Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W Fermilab powstał najpotężniejszy magnes dla akceleratorów cząstek

Rekomendowane odpowiedzi

Naukowcy z Fermilab poinformowali o wygenerowaniu najsilniejszego pola magnetycznego stworzonego na potrzeby akceleratorów cząstek. Nowy rekord wynosi 14,1 tesli, a wynik taki uzyskano w magnecie schłodzonym do 4,5 kelwinów, czyli -268,65 stopnia Celsjusza. Poprzedni rekord, 13,8 tesli, został osiągnięty przed 11 laty w Lawrence Berkeley National Laboratory.

Zwiększenie indukcji magnetycznej to znaczące osiągnięcie w fizyce cząstek. Silniejsze magnesy mogą posłużyć do zbudowania doskonalszych akceleratorów, które zastąpią w przyszłości Wielki Zderzacz Hadronów (LHC). Magnesy są wykorzystywane w akceleratorach do kontrolowania poruszających się cząstek. Im są silniejsze, tym łatwiej kontrolować cząstki poruszające się niemal z prędkością światła.

Przez kilkanaście lat pracowaliśmy nad przekroczeniem granicy 14 tesli, więc to ważne osiągnięcie. W pierwszym teście uzyskaliśmy 14,1 tesli na demonstracyjnym magnesie, dla którego teoretyczna granica wynosi 15 tesli. Pracujemy nad wyciśnięciem z niego jeszcze więcej, mówi Alexander Zlobin, który stoi na czele grupy badawczej.

Przyszłość zderzaczy hadronów zależy od dostępności silnych magnesów, dlatego fizycy na całym świecie są zainteresowani pracami mającymi na celu stworzenie niobowo-cynowych magnesów o indukcji 15 tesli.

Sercem takiego urządzenia jest nadprzewodzący stop niobu z cyną. Prąd przepuszczany przez magnes powoduje pojawienie się pola magnetycznego. Jako, że materiał schłodzony jest do bardzo niskich temperatur, prąd nie napotyka oporu, nie dochodzi do generowania energii cieplnej. Całe energia elektryczna przyczynia się do wygenerowania pola magnetycznego.

Indukcja zależy zaś od maksymalnego napięcia prądu, jakie może znieść dany materiał. Niobowo-tytanowe magnesy Wielkiego Zderzacza Hadronów nie są w stanie pracować z napięciem, które pozwalałoby na osiągnięcie 15 tesli. Można to uzyskać magnesach niobowo-cynowych, problem jednak w tym, że są one kruche i mogą się rozsypać pod wpływem działających na nie olbrzymich sił.

Zespół z Fermilab stworzył taką architekturę magnesu, która go wzmacnia i pozwala przetrzymać ściskające i rozciągające go siły. Dziesiątki przewodów o okrągłym przekroju zostało skręconych w odpowiedni sposób, by uzyskane przewody spełniały specyficzne wymagania elektryczne i mechaniczne. Po utworzeniu z kabli zwojów całość była podgrzewana przez dwa tygodnie w temperaturach sięgających niemal 650 stopni Celsjusza, co nadało materiałowi właściwości nadprzewodzące. Następnie zwoje zostały zamknięte w żelaznych obejmach zamkniętych aluminiowymi klamrami, na co nałożono powłokę ochronną z nierdzewnej stali, która ma ochronić zwoje przed ich deformacją.

To olbrzymie osiągnięcie, kluczowe dla rozwoju kolejnych generacji kołowych akceleratorów cząstek, mówi Soren Prestemon, naukowiec z Berkeley Lab i dyrektor U.S. Magnet Development Program, w skład którego wchodzi zespół z Fermilab. To wyjątkowy krok milowy na drodze ku opracowaniu magnesów. Osiągnięcie zostało z entuzjazmem przyjęte przez badaczy, którzy będą w przyszłości wykorzystywali akceleratory nowej generacji.

Naukowcy z Fermilab zapowiadają, że w ciągu najbliższych miesięcy wzmocnią swój magnes pod względem mechanicznym i jesienią poddadzą go kolejnemu testowi, w czasie którego spróbują uzyskać 15 tesli. Ma być to wstępem do stworzenia jeszcze potężniejszych magnesów. W oparciu o ten projekt i o to, czego się nauczyliśmy, mamy zamiar udoskonalić magnesy niobowo-cynowe i w przyszłości osiągnąć 17 tesli, mówi Ziobin. Naukowiec nie wyklucza, że w przyszłości, wykorzystując nowe nadprzewodniki, jego zespół dojdzie do 20 tesli.

Maksymalna indukcja pola magnetycznego magnesów LHC wynosi 8,34 tesli, czyli jest blisko górnej granicy 10 tesli dla magnesów niobowo-tytanowych. Z kolei w ubiegłym roku CERN informował o uzyskaniu dzięki magnesowi FRESCA2 14,6 tesli. FRESCA2 jest to magnes, który służy do testowania nadprzewodników, a nie do pracy wewnątrz akceleratora cząstek.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
20 godzin temu, KopalniaWiedzy.pl napisał:

od maksymalnego napięcia prądu

:)

  • Haha 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, Astro napisał:

Co za problem podawać stężenie molowe w procentach, prawda?

Na naszym poziomie bez znaczenia. Przecież i tak nie zamierzasz powtarzać doświadczeń na pdstawie doniesień z KW, więc precyzja molalne - molowe, itp nie ma sensu, a niektórych może odstraszyć :)

BTW Tesla to bardzo egzotyczna jednostka, zupełnie nieintuicyjna. To jak szybko i jak długo muszę biec w polu 10T żeby warunkach normalnych zagotować 1 mol wody  trzymanym w metalowym kubku? 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 13.09.2019 o 23:14, Astro napisał:

(nie czepiam się warunków "normalnych", które dla mnie są niezbyt normalne ;)).

ed: Dla ścisłości Jajcenty. Kubków jest w uj i trochę rodzajów; szklane, metalowe, ciężkie, cienkościenne itd. (o tym jak biegasz i po jakim torze już nie wspomnę).

Jak zwykle masz prawo zmodyfikować założenia i warunki tak by zadanie stało się policzalne. Truchtam z tym garnkiem jakieś 2 m/s. Leciałbym szybciej, ale nie mogę, bo trzymam garnek ;)

A powaźnie: nie wiem (i większość ludzi nie wie) ile to jest ta Tesla. Nie mamy odniesienia, na powierzchni Ziemi mamy jakieś mikrotesle, cewka dzwonka drzwiowego 230V* , tomograf, silnik lokomotywy - jakie natężenia tam panują? 20T to pewnie dużo, ale czy wystarczy do przemieszczenie hemoglobiny?

*)specjalnie tak dokładnie, żebyś mi z kołatką nie wyjechał :P

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
6 godzin temu, Astro napisał:

Długo biegać nie musisz; wystarczy 20 sekund.

No to muszę nad sobą popracować. Zagotować 500 gramów od 25oC do wrzenia w 20s to jakieś 8KW, jeśli się nie walnąłem w rachunkach. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

do Ergo Sum:

W laboratorium manesow o silnym polu w Tallahasse wyprodukowano juz magnes dajacy pole 45.5 Tesli. Ale magnes magnesowi nie rowny i nie kazdy mages sie nadaje do wszystkich zastosowan. Fermilab pracuje nad magnesami, ktore moga byc stosowane w akceleratorach czastek (glownie protonow). Inne magnesy sluza innym celom i porownywanie ich osiagniec nie ma wielkiego sensu..

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
34 minuty temu, adpara napisał:

Inne magnesy sluza innym celom i porownywanie ich osiagniec nie ma wielkiego sensu..

ooook.

A rozwijając temat do czego służą magnesy z Tallahasse albo inne?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

do radar:

raczywistach i potencjanlych zastosowanc silnych pol magnetucznych jest bardzo wiele (nie wliczjac nawet badan wlasnosci materialow w silnych polach), Przyklady:

- medycyna(MRI)

- electrownie termojadrowe (do tego jest magnes wspomniany przez Ergo Sum)

- lewitacja magnetyczna (jak pociagi maglev)

- generatory energii electrycznej

- skladowanie energii eletrycznej

- separacja magntetyczna

Nie jestem tu zadnym ekspertem, zapewne mozna wygooglowac duzo wiecej na ten (ciekawy) temat

 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W eksperymencie ATLAS potwierdzono niezwykle interesujące wyniki analiz przeprowadzonych w CMS. Otóż kolejne analizy wskazują, że w Wielkim Zderzaczu Hadronów w wyniku zderzeń protonów powstaje toponium. To mezon utworzony przez – najbardziej masywną cząstkę elementarną i najkrócej istniejący z kwarków – kwark t (wysoki) i antykwark t znajdujące się w stanie quasi-związanym.
      Podczas kolizji wysokoenergetycznych protonów w Wielkim Zderzaczu Hadronów standardowo powstają pary kwarków t i ich antykwarków. Badania ich przekroju czynnego jest ważnym elementem testowania Modelu Standardowego i sposobem na poszukiwanie nowych nieznanych cząstek, których Model nie opisuje.
      Gdy naukowcy z CMS analizowali w ubiegłym roku dane z lat 2016–2018 dotyczące produkcji par kwark t - antykwark t, zauważyli coś niezwykłego. Ich uwagę zwrócił nadmiar tych par, który może wskazywać na istnienie nieznanej cząstki. Jednak najbardziej intrygujący był fakt, że nadmiar ten pojawił się przy energiach stanowiących dolną granicę zakresu poszukiwań. Wysunęli wówczas hipotezę, że nadmiar ten pochodzi od kwarków wysokich i antykwarków wysokich tworzących stan quasi-związany, zwany toponium.
      Kwark wysoki jest samotnikiem. Jako jedyny nie tworzy hadronów. Kwarki u (górny), d (dolny) i s (dziwny) tworzą wszystkie powszechnie występujące hadrony, a kwarki c (powabny) i b (piękny) tworzą rzadkie i krótkotrwałe hadrony rejestrowane w akceleratorach. Kwark t ma tak dużą masę i istnieje tak krótko, że rozpada się, zanim zdąży utworzyć jakikolwiek stan związany. Jednak mechanika kwantowa przewiduje pojawienie się szczególnych okoliczności, w których para kwark t i antykwark t istnieje na dyle długo, że mogą wymienić gluony, tworząc toponium.
      Gdy CMS ogłaszał przed kilkoma miesiącami odkrycie, koordynator prac, Andreas Meyer mówił, że uzyskany przez nas przekrój czynny (prawdopodobieństwo) dla naszej uproszczonej hipotezy wynosi 8,8 pb (pikobarnów) ± 15%. Można powiedzieć, że to znacząco powyżej 5 sigma [5 sigma to wartość odchyleń standardowych, powyżej której można ogłosić odkrycie - red.].
      Teraz naukowcy z ATLAS poinformowali o wynikach pełnej analizy danych z kampanii RUN-2 prowadzonej w latach 2015–2018. Zauważyli w nich to samo zjawisko, co wcześniej ich koledzy z CMS. Przekrój czynny określili na 9,0 pb ± 15%, co w wysokim stopniu zgadza się z wcześniejszymi danymi.
      O ile jednak nie ma wątpliwości, co do istnienia obserwowanych danych, ich interpretacja nastręcza pewne trudności. Istnienie toponium nie jest bowiem jedynym możliwym wyjaśnieniem. Nie można bowiem wykluczyć, że dane wskazują na istnienie cząstki o masie dwukrotnie większej niż masa kwarka t, która powstaje w wyniku zderzeń gluonów i rozpada się na parę kwark t - antykwark t. Dokładna interpretacja danych będzie zależała od możliwości precyzyjnego modelowania interakcji kwarków i gluonów w złożonych środowiskach zderzeń protonów.
      Jeśli jednak uda się potwierdzić istnienie toponium, będzie to kolejne poznane kwarkonium, czyli stan utworzony przez kwarka i jego antykwark. Obecnie znamy czarmonium – to kwark powabny (charm) i jego antykwark – oraz bottomonium, czyli kwark spodni (bottom) i antykwark. Czarmonium zostało odkryte w SLAC w 1974 roku, a bottomium znaleziono trzy lata później w Fermilabie.
      Źródło: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2025-008/

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Wielkim Zderzaczu Hadronów wykonano pierwsze dedykowane pomiary masy bozonu Z. Naukowcy wykorzystali przy tym dane ze zderzeń protonów, które były przeprowadzane w eksperymencie LHCb podczas drugiej kampanii naukowej w 2016 roku. Przeprowadzone w CERN-ie badania to jednocześnie duży postęp w precyzji pomiarów LHC. Pokazuje bowiem, że z tak złożonego środowiska, jakie pojawia się w wyniku zderzeń wysokoenergetycznych protonów, można wyłowić niezwykle precyzyjne dane dotyczące poszczególnych cząstek.
      Bozon Z to masywna elektrycznie obojętna cząstka, która pośredniczy w oddziaływaniach słabych, jednych z czterech podstawowych oddziaływań natury. Została ona odkryta w CERN-ie ponad 40 lat temu i odegrała ważną rolę w potwierdzeniu prawdziwości Modelu Standardowego. Jej precyzyjne pomiary, podobnie jak dokładne dane na temat wszystkich cząstek elementarnych, pozwalają nam lepiej poznać fizykę oraz poszukać zjawisk, które mogą wykraczać poza obowiązujące modele.
      Na podstawie rozpadów 174 000 bozonów Z zarejestrowanych w LHCb stwierdzono obecnie, że masa spoczynkowa tej cząstki wynosi 91 184,2 megaelektronowoltów (MeV), a precyzja pomiaru wynosi ± 9,5 MeV. Takie wyniki są zgodne z pomiarami wykonanymi w poprzedniku LHC, zderzaczu LEP – gdzie przeprowadzano zderzenia elektronów i pozytonów – oraz w nieczynnym już amerykańskim Tevatronie, który zderzał protony i antyprotony. Co więcej, precyzja obecnego pomiaru jest zgodna z precyzją Modelu Standardowego, wynoszącą 8,8 MeV.
      Dotychczas najdokładniejszy wynik – 91 187,6 ± 2,1 MeV – dały pomiary w LEP.
      Najnowsze osiągnięcie otwiera drogę do jeszcze bardziej precyzyjnych pomiarów, jakich będzie można dokonać za pomocą przyszłego High-Luminosity LHC oraz do pomiarów za pomocą eksperymentów CMS i Atlas. Wyniki pomiarów z różnych eksperymentów wykonywanych w LHC są od siebie niezależne, co oznacza, że ich średnia wartość będzie obarczona jeszcze mniejszym marginesem niepewności.
      High-Luminosity LHC może potencjalnie dokonać jeszcze bardziej dokładnych pomiarów bozonu Z niż LEP. Na początku pracy LHC wydawało się to niemożliwe, mówi rzecznik prasowy LHCb Vincenzo Vagnoni.
      Źródło: Measurement of the Z-boson mass, https://arxiv.org/abs/2505.15582

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Doroczna konferencja fizyczna Recontres de Moriond przynosi kolejne – po łamaniu symetrii CP przez bariony – fascynujące informacje. Naukowcy pracujący przy eksperymencie CMS w CERN-ie donieśli o zaobserwowaniu w danych z Wielkiego Zderzacza Hadronów sygnałów, które mogą świadczyć o zaobserwowaniu najmniejszej cząstki złożonej. Uzyskane wyniki wskazują, że kwarki wysokie – najbardziej masywne i najkrócej istniejące ze wszystkich cząstek elementarnych – mogą na niezwykle krótką chwilę tworzyć parę z swoim odpowiednikiem w antymaterii (antykwarkiem wysokim) i tworzyć hipotetyczny mezon o nazwie toponium.
      Model Standardowy, chociaż sprawdza się od dziesięcioleci, ma niedociągnięcia. Naukowcy próbują je wyjaśnić, poszukując dodatkowych, nieznanych obecnie, bozonów Higgsa. Właściwości takich – wciąż hipotetycznych – cząstek, mają być dość proste. Zakłada się, że powinny one oddziaływać z fermionami z siłą proporcjonalną do masy fermionu, a teorie postulujące istnienie dodatkowych bozonów Higgsa mówią, że powinny one łączyć się bardziej masywnymi kwarkami. Stąd też uwaga naukowców skupiona jest na kwarku wysokim. Ponadto, jeśli takie dodatkowe bozony Higgsa miałyby masę większą od 345 GeV – masa znanego nam bozonu Higgsa to 125 GeV – i rozpadałyby się na pary kwark wysoki-antykwark, to w Wielkim Zderzaczu Hadronów powinien pojawić się nadmiar sygnałów świadczących o produkcji takich par.
      W eksperymencie CMS zauważono taki nadmiar, ale – co szczególnie przyciągnęło uwagę naukowców – zauważono go przy energiach stanowiących dolną granicę zakresu poszukiwań. To skłoniło fizyków pracujących przy CMS do wysunięcia hipotezy, że nadmiar ten pochodzi od kwarków wysokich i antykwarków wysokich znajdujących się w stanie quasi-związanym zwanym toponium.
      Gdy rozpoczynaliśmy analizy, w ogólnie nie braliśmy pod uwagę możliwości zauważenia toponium. W analizie wykorzystaliśmy uproszczony model toponium. Hipoteza ta jest niezwykle ekscytująca, gdyż nie spodziewaliśmy się, że LHC zarejestruje toponium, mówi koordynator prac, Andreas Meyer z DESY (Niemiecki Synchrotron Elektronowy).
      Co prawda nie można wykluczyć innych wyjaśnień zaobserwowanych zjawisk, ale z dotychczasowych badań wynika, że toponium w sposób wystarczający wyjaśnia zaobserwowany nadmiar sygnałów. Uzyskany przez nas przekrój czynny (prawdopodobieństwo) dla naszej uproszczonej hipotezy wynosi 8,8 pb (pikobarnów) ± 15%. Można powiedzieć, że to znacząco powyżej 5 sigma [5 sigma to wartość odchyleń standardowych, powyżej której można ogłosić odkrycie - red.], dodaje Meyer.
      Jeśli uda się potwierdzić istnienie toponium, będzie to kolejne poznane kwarkonium, czyli stan utworzony przez kwarka i jego antykwark. Obecnie znamy czarmonium – to kwark powabny (charm) i jego antykwark – oraz bottomonium, czyli kwark spodni (bottom) i antykwark. Czarmonium zostało odkryte w SLAC w 1974 roku, a bottomium znaleziono trzy lata później w Fermilabie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas dorocznej konferencji fizycznej Recontres de Moriond naukowcy z CERN-u poinformowali o dokonaniu ważnego kroku na drodze ku zrozumieniu asymetrii pomiędzy materią a antymaterią. Podczas analizy olbrzymiej ilości danych z Wielkiego Zderzacza Hadronów uczeni znaleźli dowody na naruszenie symetrii CP przez bariony.
      Symetria CP oznacza, że cząstka rozpada się identycznie jak jej antycząstka odbita w lustrze. Fakt, że we wszechświecie istnieje więcej materii niż antymaterii sugeruje, że łamanie symetrii CP jest zjawiskiem powszechnym. Po raz pierwszy zaobserwowano je w 1964 roku w przypadku kaonów (mezonów K). Wtedy zaobserwowano, że rozpadają się one nieco inaczej niż antykaony. Od tej pory naruszenie symetrii CP jest przedmiotem intensywnych badań, które mają wyjaśnić istniejącą nierównowagę między materią a antymaterią.
      Naukowcy wiedzieli, że i w przypadku barionów powinno dochodzić do łamania symetrii CP, jednak dotychczas nie zaobserwowano tego zjawiska. Przyczyną, dla której zaobserwowanie naruszenia symetrii CP przez bariony zajęło tyle czasu jest różnica w sile tego zjawiska i ilości dostępnych danych. Potrzebowaliśmy urządzenia takiego jak Wielki Zderzacz Hadronów, zdolnego do wytworzenia wystarczająco dużej liczby barionów pięknych oraz ich antycząstek i potrzebowaliśmy maszyny zdolnej do znalezienia produktów ich rozpadu. Teraz, dzięki ponad 80 000 rozpadów barionów zauważyliśmy – po raz pierwszy dla tej klasy cząstek – łamanie symetrii CP, mówi rzecznik prasowy eksperymentu LHCb Vincenzo Vagnoni.
      Już od kilku lat w rozpadach barionów pięknych Lambda b (Λb) znajdowano sygnały świadczące o istnieniu różnic w rozpadzie barionów i antybarionów. Bariony te są sześciokrotnie bardziej masywne od swojego kuzyna, protonu. Bariony, do których należy też neutron, są tą rodziną cząstek, która w znacznej mierze tworzy świat.
      Teraz naukowcy pracujący przy eksperymencie LHCb zaobserwowali naruszenie symetrii CP w przypadku cząstek Lambda b (Λb), które zbudowane są z kwarka górnego, dolnego i kwarka b (kwarka pięknego). Szczegółowe analizy rozpadów Λb i anty-Λb wykazały różnice rzędu 5,2 odchyleń standardowych (5,2 sigma). Uzyskanie 5 sigma to poziom pozwalający na ogłoszenie odkrycia. Zatem po raz pierwszy z całą pewnością udało się stwierdzić, że wśród barionów istnieje łamanie symetrii CP.
      Badania tego typu, chociaż ich wyniki są spodziewane, pozwalają lepiej poznać prawa rządzące fizyką. Istnienie naruszenia symetrii CP przewiduje sam Model Standardowy. Jednak naruszenie to jest o całe rzędy wielkości zbyt małe, by na gruncie Modelu Standardowego wyjaśnić obserwowaną asymetrię między materią i antymaterią. To zaś sugeruje, że istnieją źródła naruszenia symetrii CP, których nie przewiduje Model Standardowy. Im zatem lepiej poznamy to zjawisko, z tym większą dokładnością sprawdzimy Model Standardowy i będziemy mieli szansę na odkrycie zjawisk, których obecnie nie znamy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...