo wdroży bezpieczniejsze rozwiązania. Przy czym nie będzie miało to wpływu na dane już przechwycone.

4) Komputery tego typu nie będą, przynajmniej początkowo, wykorzystywane do atakowania zwykłych ludzi.
 
5) Zabezpieczenie iPhone, które kasowało hasło do zaszyfrowanych danych po podaniu 10 błędnego hasła było obchodzone przez służby USA przez wylutowanie kości NAND. 
 
6) Co ma "zlewaczenie" Unii Europejskiej do bezpieczeństwa IT? Z tego co widzę na świecie, to im bardziej prawicowy kraj, tym bardziej rząd jest opresyjny w internecie.

7) PSD2 i wprowadzenie wymogu uwierzytelniana dwu składnikowego (2FA) jest bardzo dobrym ruchem. Można dyskutować czy SMS/aplikacja to najlepszy wariant. Z pewnością nie, ale bezpieczeństwo to zawsze kompromis. W tym wypadku przeważyła dostępność telefonów, która i tak znacznie podnosi bezpieczeństwo w porównaniu do samego hasła. W moim banku za granicą mam możliwość korzystania z aplikacji ale i czytnika karty kredytowej/debetowej do generowani kodów z czego skorzystałem.

Share this post


Link to post
Share on other sites
Godzinę temu, cyjanobakteria napisał:

3) Komputer kwantowy da chwilowo przewagę stronie posiadającej, do czasu kiedy to przeciwnicy czy to inne kraje czy też biznes infosec nadgoni albo wdroży bezpieczniejsze rozwiązania. Przy czym nie będzie miało to wpływu na dane już przechwycone.

No tak. Pytanie, jak długo trwać będzie ta "chwila". Zauważ, że do momentu odzyskania równowagi jedna strona może właściwie kontrolować drugą i... np. opóźniać, albo i nie dopuścić do odzyskania równowagi.

Godzinę temu, cyjanobakteria napisał:

4) Komputery tego typu nie będą, przynajmniej początkowo, wykorzystywane do atakowania zwykłych ludzi.

Jeśli technologia zostanie opanowana myślę, że nie zabraknie środków na budowę odpowiedniej infrasrtuktury i dla zwykłych ludzi.

 

Share this post


Link to post
Share on other sites
Godzinę temu, cyjanobakteria napisał:

PSD2 i wprowadzenie wymogu uwierzytelniana dwu składnikowego (2FA) jest bardzo dobrym ruchem. Można dyskutować czy SMS/aplikacja to najlepszy wariant. Z pewnością nie, ale bezpieczeństwo to zawsze kompromis.

Ani pierwsze ani trzecie zdanie nie jest prawdziwe. W mbanku każdą (początkową) operację na kwotach i tak trzeba potwierdzać chyba sms-em. Zatem podwójne zabezpieczanie jest zwykłą przesadą. 

Bezpieczeństwo to zaprzeczenie kompromisu. Kompromis może być pomiędzy bezpieczeństwem a ryzykiem, a więc jedno z tego będzie skrajnością, czyli brakiem kompromisu.

Share this post


Link to post
Share on other sites
3 godziny temu, Antylogik napisał:

Nie mam wiedzy na ten temat, ale tak na zdrowy rozsądek, to mam wrażenie, że to strachy na lachy. Powiedzmy, że Google zbudował algorytm kwantowy, który łamie dowolne losowe hasło w kilka sekund. Teraz, samo wykorzystanie tego w klasycznych komputerach staje się niemożliwe, bo (a) na takim komputerze samo sprawdzenie jednego hasła zajmuje co najmniej 1 sekundę; (b) producenci oprogramowań i aplikacji zmienią natychmiast swoje standardy i założą zabezpieczenie trochę podobne jak w bankach, gdzie można max 2 razy się pomylić przy wpisywaniu hasła, albo zrobią to co "zlewaczona" Unia Europejska, która nakazała otwierać stronę internetową banku sms-em (wg mnie zupełnie zbyteczna i nadmierna troska o bezpieczeństwo).

 

Manko, tu nie chodzi o łamanie haseł do banku, czyli wpisywanie ich szybko lub wolno do strony banku, tu chodzi o, jak już ktoś wspomniał, szyfrowanie asymetryczne. Czyli np. podpisy cyfrowe, pewnie też w przypadku wycieków baz z hasłami (w zasadzie ich skrótami) znajdą sposoby (nie mam wiedzy czy na to też są algorytmy kwantowe) na odgadnięcie haseł. (teraz to trochę brute force). Jednak zgodzę się, że na "technikę" znajdzie się "antytechnika" i spokojnie sobie damy z tym radę, wzrośnie może rola szyfrów symetrycznych. A na asymetryczne znajdą się takie na które nikt nie zna algorytmów kwantowych. No i ostatecznie będzie szyfrowanie kwantowe :)

 

Jednym słowem nie panikował bym, tzn. będzie jeden punkt krytyczny kiedy to jeszcze nie wszyscy ogarną, że trzeba już zmienić technologię, tak jak teraz jeszcze niektórzy trzymają hasła w pain text. 

Share this post


Link to post
Share on other sites
44 minutes ago, Antylogik said:

W mbanku każdą (początkową) operację na kwotach i tak trzeba potwierdzać chyba sms-em. Zatem podwójne zabezpieczanie jest zwykłą przesadą. 

Bezpieczeństwo to zaprzeczenie kompromisu. Kompromis może być pomiędzy bezpieczeństwem a ryzykiem, a więc jedno z tego będzie skrajnością, czyli brakiem kompromisu.

Nie pamiętam, jak jest w mBanku teraz, ale kiedyś można było dodać zaufanego odbiorcę potwierdzając jednorazowo SMS, ewentualnie tak jak piszesz - każda operację. Sporo ataków wymaga od ofiary podania kodu potwierdzającego w celu dodania odbiorcy albo potwierdzenie zmodyfikowanej w locie transakcji, więc rozumiem Twój punkt widzenia. 2FA jednak ujednolica systemy bankowe i wymusza na atakującym wykradzenie dodatkowego kodu, więc jest to dodatkowe zabezpieczenie. Nie zabezpiecza wszystkich możliwych wektorów ataku, ale utrudnia samo zalogowanie się w celu chociażby sprawdzenia rachunku.

Bezpieczeństwo to jest zawsze kompromis pomiędzy wygodą użytkownika a poziomem bezpieczeństwa w odniesieniu do założonego modelu zagrożeń. Nie ma czegoś takiego jak całkowite bezpieczeństwo. Model zagrożeń typowego użytkownika, których jest 99%, jest inny niż działacza opozycyjnego, dilera dragów w darknecie albo terrorysty rekrutującego do IS.

EDIT:

Właśnie się pojawił artykuł na Sekuraku o "sim swap", który odnosi się do dyskusji o PSD2:
https://sekurak.pl/pani-katarzyna-z-gdanska-stracila-275-000-zl-wyrobili-duplikat-karty-sim-i-ogolocili-konto/

Quote

Coraz częściej w Polsce realizowane są ataki SIM Swap (czyli nielegalne wyrobienie duplikatu karty SIM ofiary – w takim przypadku atakowany telefon nagle przestaje działać, a napastnicy uzyskują dostęp do kodów SMS-owych autoryzujących transakcje). W przypadku pani Katarzyny, duplikat karty SIM otrzymano prawdopodobnie na podstawie sfałszowanego dowodu osobistego.

To jest jedna ze słabości SMS. Dlatego wybrałem czytnik kart, który jest najbezpieczniejszą opcję w moim banku.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
31 minut temu, cyjanobakteria napisał:

duplikat karty SIM otrzymano prawdopodobnie na podstawie sfałszowanego dowodu osobistego.

Teraz, przynajmniej częściowo, będzie to ograniczone, koniec z dowodami kolekcjonerskimi.

Ciekawe kiedy zacznie się za to na poważnie obciążać sieci komórkowe (za duplikat-fałszywke)

Share this post


Link to post
Share on other sites
25 minutes ago, radar said:

Ciekawe kiedy zacznie się za to na poważnie obciążać sieci komórkowe (za duplikat-fałszywke)

Dobre pytanie. Może kary finansowe zmusiłyby telcomy do uszczelnienia procedur. Firmy powinny dbać o bezpieczeństwo i uszczelnić systemy, ale z drugiej strony to znowu kompromis. Jeżeli wystawienie duplikatu SIM będzie mocno utrudnione, uderzy to w zwykłych klientów. Numery telefonów nie zostały zaprojektowane z myślą o uwierzytelnianiu, chociaż ten kanał jest często wykorzystywany w 2FA. Krebs w zeszłym roku pisał o pracownikach telcomów, którzy oferowali usługi "SIM swap" przestępcom za opłatą, więc zagrożenie wewnętrzne (insider threat) to kolejny wektor.

Share this post


Link to post
Share on other sites
1 godzinę temu, cyjanobakteria napisał:

Firmy powinny dbać o bezpieczeństwo i uszczelnić systemy

Jeśli firma to bank, to się ubawiłem. Generalnie banki zajmują się raczej kasą, a nie odpowiednimi algorytmami; od tego są inni ludzie.

1 godzinę temu, cyjanobakteria napisał:

więc zagrożenie wewnętrzne (insider threat) to kolejny wektor

To zawsze największe zagrożenie. Generalnie najsłabszym ogniwem zawsze jest człowiek.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Japonia chce odzyskać miano kraju, w którym znajduje się najpotężniejszy superkomputer świata. Chce być też pierwszym państwem, które uruchomi eksaflopsową maszynę.
      Nad takim właśnie superkomputerem, o nazwie Fugaku, pracuje firma Fujitsu PRIMEHPC. Fugaku, nazwany tak od góry Fuji, ma zastąpić K Computer, maszynę, która do sierpnia bieżącego roku pracowała w instytucie badawczym Riken.
      Japończycy zapowiadają debiut Fugaku na około roku 2021. Muszą się spieszyć, bo w tym samym terminie w USA i Chinach mają również staną eksaflopsowe maszyny.
      Pojawienie się maszyn o wydajności liczonej w eksaflopach będzie oznaczało olbrzymi skok mocy obliczeniowej.
      Obecnie najpotężniejszym superkomputerem na świecie jest amerykański Summit, którego maksymalna zmierzona moc obliczeniowa wynosi 148,6 TFlop/s. Na drugim miejscu znajdziemy również amerykańską maszynę Sierra (94,64 TFlop/s), a dwa kolejne miejsca należą do superkomputerów Państwa Środka. Są to Sunway TaihyLight (93,01 TFlop/s) i Tianhe-2A (61,44 TFlop/s). Najszybszy obecnie japoński superkomputer, AI Bridging Cloud Infrastructure (ABCI) uplasował się na 8. pozyci listy TOP500, a jego wydajność to 19,88 TFlop/s.
      Warto też wspomnieć, że prototyp Fugaku, maszyna A64FX i mocy obliczeniowej 1,99 TFlop/s trafił na 1. miejsce listy Green500. To lista maszyn, które dostarczają najwięszej mocy obliczeniowej na jednostkę energii. Wynik A64FX to 16,876 GFlops/wat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      IBM uruchomił w Nowym Jorku Quantum Computation Center, w którym znalazł się największy na świecie zbiór komputerów kwantowych. Wkrótce dołączy do nich nich 53-kubitowy system, a wszystkie maszyny są dostępne dla osób i instytucji z zewnątrz w celach komercyjnych i naukowych.
      Quantum Computation Center ma w tej chwili ponad 150 000 zarejestrowanych użytkowników oraz niemal 80 klientów komercyjnych, akademickich i badawczych. Od czasu, gdy w 2016 roku IBM udostępnił w chmurze pierwszy komputer kwantowy, wykonano na nim 14 milionów eksperymentów, których skutkiem było powstanie ponad 200 publikacji naukowych. W związku z rosnącym zainteresowaniem obliczeniami kwantowymi, Błękity Gigant udostępnił teraz 10 systemów kwantowych, w tym pięć 20-kubitowych, jeden 14-kubitowy i cztery 5-kubitowe. IBM zapowiada, że w ciągu miesiąca liczba dostępnych systemów kwantowych wzrośnie do 14. Znajdzie się wśród nich komputer 53-kubitowy, największy uniwersalny system kwantowy udostępniony osobom trzecim.
      Nasza strategia, od czasu gdy w 2016 roku udostępniliśmy pierwszy komputer kwantowy, polega na wyprowadzeniu obliczeń kwantowych z laboratoriów, gdzie mogły z nich skorzystać nieliczne organizacje, do chmur i oddanie ich w ręce dziesiątków tysięcy użytkowników, mówi Dario Gil, dyrektor IBM Research. Chcemy wspomóc rodzącą się społeczność badaczy, edukatorów i deweloperów oprogramowania komputerów kwantowych, którzy dzielą z nami chęć zrewolucjonizowania informatyki, stworzyliśmy różne generacje procesorów kwantowych, które zintegrowaliśmy w udostępnione przez nas systemy kwantowe.
      Dotychczas komputery kwantowe IBM-a zostały wykorzystane m.in. podczas współpracy z bankiem J.P. Morgan Chase, kiedy to na potrzeby operacji finansowych opracowano nowe algorytmy przyspieszające pracę o całe rzędy wielkości. Pozwoliły one na przykład na osiągnięcie tych samych wyników dzięki dostępowi do kilku tysięcy przykładów, podczas gdy komputery klasyczne wykorzystujące metody Monte Carlo potrzebują milionów próbek. Dzięki temu analizy finansowe mogą być wykonywane niemal w czasie rzeczywistym. Z kolei we współpracy z Mitsubishi Chemical i Keio University symulowano początkowe etapy reakcji pomiędzy litem a tlenem w akumulatorach litowo-powietrznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Narodowego Instytutu Standardów i Technologii (NIST) informują o materiale, który może stać się „krzemem komputerów kwantowych”. Nowo odkryte właściwości ditellurku uranu (UTe2) wskazują, że może być on wyjątkowo odporny na jeden z największych problemów trapiących informatykę przyszłości, problem zachowania kwantowej koherencji. Stany kwantowe są niezwykle delikatne i ulegają zniszczeniu pod wpływem czynników zewnętrznych. Dotychczas nikomu nie udało się w sposób praktyczny do masowego zastosowania rozwiązać problemu istnienia kubitów (kwantowych bitów) na tyle długo, by można było przeprowadzić obliczenia zanim ich stany kwantowe ulegną zniszczeniu.
      Materiałem, który może pomóc w przezwyciężeniu tych problemów jest nadprzewodzący UTe2. Okazało się bowiem, że jest on niezwykle odporny na działanie zewnętrznego pola magnetycznego, co jest ewenementem wśród nadprzewodników. Nick Butch, fizyk z NIST mówi, że ta właściwość czyni go atrakcyjnym przedmiotem badań dla specjalistów rozwijających komputery kwantowe. To potencjalny krzem wieku informatyki kwantowej. Można by użyć ditellurku uranu do uzyskania kubitów w wydajnym komputerze kwantowym, stwierdza uczony.
      W zwykłych przewodnikach elektrony podróżują jako indywidualne cząstki. Jednak w nadprzewodnikach tworzą one pary Coopera, czyli oddziałujące ze sobą pary elektronów. Mają one połówkowe spiny skierowane w przeciwne strony i ich spin całkowity wynosi 0. To właśnie istnienie par Coopera zapewnia nadprzewodnictwo.
      Istnieje jednak niewielka liczba nadprzewodników, i UTe2 wydaje się do nich należeć, gdzie spin par Coopera może przyjmować nie jedną, a trzy różne konfiguracje, w tym i taką, gdzie spiny obu elektronów są równoległe, a spin całkowity przyjmuje wartość -1, 0 i +1. Wówczas mówimy o nadprzewodniku topologicznym. Wykazuje on dużą odporność na działania czynników zewnętrznych. Taki równoległy spin może podtrzymać działanie komputera. W tym przypadku nie dochodzi do spontanicznego zaniku stanu z powodu fluktuacji kwantowych, mówi Butch.
      Potrzebujemy topologicznych przewodników, gdyż mogą nam one zapewnić bezbłędnie działające kubity. Mogą mieć one bardzo długie czasy życie. Topologiczne nadprzewodniki to alternatywny sposób na zbudowanie komputera kwantowego, gdyż chronią one stany kwantowe przed wpływami zewnętrznymi, wyjaśnia Butch.
      Wraz ze swoim zespołem prowadził on badania nad magnesami bazującymi na uranie i zainteresował się bliżej ditellurkiem uranu.
      UTe2 został po raz pierwszy pozyskany w latach 70. XX wieku i nawet dość niedawne artykuły naukowe opisywały to jako nieciekawy materiał. My uzyskaliśmy go jako materiał uboczny podczas syntezy innego materiału. Postanowiliśmy go jednak zbadać, by sprawdzić, czy nie ma on jakichś właściwości, które inni przeoczyli. Szybko zdaliśmy sobie sprawę, że mamy w rękach coś specjalnego, mówi Butch.
      Szczegółowe badania wykazały, że UTe2 jest w bardzo niskich temperaturach nadprzewodnikiem, a jego właściwości nadprzewodzące przypominają te rzadkie nadprzewodniki, które są jednocześnie ferromagnetykami. Jednak UTe2 nie jest ferromagnetykiem. Już samo to czyni go wyjątkowym, stwierdza Butch. Okazało się też, że jest wyjątkowo odporny na zewnętrzne pole magnetyczne. Zwykle pole magnetyczne niszczy nadprzewodnictwo. Jednak okazało się, że UTe2 wykazuje właściwości nadprzewodzące w polu magnetycznym o natężeniu do 35 tesli. To wielokrotnie więcej niż wytrzymuje większość niskotemperaturowych nadprzewodników topologicznych.
      Mimo, że jeszcze nie zdobyto jednoznacznego dowodu, iż UTe2 jest nadprzewodnikiem topologicznym, Butch mówi, że jego niezwykła odporność na działanie pola magnetycznego wskazuje, że jest nadprzewodnikiem, w którym pary Coopera przyjmują różne wartości spinu.
      Zdaniem naukowców z NIST dalsze badania nad tym materiałem pozwolą nam lepiej zrozumieć jego właściwości oraz, być może, samo zjawisko nadprzewodnictwa. Może zrozumiemy, co stabilizuje tego typu nadprzewodniki. Głównym celem prac nad nadprzewodnikami jest bowiem zrozumienie tego zjawiska na tyle, byśmy wiedzieli, gdzie szukać materiałów nadprzewodzących. Teraz tego nie potrafimy. Nie wiemy, co jest ich główną cechą. Mamy nadzieję, że ten materiał nam to zdradzi, dodaje Butch.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa fizyków z australijskiego Uniwersytetu Nowej Południowej Walii (University of New South Wales, UNSW) opracowała najszybszą bramkę kwantową w historii. Na czele zespołu stoi profesor Michelle Simmons, znana z ważnych osiągnięć na polu informatyki kwantowej.
      Australijczycy zbudowali dwukubitową bramkę kwantową na krzemie, która przeprowadziła operację logiczną w czasie 0,8 nanosekundy. To 200-krotnie szybciej niż inne istniejące bazujące na spinie bramki dwukubitowe.
      Zespół profesor Simmons bazował na swoich wcześniejszych przełomowych pracach, kiedy to dzięki niezwykłej precyzji pomiarów jako pierwsi wykazali, że dwa kubity wchodzą w interakcje. Zespół profesor Simmons jest jedynym na świecie, który potrafi dokładnie określić pozycję kubitów w ciele stałym.
      Australijczycy zbudowali bramkę umieszczając dwa atomy bliżej siebie niż kiedykolwiek wcześniej, a nastepnie, w czasie rzeczywistym, w sposób kontrolowany obserwując i mierząc ich spiny. Ich unikatowe podejście polega na umieszczaniu kubitów oraz całej elektroniki potrzebnej do inicjalizacji, kontroli i pomiarów ich stanów z taką precyzją, jaka do niedawna wydawała się niemożliwa. Teraz naukowcy pracują nad przełożeniem swojej technologii na praktyczne skalowalne zastosowania, które pozwolą na seryjną budowę procesorów.
      Rekord najdłuższej koherencji na krzemie należy do atomowych kubitów. Dzięki wykorzystaniu naszej unikatowej technologii byliśmy w stanie z wysokim stopniem dokładności odczytać i inicjalizować pojedyncze spiny elektronów w atomowych kubitach na krzemie. Wykazaliśmy tez, że nasz system charakteryzuje się najniższym szumem elektronicznym spośród wszystkich systemów wykorzystujących kubity na półprzewodniku. Teraz zoptymalizowaliśmy wszystkie elementy naszej technologii, dzięki czemu uzyskaliśmy naprawdę szybko, dokładną dwukubitową bramkę, która jest podstawowym budulcem krzemowego komputera kwantowego. Wykazaliśmy, że możliwa jest kontrola w skali atomowej i daje to olbrzymie korzyści, w tym niezwykłą prędkość działania naszego systemu, cieszy się profesor Simmons.
      Dziekan Wydziału Nauk Ścisłych, profesor Emma Johnston dodaje: To jeden z ostatnich kamieni milowych, jakie zespół Michelle musiał osiągnąć, by wybudować komputer kwantowy na krzemie. Ich kolejnym celem jest stworzenie 10-kubitowego obwodu scalonego. Mamy nadzieję, że osiągną to w ciągu 3–4 lat.
      Zespół Simmons najpierw wykorzystał skaningowy mikroskop tunelowy do określenia optymalnej odległości pomiędzy dwoma kubitami. Opracowana przez nas technologia produkcji pozwoliła na umieszczenie kubitów dokładnie tam, gdzie chcieliśmy. Dzięki temu kubitowa bramka była tak szybka, jak to tylko możliwe, mówi współautor badań Sam Gorman. Nie tylko umieściliśmy kubity bliżej niż podczas naszych poprzednich przełomowych badań, ale nauczyliśmy się kontrolować z precyzją subnanometrową wszystkie aspekty naszej architektury.
      Następnie naukowcy byli w stanie w czasie rzeczywistym mierzyć stany kubitów oraz – co chyba najważniejsze – kontrolowali siłę interakcji pomiędzy dwoma elektronami w przedziałach czasowych sięgających nanosekund. Mogliśmy oddalać i przybliżać do siebie elektrony i w ten sposób włączać i wyłączać interakcje pomiędzy nimi, dodaje inny uczestnik badań, Yu He. Zaprezentowana przez nas bramka kwantowa, zwaną bramką SWAP, jest idealnie przystosowana do wymiany informacji kwantowej pomiędzy kubitami, a po połączeniu z bramką z pojedynczego kubity pozwala na wykonanie dowolnego algorytmu kwantowego.
      Najnowsze osiągnięcie to ukoronowanie 20 lat pracy. To olbrzymi postęp. Możemy kontrolować naturę na najniższym poziomie, możemy więc tworzyć interakcje pomiędzy dwoma atomami, a także wchodzić w interakcje z jednym z nich, nie zaburzając stanu drugiego. To coś niewiarygodnego. Wiele osób sądziło, że jest to niemożliwe. Tym, co zachęcało nas do pracy było przypuszczenie, że jeśli uda się nam kontrolować zjawiska w tej skali, to będą one przebiegały niezwykle szybko. I tak rzeczywiście jest, ekscytuje się Simmons.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii zmierzono dokładność dwukubitowych operacji logicznych w krzemie. Dokonał tego zespół prof. Andrew Dzuraka z Uniwersytetu Nowej Południowej Walii (UNSW), który w 2015 jako pierwszy stworzył dwukubitową bramkę logiczną w krzemie.
      Wszystkie obliczenia kwantowe mogą składać się z jedno- i dwukubitowych operacji. To podstawowe budulce obliczeń kwantowych. Gdy je mamy, możemy wykonać dowolne obliczenia kwantowe, jednak precyzja obu tych rodzajów obliczeń musi być bardzo wysoka, wyjaśnia profesor Dzurak.
      Od czasu, gdy w 2015 roku zespół Dzuraka stworzył pierwszą dwukubitową bramkę logiczną umożliwiając w ten sposób prowadzenie obliczeń z użyciem dwóch kubitów, wiele zespołów naukowych zaprezentowało podobne konstrukcje. Jednak dotychczas nie była znana dokładność obliczeń dokonywanych za pomocą takich bramek
      Precyzja obliczeń to kluczowy parametr, który decyduje o tym, na ile dana technologia kwantowa może zostać zastosowana w praktyce. Potęgę obliczeń kwantowych można wykorzystać tylko wtdy, jeśli operacja na kubitach są niemal idealne, dopuszczalne są minimalne błędy, mówi doktor Henry Yang, współpracownik Dzuraka.
      Australijscy naukowcy opracowali test oparty na geometrii Clifforda i za jego pomocą ocenili wiarygodność dwukubitowej bramki logicznej na 98%. Osiągnęliśmy tak wysoką dokładność dzięki zidentyfikowaniu i wyeliminowaniu podstawowych źródeł błędów, poprawiając w ten sposób dokładność obliczeń do takiego stopnia, że zrandomizowany test o znaczącej dokładności – tutaj 50 operacji na bramce – może zostać przeprowadzony na naszym dwukubitowym urządzeniu, dodał doktorant Wister Huang, główny autor artykułu, który opublikowano na łamach Nature.
      Komputery kwantowe będą mogły rozwiązać problemy, z którymi klasyczne komputery nigdy nie będą w stanie sobie poradzić. Jednak większość tych zastosowań będzie wymagała użycia milionów kubitów, więc będziemy musieli korygować błędy kwantowe, nawet jeśli będą one niewielkie. Aby korekcja tych błędów byla możliwa, same kubity muszą być niezwykle dokładne. Dlatego też podstawową rzeczą jest ocena ich dokładności. Im bardziej dokładne kubity, tym mniej będziemy ich potrzebowali, a zatem tym szybciej będziemy w stanie wyprodukować prawdziwy komputer kwantowy, dodaje profesor Dzurak.
      Australijczycy zauważają jeszcze jedną świetną informację, która płynie z ich badań. Otóż krzem po raz kolejny dowiódł,; że jest świetną platformą obliczeniową. Jako, że materiał ten jest wykorzystywany w przemyśle elektronicznym od niemal 60 lat jego właściwości, ograniczenia i problemy z nim związane zostały dobrze poznane, zatem już istniejące fabryki będą w stanie przestawić się na nową technologię.
      Jeśli okazałoby się, że dokładność kwantowych obliczeń na krzemie jest zbyt niska, to mielibyśmy poważny problem. Fakt, że wynosi ona blisko 99% to bardzo dobra wiadomość. Daje nam to możliwość dalszych udoskonaleń. To pokazuje, że krzem jest odpowiednia platformą dla prawdziwych komputerów kwantowych, cieszy się Dzurak. Myślę, że w najbliższej przyszłości osiągniemy znacznie większą dokładność i otworzymy w ten sposób drzwi do zbudowania prawdziwego odpornego na błędy komputera kwantowego. Obecnie jesteśmy bliscy granicy, poza którą w dwukubitowych systemach będzie można zastosować korekcję błędów, dodaje.
      Warto w tym miejscu przypomnieć, że niedawno zespół Dzuraka poinformował na łamach Nature Electronics o osiągnięciu rekordowej dokładności jednokubitowej bramki logicznej. Wyniosła ona 99,96%.

      « powrót do artykułu
×
×
  • Create New...