
Procesor Google'a osiągnął kwantową supremację?
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Najdłuższa i najbardziej szczegółowa w historii symulacja połączenia się dwóch gwiazd neutronowych pokazuje, jak powstają czarne dziury i rodzą się dżety. Autorami symulacji są członkowie międzynarodowego zespołu badawczego, na czele którego stali naukowcy z Instytutu Fizyki Grawitacyjnej im. Maxa Plancka. Jej stworzenie wymagało 130 milionów godzin pracy procesorów, a symulacja – tak szczegółowo, jak to możliwe – obrazuje to, co dzieje się w ciągu... 1,5 sekundy.
Łączące się gwiazdy neutronowe są dla astronomów niezwykle interesującym celem badań. W procesie tym dochodzi do emisji fal grawitacyjnych, neutrin i fal elektromagnetycznych.
Podczas jej przygotowywania twórcy symulacji wzięli pod uwagę zjawiska opisane w ogólnej teorii względności, oddziaływanie strumieni neutrin czy magnetohydrodynamikę. Wszystkie je możemy rejestrować i badać, pogłębiając naszą wiedzę o kosmosie.
A dzięki symulacjom komputerowym możemy lepiej zrozumieć pochodzenie i powstawanie tych sygnałów.
Uczeni wykorzystali do symulacji japoński superkomputer Fugaku, który w latach 2020–2022 był najpotężniejszym superkomputerem na świecie. W każdym momencie tworzenia symulacji jednocześnie pracowało od 20 do 80 tysięcy procesorów. Dzięki tak potężnej mocy obliczeniowej możliwe było uwzględnienie zjawisk opisanych przez ogólną teorię względności, emisji neutrin czy zjawisk magnetohydrodynamicznych.
Symulacja opisuje dwie gwiazdy neutronowe, o masie 1,25 i 1,65 razy większej od masy Słońca, które okrążają się 5-krotnie. Wówczas pojawiają się pierwsze sygnały, które potrafimy badań na Ziemi, czyli fale grawitacyjne. Następnie dochodzi do połączenia gwiazd, w wyniku czego powstaje czarna dziura otoczona dyskiem materiału. W dysku, w wyniku efektu dynama magnetohydrodynamicznego i obrotu czarnej dziury, dochodzi do szybkiego wzmocnienia pola magnetycznego. To powoduje odpływ energii wzdłuż osi obrotu czarnej dziury.
Sądzimy, że to ten odpływ energii napędzany przez pole magnetyczne, zasila rozbłyski gamma. To by się zgadzało z tym, co wiemy z dotychczasowych obserwacji i wzbogaca naszą wiedzę o zjawiskach zachodzących podczas łączenia się gwiazd neutronowych, stwierdził Masaru Shibata, dyrektor wydziału Obliczeniowej Astrofizyki Relatywistycznej. Dalsza część symulacji pokazała spodziewaną emisję neutrin, dostarczyła informacji na temat ilości materii wyrzucanej w przestrzeń międzygwiezdną oraz wskazała na możliwość pojawienia się kilonowej, w wyniku której wytwarzane są wielkie ilości metali ciężkich.
To, czego się właśnie dowiedzieliśmy o tworzeniu się dżetów i dynamice pola magnetycznego jest kluczowe do zinterpretowania i zrozumienia łączenia się gwiazd neutronowych oraz towarzyszących temu zjawisk, dodaje Shibata.
Źródło: Jet from Binary Neutron Star Merger with Prompt Black Hole Formation
« powrót do artykułu -
przez KopalniaWiedzy.pl
We Wrocławskim Centrum Sieciowo-Superkomputerowym Politechniki Wrocławskiej uruchomiono pierwszy w Polsce i Europie Środkowo-Wschodniej komputer kwantowy, który wykorzystuje kubity nadprzewodzące w niskiej temperaturze. Maszyna Odra 5 została zbudowana przez firmę IQM Quantum Computers. Posłuży do badań w dziedzinie informatyki, dzięki niej powstaną nowe specjalizacje, a docelowo program studiów w dziedzinie informatyki kwantowej.
Odra 5 korzysta z 5 kubitów. Waży 1,5 tony i ma 3 metry wysokości. Zwisający w sufitu metalowy walec otacza kriostat, który utrzymuje temperaturę roboczą procesora wynoszącą 10 milikelwinów (-273,14 stopnia Celsjusza).
Rektor Politechniki Wrocławskiej, profesor Arkadiusz Wójs przypomniał, że sam jest fizykiem kwantowym i zajmował się teoretycznymi obliczeniami na tym polu. Idea, żeby w ten sposób prowadzić obliczenia, nie jest taka stara, bo to lata 80. XX w., a teraz minęło kilka dekad i na Politechnice Wrocławskiej mamy pierwszy komputer kwantowy nie tylko w Polsce, ale też
w tej części Europy. Oby się po latach okazało, że to start nowej ery obliczeń kwantowych, stwierdził rektor podczas uroczystego uruchomienia Odry 5.
Uruchomienie komputera kwantowego to ważna chwila dla Wydziału Informatyki i Telekomunikacji Politechniki Wrocławskiej. Jego dziekan, profesor Andrzej Kucharski, zauważył, że maszyna otwiera nowe możliwości badawcze, a w przyszłości rozważamy również uruchomienie specjalnego kierunku poświęconego informatyce kwantowej. Powstało już nowe koło naukowe związane z kwestią obliczeń kwantowych, a jego utworzenie spotkało się z ogromnym zainteresowaniem ze strony studentów. Mamy niepowtarzalną okazję znalezienia się w awangardzie jeśli chodzi o badania i naukę w tym zakresie i mam nadzieję, że to wykorzystamy.
Odra 5 będzie współpracowała z czołowymi ośrodkami obliczeń kwantowych. Dzięki niej Politechnika Wrocławska zyskała też dostęp do 20- i ponad 50-kubitowych komputerów kwantowych stojących w centrum firmy IQM w Finlandii.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W ostatnim półwieczu producenci komputerów dokonali olbrzymich postępów pod względem miniaturyzacji i wydajności układów scalonych. Wciąż jednak bazują one na krzemie i w miarę zbliżania się do fizycznych granic wykorzystywania tego materiału, miniaturyzacja staje się coraz trudniejsza. Nad rozwiązaniem tego problemu pracują setki naukowców na całym świecie. Jest wśród nich profesor King Wang z University of Miami, który wraz z kolegami z kilku amerykańskich uczelni ogłosił powstanie obiecującej molekuły, która może stać się podstawą do budowy molekularnego komputera.
Na łamach Journal of American Chemical Society uczeni zaprezentowali najlepiej przewodzącą prąd cząsteczkę organiczną. Co więcej, składa się ona z węgla, siarki i azotu, a więc powszechnie dostępnych pierwiastków. Dotychczas żadna molekuła nie pozwala na tworzenie elektroniki bez olbrzymich strat. Tutaj mamy pierwszą molekułą, która przewodzi prąd na dystansie dziesiątków nanometrów bez żadnej straty energii, zapewnia Wang. Uczeni są pewni swego. Testy i sprawdzanie molekuły pod wszelkimi możliwymi kątami trwały przez ponad dwa lata.
Zdolność cząsteczek do przewodzenia elektronów wykładniczo zmniejsza się wraz ze wzrostem rozmiarów molekuły. Tym, co jest unikatowe w naszej molekule, jest fakt, że elektrony mogą przemieszczać się przez nie bez straty energii. Teoretycznie jest to wiec najlepszy materiał do przewodzenia elektronów. Pozwoli on nie tylko zmniejszyć rozmiary elektroniki w przyszłości, ale jego struktura umożliwi stworzenie komputerów funkcjonujących tak, jak nie jest to możliwe w przypadku materiałów opartych na krzemie, dodaje Wang.
Nowa molekuła może posłużyć do budowy molekularnych komputerów kwantowych. Niezwykle wysokie przewodnictwo naszej cząsteczki to rezultat intrygującej interakcji spinów elektronów na obu końcach molekuły. W przyszłości taki system molekularny może pełnić rolę kubitu, podstawowej jednostki obliczeniowej komputerów kwantowych, cieszy się uczony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Prezydent Trump nie ustaje w wysiłkach na rzecz ograniczenia finansowania nauki. Wcześniej informowaliśmy o propozycji obcięcia budżetu NASA na naukę. Tym razem na celowniku jego administracji znalazł się superkomputer Horizon. Mimo, że prezydent twierdzi, że utrzymanie dominacji USA na rynku najbardziej wydajnych maszyn obliczeniowych jest jego priorytetem, działania Białego Domu mogą opóźnić lub całkowicie zniweczyć plany budowy maszyny Horizon, która ma stanąć na University of Texas w Austin.
Stany Zjednoczone dominują na rynku superkomputerów. To w tym kraju tradycyjnie już znajduje się największa liczba spośród 500 najbardziej wydajnych maszyn świata. Jednak dominacja ta jest coraz mniejsza. Obecnie na liście TOP500 superkomputerów znajdują się 173 maszyny z USA – w tym 5 z 10 najpotężniejszych – a przed 10 laty w USA stały 232 takie maszyny.
Horizon ma być najpotężniejszym superkomputerem na amerykańskiej uczelni wyższej. Obecnie miano takiej maszyny należy do superkomputera Frontera, również znajdującego się na University of Texas. Maksymalna moc obliczeniowa Frontery to 23,52 Pflops (Pflops to 1015 operacji zmiennoprzecinkowych na sekundę), teoretyczna szczytowa wydajność tej maszyny to 38,75 Pflops. Frontera znajduje się obecnie na 52. miejscu na liście TOP500. W chwili powstania był 5. najbardziej wydajnym superkomputerem na świecie. Dla porównania, najpotężniejszy polski superkomputer Helios GPU, z maksymalną mocą obliczeniową 19,14 Pflops zajmuje obecnie 69. pozycję.
Horizon, którego koszt ma wynieść 520 milionów dolarów, będzie 10-krotnie bardziej wydajny od Frontery. Znalazłby się na 10. miejscu obecnej listy. Obecnie jednak nie wiadomo czy i kiedy powstanie. Wszystko przez działania Białego Domu, który chce uniemożliwić Narodowej Fundacji Nauki (NFC) wydatkowanie 234 milionów dolarów, jakie Kongres przyznał jej w ubiegłym miesiącu na program Major Research Equipment and Facilities Construction (MREFC). Zdecydowana większość tej kwoty – 154 miliony USD – miało zostać przeznaczone na budowę Horizona, a resztę NFC ma zamiar wydać na wieloletni program unowocześniania stacji antarktycznej McMurdo i niewielką infrastrukturę naukową w kraju.
Pieniądze przyznane na MFERC to część znacznie większej kwoty 1,9 biliona USD zatwierdzonej w marcu jako awaryjne wydatki w celu uniknięcia przerw w pracy w wyniku możliwego zamknięcia rządu federalnego.
Prezydent Trump sprzeciwił się takim działaniom i zapowiedział, że wstrzyma wydatkowanie 2,9 miliarda USD, w tym właśnie 234 milionów dolarów dla Narodowej Fundacji Nauki. Stwierdził bowiem, że nie są to wydatki awaryjne. Prawdopodobnie takie działanie byłoby nielegalne, gdyż zgodnie z prawem prezydent może albo wstrzymać całość wydatków (1,9 biliona), albo żadnego.
Jeśli jednak Trump dopnie swego, budowa Horizona może co najmniej poważnie się opóźnić. Texas Advanced Computing Center (TACC) ma fundusze wystarczające na prace nad superkomputerem przez 3–4 miesiące. W zbudowanie i oprogramowanie komputera zaangażowanych jest 80 specjalistów z TACC oraz prywatne firmy.
Naukowcy z niecierpliwością czekają na nowy superkomputer. Pozwoli on na symulowanie zarówno ewolucji galaktyk, jak i rozprzestrzeniania się wirusów w aerozolach. Mikrobiolodzy mówią, że zastosowanie Horizona w połączeniu z algorytmami sztucznej inteligencji sprawi, że obliczenia związane z wirusami będą 100-krotnie bardziej wydajne, niż obliczenia prowadzone na Fronterze.
Uruchomienie Horizona planowane jest na połowę przyszłego roku. Frontera używa technologii z 2019 roku. Starzeje się i nie możemy go już dłużej używać, stwierdzają naukowcy. Już samo opóźnienie prac nad Horizonem to poważny problem. Może to bowiem oznaczać unieważnienie umowy pomiędzy TACC a Nvidią na dostarczenie tysięcy zaawansowanych procesorów graficznych. W związku z rozwojem sztucznej inteligencji zapotrzebowanie na takie układy jest ogromne, więc nie wiadomo, kiedy znowu Nvidia mogłaby dostarczyć tylu układów, ile potrzebuje Horizon.
Zatrzymanie prac nad superkomputerem oznaczałoby też zmarnowanie 100 milionów USD, które dotychczas wydano na maszynę.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Eksperci z Quantum Internet Alliance (QIA) ogłosili powstanie pierwszego systemu operacyjnego dla sieci kwantowych – QNodeOS. To olbrzymi krok naprzód w kierunku uczynienia z sieci kwantowych praktycznej technologii. W skład QIA wchodzą naukowcy z Uniwersytetu Technologicznego w Delft, Uniwersytetu w Innsbrucku, Instytutu badań nad kwantowym przetwarzaniem i kwantowym internetem (QuTech), Francuskiego Narodowego Instytutu Badawczego Nauk Komputerowych i Automatyzacji (INRIA) oraz Francuskiego Narodowego Centrum Badań Naukowych (CNRS).
Naszym celem jest zapewnienie wszystkim dostępu do kwantowej technologii sieciowej. Dzięki QNodeOS robimy wielki krok naprzód. Dzięki temu po raz pierwszy stało się możliwe łatwe programowanie i wykonywanie aplikacji działających w sieciach kwantowych, mówi profesor Stephanie Wehner, która stała na czele grupy badawczej. Nasze prace otwierają też całkowicie nowe pola w badaniach nad komputerami kwantowymi, dodaje.
Tym, co pozwoliło na rozpowszechnienie się klasycznych komputerów była możliwość łatwego tworzenia oprogramowania. I właśnie to umożliwia QNodeOS. System jest podobny do oprogramowania, która mamy w domu. Dzięki niemu nie musimy wiedzieć, jak działa sprzęt, by go używać, dodaje Mariagrazia Iuliano, doktorantka w QuTech.
QNodeOS pozwala na programowanie aplikacji wysokiego poziomu, podobnie jak programowane są obecnie aplikacje dla Windows czy Androida. W przeciwieństwie do dotychczasowych systemów dla komputerów kwantowych, programista nie musi brać pod uwagę specyfiki sprzętowej czy konfiguracji maszyny, na której ma działać jego program. Uruchamiając swój system na dwóch różnych procesorach badacze wykazali, że QNodeOS może współdziałać z różnymi typami sprzętu. Procesor bazujący na uwięzionych jonach działa zupełnie inaczej od procesorów wykorzystujących centra barwne (defekty krystaliczne) w diamentach. Mimo to wykazaliśmy, że nasz system pracuje na obu tych typach procesorów, cieszy się profesor Tracy Northup z Uniwersytetu w Innsbrucku.
Teraz twórcy nowego systemu pracują nad zapewnieniem wszystkim chętnym dostępu do odpowiedniego oprogramowania i sprzętu. Naukowcy chcą, między innymi, udostępnić QNodeOS na Quantum Network Explorer, pokazowej sieci kwantowej stworzonej prze QuTech. Dzięki temu chętni będą mogli eksperymentować z nowym systemem i tworzyć nań oprogramowanie.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.