Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' superkomputer'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Japonia chce odzyskać miano kraju, w którym znajduje się najpotężniejszy superkomputer świata. Chce być też pierwszym państwem, które uruchomi eksaflopsową maszynę. Nad takim właśnie superkomputerem, o nazwie Fugaku, pracuje firma Fujitsu PRIMEHPC. Fugaku, nazwany tak od góry Fuji, ma zastąpić K Computer, maszynę, która do sierpnia bieżącego roku pracowała w instytucie badawczym Riken. Japończycy zapowiadają debiut Fugaku na około roku 2021. Muszą się spieszyć, bo w tym samym terminie w USA i Chinach mają również staną eksaflopsowe maszyny. Pojawienie się maszyn o wydajności liczonej w eksaflopach będzie oznaczało olbrzymi skok mocy obliczeniowej. Obecnie najpotężniejszym superkomputerem na świecie jest amerykański Summit, którego maksymalna zmierzona moc obliczeniowa wynosi 148,6 TFlop/s. Na drugim miejscu znajdziemy również amerykańską maszynę Sierra (94,64 TFlop/s), a dwa kolejne miejsca należą do superkomputerów Państwa Środka. Są to Sunway TaihyLight (93,01 TFlop/s) i Tianhe-2A (61,44 TFlop/s). Najszybszy obecnie japoński superkomputer, AI Bridging Cloud Infrastructure (ABCI) uplasował się na 8. pozyci listy TOP500, a jego wydajność to 19,88 TFlop/s. Warto też wspomnieć, że prototyp Fugaku, maszyna A64FX i mocy obliczeniowej 1,99 TFlop/s trafił na 1. miejsce listy Green500. To lista maszyn, które dostarczają najwięszej mocy obliczeniowej na jednostkę energii. Wynik A64FX to 16,876 GFlops/wat. « powrót do artykułu
  2. Google twierdzi, że zbudowany przez tę firmę komputer osiągnął kwantową supremację, czyli wykonał obliczenia, których klasyczny komputer nie jest w stanie wykonać w rozsądnym casie. Jeśli to prawda, możemy mieć do czynienia z prawdziwym przełomem na polu informatyki kwantowej. Dotychczas bowiem komputery kwantowe nie dorównywały komputerom klasycznym. Cała sprawa jest jednak otoczona tajemnicą. Prace Google'a zostały bowiem opisane w dokumencie, który niedawno został umieszczony na serwerze NASA. Jednak dokument szybko stamtąd usunięto. Przedstawiciele Google'a odmawiają komentarza w tej sprawie. W dokumencie opisano procesor kwantowy o nazwie Sycamore, który ma zawierać 54 kubity. To właśnie on miał osiągnąć kwantową supremację. Wymieniony został też tylko jeden autor artykułu, John Martinias z Uniwersytetu Kalifornijskiego w Santa Barbara. Wiadomo, że pracuje on dla Google'a nad sprzętem dla komputerów kwantowych. Wiadomo też, że w 2018 roku Google i NASA zawarły porozumienie, w ramach którego agencja kosmiczna miała pomóc Google'owi w testach kwantowej maszyny. Wspomniany dokument opisuje, w jaki sposób procesor Sycamore rozwiązał problem prawdziwego rozkładu losowego liczb. Tego typu problemy są niezwykle trudne dla komputerów klasycznych. Ci, którzy czytali dokument mówią, że jeden z kubitów procesora nie działał, ale pozostałe 53 zostały splątane, wygenerowały przypadkowy zestaw liczb w systemie dwójkowym i sprawdziły, czy rzeczywiście ich rozkład jest przypadkowy. Autorzy artykułu obliczyli, że wykonanie takiego zadania zajęłoby Summitowi, najpotężniejszemu klasycznemu superkomputerowi na świecie aż 10 000 lat. Procesor Sycamore wykonał je w 200 sekund. Autorzy artykułu przyznają, że użyty algorytm nie przyda się do niczego więcej niż do generowania prawdziwych liczb losowych. Jednak w przyszłości podobny procesor może być przydatny w maszynowym uczeniu się, chemii czy naukach materiałowych. Osiągnięcie kwantowej supremacji przez Google'a to ważny krok w informatyce kwantowej, mówi Jim Clarke z Intel Labs. Ekspert dodaje, że wciąż jesteśmy na początku drogi. To, co osiągnął Google było jedynie demonstracją i to nie wolną od błędów. Jednak w przyszłości będą budowane większe potężniejsze procesory kwantowe, zdolne do wykonywania bardziej użytecznych obliczeń. « powrót do artykułu
  3. Na University of Manchester uruchomiono SpiNNaker, najpotężniejszy na świecie komputer neuromorficzny, czyli maszynę, która ma naśladować pracę mózgu. Spiking Neutral Network Architecture składa się z miliona rdzeni obliczeniowych i 1200 połączonych płyt głównych. SpiNNaker nie tylko ma „myśleć” jak ludzki mózg. Jego zadaniem jest też tworzenie modeli neuronów i symulowanie w czasie rzeczywistym ich działania. Jego głównym zadaniem jest wspieranie częściowego modelowania mózgu. Na przykład modelowania kory mózgowej, jądra podstawnego czy innych regionów, mówi jeden z członków projektu, profesor Steve Furber. SpiNNaker wystartował po raz pierwszy w kwietniu 2016 roku. Teraz jednak został rozbudowany, zyskał dwukrotnie więcej rdzeni i stał się najpotężniejszym symulatorem mózgu. Urządzenie jest wspierane przez Human Brain Project prowadzony przez Unię Europejską. Obecnie jest ono w stanie prowadzić jednocześnie 200 kwadrylionów akcji. Oczywiście istnieją superkomputery korzystające z większej liczby rdzeni obliczeniowych, jednak tym, co wyróżnia SpiNNakera jest jego infrastruktura i sposób połączeń. W mózgu mamy 100 miliardów neuronów, które są w stanie jednocześnie przekazywać sygnały do tysięcy miejsc przeznaczenia. Architektura SpiNNakera, jak wyjaśnia profesor Furber, została przygotowana pod kątem zapewnienia wysokiego poziomu komunikacji pomiędzy poszczególnymi procesorami. Całość ma jak najbardziej przypominać połączenia między neuronami. Konwencjonalne superkomputery korzystają z architektury, która znacznie gorzej jest przystosowana do symulowania pracy mózgu. SpiNNaker jest, jak sądzę, lepszym modelem symulującym działanie sieci neuronów w czasie rzeczywistym niż jakakolwiek inna maszyna, dodaje Furber. SpiNNaker może też kontrolować robota o nazwie SpOmnibot, który wykorzystuje komputer do interpretacji danych z systemu wizyjnego i w czasie rzeczywistym wykorzystuje te informacje do nawigowania w otoczeniu. Twórcy SpiNNakera mówią, że jego zdolność do symulowania jądra podstawnego, obszaru, który wykazuje zaburzenia u osób cierpiących na chorobę Parkinsona, daje nadzieję na wykorzystanie maszyny do badania zaburzeń pracy mózgu. « powrót do artykułu
  4. Oak Ridge National Laboratory (ORNL) pochwaliło się najpotężniejszym superkomputerem na świecie. Teoretyczna maksymalna wydajność (Rpeak) maszyny Summit wynosi 200 PFlops. To oznacza, że jeśli w najbliższym czasie Chiny nie pokażą potężniejszej maszyny, to USA znowu staną się liderem rankingu Top500. Najnowszy ranking najpotężniejszych superkomputerów na świecie zostanie opublikowany w ciągu najbliższych tygodni. Obecnie na czele listy znajduje się chiński Sunway TaihuLight, który w teście Linpack osiągnął maksymalną wydajność (Rmax) sięgającą 93 PFlops. Teoretyczna maksymalna wydajność (Rpeak) chińskiej supermaszyny to 125 PFlops. Summit został zbudowany przez IBM-a. Korzysta on z 4608 węzłów, a w skład każdego z węzłów wchodzą dwa procesory Power9 i sześć procesorów graficznych NVIDIA Tesla V100. Włęzły połączone są za pomocą Mellanox dual-rail EDR Infiniband. Biorąc pod uwagę łączną wydajność CPU i GPU można stwierdzić, że moc obliczeniowa maszyny to 3,3 eksaflopsa. I nie jest to stwierdzenie pozbawione podstaw. Dyrektor ORNL, Thomas Zacharia, mówi, że jeszcze przed rozbudowaniem komputera do obecniej postaci uruchomiono na nim obliczenia z zakresu porównywania kodu genetycznego, które były prowadzone z mocą 1,88 eksaflopsa. "Po raz pierwszy w historii została przełamana bariera eksaskali", zauważa Zacharia. Właściciel Summita, Departament Energii, zainteresowany jest jednak uruchomianiem na nim bardziej standardowego kodu. Komputer będzie wykorzystywany głównie do obliczeń z zakresu fuzji jądrowej, pomoże przy poszukiwaniu alternatywnych źródeł energii, skorzystają z niego naukowcy pracujący nad nowymi materiałami, klimatolodzy, kosmolodzy i chemicy. Na tym się jednak nie skończy, gdyż Summit zostanie udostępniony społeczności naukowej i tutaj nacisk położono przede wszystkim na opiekę zdrowotną. Podczas konferencji prasowej, na której zaprezentowano komputer, dyrektor Zacharia stwierdził, że chce, by laboratorium Oak Ridge stało się CERN-em analiz danych medycznych. Summit został wyposażony w technologie sztucznej inteligencji. Gdy Departament Energii zamawiał go w 2014 roku miano dość mgliste pojęcie o tym, jak będzie wyglądała przyszłość SI. W międzyczasie zarówno IBM jak i NVIDIA zaimplementowały w swoich układach scalonych rozwiązania rodem z AI, jak np. Tensor Cores w V100, dzięki czemu Summit stał się potężnym superkomputerem SI. Dlatego też można przypuszczać, że Summit zostanie wykorzystany w zaawansowanych badaniach nad sztuczną inteligencją. Pojawiły się też informacje, że poprzednik Summita, Titan, zostanie wyłączony. Summit jest ośmiokrotnie bardziej wydajny pod względem obliczeniowym i pięciokrotnie bardziej wydajny pod względem energetycznym. Gdy został uruchomiony w 2012 roku był najpotężniejszym superkomputerem na świecie i wciąż jest drugim najpotężniejszym superkomputerem w USA. Szczęśliwie cały kod rozwinięty dla Titana powinien działać też na Summicie. Summit odegra też kluczową rolę w rozwoju superkomputerów eksaskalowych. Będzie to ostatni petaskalowy komputer w Oak Ridge. Laboratorium chce rozwijać na nim kod, który w ciągu najbliższych lat powinien trafić na pierwsze eksaskalowe systemy obliczeniowe. « powrót do artykułu
×
×
  • Create New...