
Procesor Google'a osiągnął kwantową supremację?
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Fizycy donoszą o zdobyciu pierwszego bezsprzecznego dowodu na istnienie anyonów, cząstek, których istnienie zostało zaproponowane przed ponad 40 laty. Anyony to kwazicząstki, które nie są ani fermionami, ani bozonami zatem podlegają statystyce innej niż statystyka Fermiego-Diraca i Bosego-Einsteina. Anyony mogą istnieć w przestrzeni dwuwymiarowej.
Odkrycie, którego dokonano za pomocą elektronicznego urządzenia 2D, może być pierwszym krokiem na drodze wykorzystania anyonów w przyszłych komputerach kwantowych.
Wszystkie cząstki elementarne są albo fermionami albo bozonami. Anyony nie należą do żadnej z tych kategorii. Fermiony są definiowane przez statystykę Fermiego-Diraca. Gdy dwa identyczne fermiony zamieniają się miejscem w przestrzeni ich funkcja falowa zmienia pozycję o 180 stopni. W przypadku zaś bozonów, definiowanych przez statystykę Bosego-Einsteina, nie dochodzi w takim przypadku do zmiany funkcji falowej. Innymi słowy, cząstki o spinach połówkowych (fermiony) dążą do pozostawania osobno od siebie, natomiast cząstki o spinach całkowitych (bozony) dążą do gromadzenia się. Anyony znajdują się gdzieś po środku. Zmiana pozycji anyonów powinna doprowadzić do zmiany funkcji falowej o kąt pośredni. Podlegają one statystyce cząstkowej.
Jeśli jedna kwazicząstka wykona pełen obrót wokół drugiej, co jest odpowiednikiem dwukrotnej zamiany pozycji pomiędzy nimi, informacja o tym ruchu zostanie zachowana w stanie kwantowym cząstki. I to właśnie ten zapamiętany stan jest jedną z cech charakterystycznych statystyki cząstkowej, której poszukiwali obecnie naukowcy, by potwierdzić istnienie anyonów.
Fizyk eksperymentalny Michael Manfra i jego zespół z Purdue University, stworzyli strukturę złożoną z cienkich warstw arsenku galu i arsenku aluminiowo-galowego. Struktura taka wymusza ruch elektronów w dwóch wymiarach. Urządzenie zostało schłodzone do 1/10 000 stopnia powyżej zera absolutnego i poddano je działaniu silnego pola magnetycznego. W ten sposób pojawił się tzw. izolator cząstkowego kwantowego efektu Halla. W izolatorze takim prąd elektryczny nie może przemieszczać się w wewnątrz urządzenia, a wyłącznie po jego krawędziach. Urządzenie może przechowywać kwazicząstki, których ładunek elektryczny nie jest wielokrotnością ładunku elektronów. Naukowcy podejrzewali, że kwazicząstki te to właśnie anyony.
By udowodnić, że istotnie mają do czynienia z anyonami, uczeni połączyli swoje urządzenie do elektrod w ten sposób, że ładunki mogły przepływać tylko po krawędziach. Właściwości urządzenia były dobierane za pomocą pola magnetycznego i elektrycznego. Spodziewano się, że manipulacja tymi polami albo zniszczy ani utworzy anyony wewnątrz urządzenia i spowoduje, że anyony będą przemieszczały się pomiędzy elektrodami. Jako, że poruszające się anyony mogą poruszać się dwiema możliwymi ścieżkami, a każda z nich powoduje pojawienie się innego skrętu ich fal, gdy anyony docierają do celu dochodzi do interferencji i pojawienia się wzorca określanego jako paski na piżamie.
Wzorzec ten pokazywał relatywną wartość skrętu fal anyonów pomiędzy obiema ścieżkami i był zależny od zmian napięcia i siły pola magnetycznego. Ostatecznym dowodem zaś były wyraźnie widoczne przeskoki, świadczące o znikaniu i pojawianiu się anyonów w urządzeniu.
Zespół Manfry nie jest jedynym, który przedstawił dowody na istnienie statystyki cząstkowej, zatem na istnienie anyonów. Jednak w wielu poprzednich przypadkach uzyskane wyniki dawało się wytłumaczyć również w inny sposób, mówi Bernard Rosenow, fizyk-teoretyk z Uniwersytetu w Lipsku specjalizujący się w badaniu materii skontensowanej. Tymczasem, jak sam przyznaje, nie znam innego wyjaśnienia dla wyników uzyskanych przez Manfrę, jak interpretacji mówiącej o statystyce cząstkowej. Jeśli więc inny zespół potwierdzi obserwacje Manfry i jego kolegów, będziemy mogli mówić o odkryciu anyonów.
Anyony zaś mogą posłużyć do budowy komputerów kwantowych. Już zresztą istnieją teorie opisujące takie maszyny. W parach kwazicząstek można zapisać informacje o tym, jak krążyły one wokół siebie. Jako, że statystyka cząstkowa jest topologiczna, zależy od liczby okrążeń, jakie jeden anyon wykonał wokół drugiego, a nie od niewielkich zmian trajektorii, jest odporna na niewielkie zakłócenia.
Ta odporność zaś może spowodować, że topologiczne komputery kwantowe będą łatwiejsze do skalowania niż obecnie wykorzystywane technologie komputerów kwantowych, które są bardzo podatne na błędy. Microsoft, dla którego zresztą Manfra pracuje jako zewnętrzny konsultant, jest jedyną firmą pracującą obecnie nad topologicznymi komputerami kwantowymi. Inni giganci, jak IBM, Intel Google i Honeywell, udoskonalają inne technologie.
Jednak do wykorzystania anyonów w komputerach kwantowych jest jeszcze daleka droga. Obecne odkrycie jest ważniejsze z punktu widzenia fizyki niż informatyki kwantowej. Dla mnie, jako teoretyka zajmującego się materią skondensowaną, kwazicząstki są równie fascynujące i egzotyczne jak bozon Higgsa, mówi Rosenow.
Ze szczegółami pracy Manfry i jego zespołu można zapoznać się na łamach arXiv.
« powrót do artykułu -
By KopalniaWiedzy.pl
Granty obliczeniowe poświęcone badaniom nad koronawirusem SARS-CoV-2 oraz wywoływaną przez niego chorobą COVID-19 mają pierwszeństwo w kolejce dostępu do zasobów najszybszego superkomputera w Polsce – Prometheusa – i uzyskują najwyższy priorytet w uruchamianiu. Dotychczas zarejestrowane zespoły badają m.in. przeciwciała obecne w czasie zakażenia, cząsteczki wykazujące potencjalne działanie hamujące infekcję oraz możliwości rozwoju szczepionek.
Ponad 53 tysiące rdzeni obliczeniowych zespolonych w jednej maszynie oraz infrastruktura towarzysząca pozwalają na szybkie przetwarzanie dużych danych medycznych, biologicznych i chemicznych. Zarówno zasoby obliczeniowe, jak i narzędzia pozwalające z nich efektywnie korzystać są dostępne dla naukowców za pośrednictwem Infrastruktury PLGrid (rejestracja możliwa jest poprzez portal: https://portal.plgrid.pl/registration/form). Specjaliści z ACK CYFRONET AGH udzielają pełnego wsparcia przy uruchomieniu programów na zasobach Prometheusa.
Oprócz przyspieszonej procedury grantowej naukowcy prowadzący badania korzystają z priorytetu obsługi zgłoszeń helpdesk.
Część mocy obliczeniowej Prometheusa jest udostępniona w ramach partnerstwa europejskiego PRACE do przeprowadzenia pan-europejskiego hackatonu mającego na celu wypracowanie nowych rozwiązań w walce z koronawirusem. Wspierany przez wszystkie państwa europejskie hackaton dostępny jest pod adresem https://euvsvirus.org/. Do tych zasobów dostęp mają również badacze z Polski.
Cyfronet udostępnia również zasoby w ramach federacji EGI – rozproszonej infrastruktury obliczeniowej, która skupia zasoby ponad 250 jednostek z całego świata. Federacja EGI wspólnie z amerykańską organizacją Open Science Grid (OSG) połączyły siły, by wspierać projekty badawcze dotyczące COVID-19.
Dodatkowo za pośrednictwem rozwijanego przez Cyfronet portalu EOSC (European Open Science Cloud) dostępne jest stworzone na Uniwersytecie w Utrechcie narzędzie Haddock, które służy modelowaniu biomolekularnemu.
ACK CYFRONET AGH uczestniczy również w projekcie EOSC Synergy, w ramach którego udostępniono zasoby chmury obliczeniowej na rzecz walki z wirusem.
Superkomputer Prometheus służy medycynie nie od dziś – zainstalowane w jego zasobach specjalistyczne pakiety oprogramowania są na co dzień wykorzystywane m.in. w badaniach związanych z modelowaniem cząsteczek leków, do analiz danych z mikromacierzy DNA, identyfikacji białek i przewidywania ich roli w procesach biologicznych.
ACK CYFRONET AGH od wielu lat wspiera projekty i inicjatywy związane z rozwojem medycyny i farmacji. Wchodzi w skład konsorcjum realizującego projekt SANO, którego celem jest wprowadzenie kompletnie nowych rozwiązań diagnostycznych i terapeutycznych wynikających z wytworzenia nowych, obliczeniowych biomarkerów chorób, zindywidualizowanych względem poszczególnych pacjentów.
« powrót do artykułu -
By KopalniaWiedzy.pl
Przed 10 dniami amerykański Departament Energii poinformował, że należący doń najpotężniejszy superkomputer na świecie – Summit – zostanie wykorzystany do walki z koronawiruse SARS-CoV-2. Po kilku dniach obliczeń mamy już pierwsze pozytywne wyniki pracy maszyny. W ciągu ostatnich kilku dni Summit przeanalizował 8000 substancji i zidentyfikował 77 związków małocząsteczkowych, które mogą potencjalnie powstrzymywać wirus.
To 77 substancji, które potencjalnie mogą przyłączać się do proteiny S [wypustek tworzących „koronę” koronawirusa - red.] i w ten sposób blokować wirusowi możliwość przyłączania się do komórek organizmu i ich zarażania. Trzeba tu jednak podkreślić, że superkomputer jest w stanie określić tylko, czy znalezione przez niego molekuły mogą zablokować wirusa. Nie opracuje leku, nie potrafi też stwierdzić, czy testowane substancje są bezpieczne dla ludzi.
Potrzebowaliśmy Summita, by przeprowadzić potrzebne symulacje. To, co zajęło superkomputerowi 1-2 dni na innych komputerach trwałoby wiele miesięcy, mówi główny autor badań, Jeremy Smith dyrektor Center for Molecular Biophysics z University of Tennessee. Uzyskane przez nas wyniki nie oznaczają, że znaleźliśmy lekarstwo na COVID-19. Nasze badania wskazują, które związki warto dalej badań pod kątem opracowania leków.
Zidentyfikowanie obiecujących molekuł to pierwszy etap opracowywania leków. Molekuły takie należy następnie przetestować zarówno in vitro jak i in vivo, a jeśli testy na hodowlach tkanek i na zwierzętach wypadną pomyślnie, można zacząć myśleć o przystąpieniu do testów na ludziach.
Jak wiemy, niedawno rozpoczęły się pierwsze testy kliniczne pierwszej potencjalnej szczepionki przeciwko SARS-CoV-2. Jednak na pojawienie się szczepionki musimy poczekać 12–18 miesięcy i to pod warunkiem, że wszystko pójdzie po myśli naukowców. Znacznie wcześniej możemy spodziewać się leków pomocnych w leczeniu COVID-19. Jest to możliwe dlatego, że wiele lekarstw, które od dawna są dopuszczone do użycia w przypadku innych chorób, daje obiecujące wyniki podczas wstępnych testów. Jako, że lekarstwa te są już dopuszczone do użycia, znamy ich sposób działania czy toksyczność.
W chwili obecnej w Ameryce Północnej, Europie, Azji i Australii testowanych jest około 60 różnych leków, które potencjalnie mogą pomóc w leczeniu chorych na COVID-19. Pięć z nich to leki najbardziej obiecujące, nad którymi testy są najbardziej zaawansowane.
Jeden z tych leków to Remdesivir firmy Gilead Science. To lek opracowany w odpowiedzi na epidemię Eboli z 2014 roku. Ma on szerokie działanie przeciwko wirusom RNA. Wiadomo, że skutecznie działa przeciwko koronawirusom SARS-CoV i MERS-CoV. Jako, że najnowszy koronawirus jest podobny do SARS, niewykluczone, że remdesivir również będzie skutecznie go zwalczał. Problem jednak w tym, że dotychczas nie wiemy, jak lek działa. To stwarza pewne zegrożenie. Remdesivir to analog adenozyny, który włącza się do tworzących się wirusowych łańcuchów RNA i zmniejsza wytwarzanie wirusowego RNA.
Wiemy obecnie, że remdesivir pomógł w wyleczeniu 13 Amerykanów, którzy byli na pokładzie Diamond Princess, że testowany jest na poddanych kwarantannie osobach przebywających w Centrum Medycznym Uniwersytetu Nebraska i dotychczas nie zauważono skutków ubocznych. Z kolei chińscy specjaliści poinformowali, że połączenie remdisiviru i chlorochiny, używanej do leczenia malarii i chorobom autoimmunologicznym, wykazało wysoką skuteczność w testach in vitro.
Kolejny z obiecujących leków to Kaletra (Aluvia) firmy AbbVie. Substancja czynna to lopinawir i ritonawir. Ten inhibitor proteazy HIV-1 jest używany, w połączeniu z innymi lekami przeciwretrowirusowymi, do leczenie zakażeń HIV-1 u dorosłych i dzieci powyżej 14. roku życia. Przed dwoma tygodniami AbbVie poinfomowało, że w porozumieniu z odpowiednimi agendami w USA i Europie rozopoczyna testy Kaletry pod kątem leczenia COVID-19. Z kolei przed niecałym tygodniem naukowcy z australijskiego University of Queensland poinformowali, że chcą rozpocząć testy kliniczne Kaletry i Chlorochiny, gdyż pomogły one w leczniu chorych z COVID-19.
Już pod koniec stycznia AbbVie przekazała Chinom olbrzymie ilości Kaletry. Niedługo później Chińczycy zaczęli informować o pierwszych przypadkach wyleczenia za pomocą tego leku.
Następnym z 5 najbardziej obiecujących leków jest Kevzara. To wspólne dzieło firm Regeneron Pharmaceuticals i Sanofi, w którym substancją czynną jest sarilumab. Lek ten to antagonista receptora interleukiny-6 (IL-6). Lek został zatwierdzony w 2017 roku do leczenia reumatoidalnego zapalenia stawów u osób dorosłych o nasileniui od umiarkownym do ciężkiego. Lek podaje się w zastrzyku. W USA od tygodnia trwają testy kliniczne Kevzary u pacjentów z ciężkim przebiegiem COVID-19. Docelowo lek ma zostać przetestowany na 400 osobach z poważnymi komplikacjami spowodowanymi zachorowaniem. W II fazie testów klinicznych sprawdzane jest skuteczność leku w zmniejszaniu gorączki oraz bada się, czy dzięki niemu zmniejszona zostaje konieczność sztucznego wentylowania pacjentów. Później, w czasie III fazy testów, naukowcy sprawdzą długoterminowe rokowania pacjentów, którym podawano lek, przede wszystkim zaś sprawdzone zostanie czy i w jakim stopniu lek pozwolił na zmniejszenie śmiertelności chorych, zredukował potrzebę sztucznej wentylacji i hospitalizacji.
Niedawno do listy najbardziej obiecujących leków dołączył Avigan opracowany przez Fujifilm Holdings. To lek przeciwwirusowy o szerokim zastosowaniu. To wybiórczy silny inhibitor RNA-zależnej polimerazy RNA u wirusów. Lek jest w Japonii zarejetrowany jako środek przeciwko grypie. Był też używany w Gwinei do walki z Ebolą. Jego substancją czynną jest fawipirawir.
Przed kilkoma dniami chińskie Ministerstwo Nauki i Technologii poinformowało, że podczas testów na 340 pacjentów w Wuhan i Shenzen okazało się, że po leczeniu Aviganem uzyskano pozytywne wyniki. Doszło do skrócenia czasu pobytu w szpitalu, z 11 do 4 dni uległ skróceniu średni czas, przez jaki pacjenci musieli przebywać w szpitalu. Ponadto u 91% pacjentów stwierdzono poprawę stanu płuc, gdy tymczasem poprawę taką stwierdozno u 62% pacjentów z grupy kontrolnej, którym nie podawano fawipirawiru. W Chinach dopuszczono ten lek do testów klinicznych. Tymczasem japońskie Ministerstwo Zdrowia oświadczyło, że będzie zalecało stosowanie Aviganu po tym, jak pozytywnie wypadły testy na pacjentach asymptomatycznych oraz wykazujących łagodne objawy.
W końcu trzeba tutaj wspomnieć o pierwszej testowanej na ludziach szczepionce przeciwko SARS-CoV-2. Pierwszą dawkę mRNA-1279 podano 43-letniej kobiecie. Tym samym rozpoczęła się I faza badań nad szczepionką. Lek „instruuje” komórki gospodarza, by zachodziła w nich ekspresja glikoproteiny powierzchniowej S (ang. spike protein); białko S pozwala koronawirusowi na wniknięcie do komórki gospodarza. W tym przypadku ma to wywołać silną odpowiedź immunologiczną. Jest to szczepionka oparta na mRNA. Ze szczegółowymi informacjami na temat tej szczepionki i tego, jak będą wyglądały badania nad nią, możecie przeczytać w naszym artykule na jej temat. W innym naszym tekście można też dowiedzieć się wszystkiego, co powinniśmy wiedzieć o szczepionkach, ich opracowywaniu i procesie testowania oraz dopuszczania do użycia.
Wymienione powyżej leki to nie wszystko. Obecnie na całym świecie trwają prace nad 60 lekami i szczepionkami, które mają pomóc w leczeniu COVID-19 oraz zwalczaniu SARS-CoV-2 i zapobieganiu zarażeniem się koronawirusem.
« powrót do artykułu -
By KopalniaWiedzy.pl
Na Uniwersytecie w Stuttgarcie uruchomiono najpotężniejszy superkomputer w Europie. Maszyna „Hawk” stanęła w uniwersyteckim Höchstleistungsrechenzentrum (HLRS). Jej maksymalna moc obliczeniowa wynosi 26 petaflopsów, co oznacza, że w czerwcu może znaleźć się w pierwszej dziesiątce najnowszej edycji listy TOP500.
Obecnie najwyżej notowanym europejskim superkomputerem na liście TOP500 jest szwajcarski Piz Daint o wydajności 21,23 PFlop/s. W pierwszej dziesiątce znajdziemy też niemiecki SuperMUC-NG (19,47 PFlop/s), który uplasował się na 9. pozycji.
Komputer ze Stuttgartu to maszyna Apollo 9000 System autorstwa Hewlett Packard Enterprise. Zbudowano go z 5632 węzłów, z których każdy składa się z dwóch 64-rdzeniowych procesorów AMD EPYC Rome 7742 taktowanych zegarami o częstotliwości 2,25 GHz. Całość korzysta zatem z 720 896 rdzeni obliczeniowych. Pamięć operacyjna systemu to około 1,44 petabajta. Superkomputer ma do dyspozycji około 25 PB przestrzeni dyskowej. Podczas standardowej pracy komputer wymaga 3,5 MW mocy.
„Hawk” jest niemal 5-krotnie bardziej wydajny od „Hazel Hen”, wykorzystywany w HLRS superkomputer o mocy 5,64 petaflopsa (35. pozycja na liście TOP500).
„Hawk” posłuży do badań naukowych i przemysłowych. Za jego pomocą będą m.in. badane metody optymalizacji wydajności energetycznej turbin wiatrowych, silników i elektrowni, prowadzone będą badania nad poprawieniem właściwości aerodynamicznych samolotów i samochodów. Za pomocą superkomputerów modeluje się klimat czy rozprzestrzenianie się epidemii. Superkomputer posłuży też przemysłowi. Już teraz wiemy, że 10% jego czasu obliczeniowego zostanie przeznaczonych na prace związane w digitalizacją przemysłu. Już w tej chwili z usług HLRS korzysta 40 firm.
« powrót do artykułu -
By KopalniaWiedzy.pl
Inżynierowe z Uniwersytetu Nowej Południowej Walii (UNSW) w Sydney uzyskali sztuczne atomy w krzemowych kropkach kwantowych. Były one bardziej stabilne niż atomy naturalne, zatem poprawiały stabilność całego układ kwantowego.
Profesor Andew Dzurak wyjaśnia, że sztuczne atomy nie posiadał y jądra, ale miały elektrony krążące wokół centrum urządzenia. Pomysł na stworzenie sztucznych atomów z elektronów nie jest niczym nowym. Teoretycznie zaproponowano je już w latach 30. ubiegłego wieku, a w latach 90. udało się je uzyskać, chociaż nie na krzemie. My po raz pierwszy wytworzyliśmy proste atomy na krzemie w roku 2013.
Jednak naszym najważniejszym osiągnięciem jest uzyskanie sztucznych atomów z większą liczbą elektronów niż wcześniej było możliwe, co oznacza, że będzie można takie atomy wykorzystać do wiarygodnych obliczeń w komputerach kwantowych. To bardzo ważne, gdyż kubity bazujące na jednym elektronie są bardzo zawodne.
Jak wyjaśnia profesor Dzurak okazało się, że gdy stworzymy sztuczne atomy w naszych kwantowych obwodach, one również mają dobrze zorganizowane w sposób przewidywalny powłoki elektronowe, podobnie jak naturalne atomy.
Profesor Dzurak wraz z zespołem skonfigurowali kwantowe urządzenia tak, by przetestować stabilność elektronów w sztucznym atomie. Wykorzystali napięcie elektryczne, by przyciągnąć elektrony i stworzyć z nich kwantową kropkę o średnicy około 10 nanometrów. W miarę jak powoli zwiększaliśmy napięcie, przyciągaliśmy kolejne elektrony i tak, jeden po drugim, tworzyliśmy z nich sztuczny atom w kwantowej kropce, wyjaśnia doktor Andre Saraiva, który odpowiadał za teoretyczną stronę badań.
W prawdziwym atomie w środku mamy ładunek dodatni, czyli jądro, wokół którego na trójwymiarowych orbitach krążą elektrony o ładunku ujemnym. W naszym przypadku nie mieliśmy dodatnio naładowanego jądra, a ładunek dodatni pochodził z elektrody oddzielonej od krzemu warstwą tlenku krzemu oraz elektrony zawieszone pod nią. Każdy z nich krąży wokół centrum kwantowej kropki. Nie tworzą tam sfery, ale raczej płaski dysk.
Naukowców interesowało szczególnie, co się stanie, gdy do istniejących elektronów doda się kolejny, który zajmie najbardziej zewnętrzną powłokę. Okazało się, że taki elektron może zostać użyty w roli kubitu. Dotychczas niedoskonałości krzemu na poziomie atomowym zaburzały zachowania kubitów, prowadząc do niestabilności i błędów. Wydaje się jednak, że elektrony znajdujące się na wewnętrznych powłokach działają jak „podkład” na niedoskonałym podłożu, zapewniając stabilność elektronu na zewnętrznej powłoce, wyjaśniają.
Profesor Dzurak dodaje, że wartość kubitu została zakodowana w spinie elektronu. Gdy elektrony, czy to w sztucznym czy w naturalnym atomie, utworzą powłokę, ustawiają swoje spiny w przeciwnych kierunkach, więc spin całości wynosi 0 i jest ona la nas nieprzydatna. gdy jednak dodamy nowy elektron na nowej powłoce, zyskujemy nową spin, który możemy wykorzystać jako kubit. Wykazaliśmy, ze jesteśmy w stanie kontrolować spin elektronów na zewnętrznych powłokach, zyskując w ten sposób stabilne wiarygodne kubity. To bardzo ważne, gdyż to oznacza, że możemy teraz pracować z mniej delikatnymi kubitami. Pojedynczy elektron jest niezwykle delikatny. Ale sztuczny atom z 5 czy 13 elektronami jest znacznie bardziej odporny.
Zespół profesora Dzuraka był pierwszym, który już w 2015 roku zaprezentował kwantową bramkę logiczną na krzemie. Wcześniej, również jako pierwsi, uzyskali kubit na krzemie. W ubiegłym zaś roku jako pierwsi zmierzyli dokładność dwukubitowych operacji logicznych na krzemie.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.