Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Dlaczego chodzimy z prostymi, ale biegamy ze zgiętymi ramionami?

Recommended Posts

Zdecydowana większość ludzi chodzi z wyprostowanymi ramionami, a biega ze zgiętymi. Jeśli spróbujemy biegać z wyprostowanymi ramionami szybko okaże się, że nie jest to takie proste.

Pozycja ramion przy bieganiu i chodzeniu jest uniwersalna niemal dla wszystkich ludzi. Dotychczas jednak nie prowadzono badań, mających wyjaśnić, dlaczego jest taka a nie inna.

Andrew Yegian i jego koledzy z Uniwersytetu Harvarda poprosili 8 studentów, by ci chodzili i biegali na automatycznej bieżni zarówno z ramionami wyprostowanymi, jak i zgiętymi. U sześciu z nich mierzono też zużycie tlenu.

Tak, jak można było się spodziewać, spacer ze zgiętymi ramionami był bardziej wymagający energetycznie, niż z ramionami wyprostowanymi. Badani zużywali wówczas o 11% więcej tlenu. Jednak niespodziewanie okazało się, że bieg z wyprostowanymi ramionami nie powoduje większego zużycia energii, niż bieg z ramionami zgiętymi. Wszyscy badani powiedzieli, że bieganie z wyprostowanymi ramionami było trudniejsze. Dlatego zdziwiło nas, że nie odnotowaliśmy żadnej różnicy w zużyciu energii, mówi Yegian.

W pozycji ramion podczas poruszania się istotne jest wydatkowanie energii, a konkretnie o równowagę pomiędzy energią zużywaną przez ramię i łokieć. Zgięcie górnej kończyny wymaga zużycia większej ilości energii przez łokieć, gdyż trzeba opierać się grawitacji. Jednocześnie jednak samo ramię jest krótsze i oszczędzamy energię potrzebną do jego poruszania.

Wyniki badań sugerują, że gdy idziemy ze zgiętymi kończynami górnymi, musimy wydatkować więcej energii na pokonanie grawitacji niż zyskujemy jej na ruchu krótszego ramienia. Jednak zaobserwowany brak różnic w zużyciu tlenu podczas biegania z ramionami wyprostowanymi i zgiętymi sugeruje istnienie równowagi energetycznej. Poruszanie dłuższym ramieniem czy poruszanie krótszym ramieniem ale przy konieczności pokonania grawitacji przez zgięty łokieć wymaga tyle samo energii.

Zagadka, dlaczego zginamy ramiona w czasie biegu pozostaje więc niewyjaśniona. Nie niesie to za sobą żadnych korzyści. Być może jednak odpowiedź leży w sposobie przeprowadzenia badań. Otóż studenci na bieżni biegali dość powoli. Niewykluczone więc, że korzyści ze zginania ramion ujawniają się dopiero podczas szybkiego biegu. A może zgięcie ramion pozwala na rozproszenie energii i mięśnie górnych części ramienia mniej się męczą? To hipotezy, które będziemy testowali w przyszłości, mówi Yegian.

Nie można wykluczyć, że sposób, w jaki biegamy, był istotnym składnikiem naszej ewolucji. Mniej więcej 1,5 miliona do 2 milionów lat temu nasi przodkowie zaczęli biegać w pozycji wyprostowanej, wyewoluowały u nich krótsze ramiona. To sugeruje, że pozycja łokcia w czasie biegania może mieć coś wspólnego z tą zmianą ewolucyjną, stwierdza yegian.


« powrót do artykułu

Share this post


Link to post
Share on other sites
Godzinę temu, KopalniaWiedzy.pl napisał:

Niewykluczone więc, że korzyści ze zginania ramion ujawniają się dopiero podczas szybkiego biegu. A może zgięcie ramion pozwala na rozproszenie energii i mięśnie górnych części ramienia mniej się męczą? To hipotezy, które będziemy testowali w przyszłości, mówi Yegi

 

Kurcze, poważnie już nie potrafili tego zweryfikować?
Jak ja nie lubię takich badań, sprawdzili chód i wolny bieg. ehh...

ps.
Mam wrażenie, ze powyżej pewnej prędkośc nie był bym w stanie biec z prostymi łokciami, ale to sprawdzę jak wyjdę na zewnątrz ;) 

Share this post


Link to post
Share on other sites

Niektórzy, sportowo że tak powiem, chodzą ze zgiętymi ramionami. Nie widziałem chodziarza, który chodziłby z prostymi, ale pewnie się da. :)

Share this post


Link to post
Share on other sites

Może po prostu chodzi o to, że przy biegu/szybkim marszu ludzie szybciej przebierają nogami (nie wiem czy ktoś to badał, ale pewnie przebierają szybciej)? A szybkość przebierania rękami musi być zgodna z tą dla nóg. A długim prostym drągiem niewygodnie się macha;)

Share this post


Link to post
Share on other sites
13 minut temu, Szedar napisał:

Nie widziałem chodziarza, który chodziłby z prostymi, ale pewnie się da.

No wiesz ,te ich chodzenie jest szybsze niż bieg 90%(a może i więcej) ludzi na takim dystansie. 

 

11 minut temu, darekp napisał:

nie wiem czy ktoś to badał, ale pewnie przebierają szybciej)

Przebierają przebierają szybciej. W zwykłym chodzie nie byłbym w stanie zrobić 180 kroków na minutę..(też sprawdzę ;) )
 

Edited by Afordancja

Share this post


Link to post
Share on other sites

Może instynktownie wolimy mieć ręce w gotowości na wypadek upadku? Ugięte ręce znajdują się w połowie krótszej drodze aby osłonić głowę lub klatkę piersiową

  • Like (+1) 1

Share this post


Link to post
Share on other sites
37 minut temu, Afordancja napisał:

No wiesz ,te ich chodzenie jest szybsze niż bieg 90%(a może i więcej) ludzi na takim dystansie. 

Wiem, ale założę się, że już w następnej publikacji autorzy wykażą się, że zapoznali się z pojęciem momentu pędu. :)

Edited by Szedar
  • Haha 1

Share this post


Link to post
Share on other sites

A czy Wy też wbiegacie po schodach wykorzystując bezwładność ramion? (wyrzucając je i  zatrzymując synchronicznie do kolejnych kroków) Pozwala to dużo sprawniej, szybciej i ciszej wbiec po schodach. Zauważyłem że nie wszyscy tak robią.

Share this post


Link to post
Share on other sites

Taka prosta i oczywista sprawa - zwykła dźwignia. Im szybszy ruch, tym musi być krótsza. I po co filozić? Czemu większość naukowców jest tak odporna na zwykłą logikę?

Share this post


Link to post
Share on other sites

@Ergo Sum, i tu się mylisz. Znaczy nie mylisz się, ale trzeba też zużyć energię na podniesienie przedramion i utrzymanie ich w górze i tu podobno się naukowcom zrównoważyły wyniki i nie było żadnych korzyści ze zgiętych.

Powodów dlaczego nasze odruchy tak wyewoluowały można wymyślić całkiem sporo:
1. ze zgiętymi jest się węższym i łatwiej przeciskać się przez zarośla.
2. mniejszy opór powietrza podczas szybkiego biegu (na bieżni nie było tego elementu)
3. proste ręce mogą utrudniać utrzymanie równowagi podczas szybkiego biegu.
4. podczas sprintu nóg też za bardzo nie prostujemy (więcej czasu są zgięte niż wyprostowane) i ręce podążają tym samym schematem - takie ewolucyjne wspomnienie z czasów gdy poruszaliśmy się na 4

Oczywiście to moje prywatne wymysły.

A biegacze stwierdzili, że trudniej się biega z prostymi, bo trzeba przezwyciężyć odruchy, a to wymaga skupienia. To nie musiało się przekładać na zużycie energii.

Share this post


Link to post
Share on other sites

Myślę, że trudność wiązać może się zwyczajnie z tym, że czym szybciej biegniesz, tym większy moment siły skręcający kręgosłup. Trochę głupio, gdy majta, szczególnie górną częścią ciała na boki. Wydaje mi się, że łatwiej zerować moment pędu (względem kręgosłupa) unosząc łokcie. Zwierzaki, które dalej chodzą i biegają na czterech, mają trochę łatwiej. ;)

image.png.ba8ae0aa25319e9246530d9a8161d622.png

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Podczas tegorocznego maratonu w Londynie przetestowane zostaną jadalne "płynne" kapsułki wytwarzane z wodorostów, które pomogą biegaczom ugasić pragnienie i nie przyczynią się do wzrostu zanieczyszczenia plastikiem.
      Kapsułki Ooho to wynalazek założycieli start-upu Skkiping Rocks Lab, absolwentów Imperial College London Pierre'a Pasliera i Rodriga Garcii.
      Na uczestników Virgin Money London Marathon na 23. mili czekać będzie ponad 30 tys. kapsułek z napojem izotonicznym Lucozade Sport. To największy test, jakiemu dotąd poddawano Ooho.
      Test to odpowiedź na narastające obawy dot. ilości odpadów plastikowych generowanych podczas masowych biegów.
      Ooho to pozbawiona smaku biodegradowalna membrana. Wytwarza się ją z wodorostów. Można ją wykorzystywać do zamykania w małym "bąblu" wody i innych cieczy.
      Paslier i Garcia podkreślają, że nawet jeśli Ooho nie zostaną zjedzone, rozkładają się w środowisku średnio po 6 tygodniach. Dla porównania, okres degradacji plastikowej butelki przekracza 400 lat.
      Ekipa z Skkiping Rocks Lab wypróbowuje Ooho jako zastępnik małych butelek na wodę, a także opakowań na soki czy różne sosy podawane w restauracjach typu fast food. Ukoronowaniem wysiłków Brytyjczyków jest londyński maraton z 28 kwietnia.
      Lise Honsinger dodaje, że prowadzone są też rozmowy z organizatorami październikowego półmaratonu Royal Parks, gdzie ustawiono by punkt z wodą, a także z organizatorami maratonu nowojorskiego.
      Skkiping Rocks Lab dysponuje przemysłową maszyną do produkcji Ooho. Dzięki niej w 5-10 min można uzyskać do 100 kapsułek.
      Kiedyś firma rezydowała na terenie inkubatora przedsiębiorczości Imperial White City. Obecnie w laboratorium w Bethnal Green pracuje 14-osobowy zespół.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Poruszając się z prędkością 2 m/s, czyli 7,19 km/h, ludzie wolą biec niż iść. Doktorzy Gregory Sawicki i Dominic Farris z Uniwersytetu Północnej Karoliny uważają, że dzieje się tak, gdyż przy takiej szybkości podczas biegu lepiej wykorzystujemy kluczowy mięsień łydki.
      Naukowcy, których artykuł ukazał się w Proceedings of the National Academy of Sciences (PNAS), posłużyli się ultrasonografią, filmowaniem ruchu szybką kamerą oraz bieżnią mierzącą nacisk. W ten sposób mierzyli zachowanie mięśni łydki podczas biegu i chodzenia.
      Niewielka głowica ultrasonograficzna przymocowywana z tyłu nogi pokazywała w czasie rzeczywistym, jak mięsień dostosowuje się do chodu i biegu z różną prędkością. Szybkie zdjęcia zademonstrowały, że głowa przyśrodkowa mięśnia brzuchatego działa jak sprzęgło uruchamiające się szybko po rozpoczęciu chodzenia. Mięsień brzuchaty przytrzymuje jak linka jeden z końców ścięgna Achillesa, gdy przekazywana jest do niego energia do rozciągania. Później do gry włącza się samo ścięgno, które podczas odrzutu uwalnia zmagazynowaną energię, wspomagając w ten sposób ruch.
      Studium ujawniło, że gdy mięsień coraz szybciej zmienia swoją długość, dostarcza coraz mniej mocy, co oznacza obniżenie ogólnej wydajności. Kiedy jednak ludzie zaczynają biec z prędkością ok. 2 m/s, mięśnie zwalniają: zmiana długości zachodzi wolniej, zapewniając większą moc przy słabszej pracy.
      Techniki ultrasonograficzne pozwalają oddzielić od siebie ruchy poszczególnych mięśni podudzia. Dotąd nie były, niestety, wykorzystywane w takim kontekście - podkreśla Farris. Badanie wyjaśnia, czemu superszybki chód jest ograniczony właściwie do olimpiad i innych zmagań sportowych. Mięśnie pracują zbyt nieefektywnie, dlatego ciało przestawia się na bieg. Rosną wtedy skuteczność zarządzania energią i wygoda.
      W miarę jak idziemy coraz szybciej, miesień nie jest w stanie dopasować się do prędkości ruchu. Kiedy jednak dokonuje się przejście od chodu do biegu, ten sam mięsień staje się niemal statyczny i nie musi zmieniać swojego zachowania w znacznym stopniu, gdy biegacz coraz bardziej się rozpędza (choć nie testowaliśmy go podczas sprintów) - wyjaśnia Sawicki.
       
       
    • By KopalniaWiedzy.pl
      Spośród wszystkich ssaków tylko niedźwiedzie oraz ludzie i inni przedstawiciele naczelnych chodzą, stawiając na ziemi najpierw piętę. Dlaczego ta nietypowa technika poruszania się zdominowała właśnie u tych gatunków, próbowali ustalić naukowcy z University of Utah.
      Eksperyment, którego wyniki opublikowało czasopismo Journal of Experimental Biology, zorganizowany został przez zespół prof. Davida Carriera. Polegał on na mierzeniu energii koniecznej do poruszania się przez ochotników chodzących na trzy sposoby: 1) zwyczajny (tj. z oparciem się na pięcie i stopniowym przenoszeniu ciężaru ciała na palce), 2) ze stopą ustawioną przez cały czas płasko oraz 3) na palcach (a więc w sposób przypominający chód większości ssaków). Energetyczną efektywność tych samych sposobów stawiania kroków badano także podczas biegania.
      Jak wykazały obliczenia przeprowadzone po zakończeniu testów, nakład energii potrzebny na chodzenie na palcach z piętami stale oderwanymi od podłoża był aż o 53% wyższy, niż przy chodzeniu w sposób typowy dla ludzi. Co ciekawe jednak, nie stwierdzono istotnej statystycznie różnicy w efektywności energetycznej pomiędzy chodzeniem w sposób "normalny" oraz przy stawaniu na podłożu całą stopą podczas każdego kroku. 
      Dalsze obserwacje poczynione przez zespół prof. Carriera potwierdzają z kolei to, o czym większość biegaczy wie na pewno: dla efektywnego biegania najlepiej jest poruszać się "po zwierzęcemu", a więc lądować na przedniej części stopy i unikać kontaktu pięty z podłożem. 
      Wnioski z eksperymentu wydają się oczywiste. Wszystko wskazuje na to, że unikalny sposób chodzenia u ludzi (oraz najprawdopodobniej kształt ich stóp) jest przejawem dostosowania do długodystansowych marszów, w czasie których każda zaoszczędzona kaloria energii jest cenna. Osłabieniu uległa za to zdolność do szybkiego biegania, lecz rozwój inteligencji umożliwił ludziom zdobywanie pożywienia w bardziej wyrafinowany sposób. Wygląda więc na to, że ewolucja kolejny raz doprowadziła do wytworzenia struktur całkowicie podporządkowanych trybowi życia danego organizmu, zaś sposób, w jaki z tych struktur korzystamy, jest zoptymalizowany pod względem zużycia energii.
    • By KopalniaWiedzy.pl
      Słonie nie kojarzą się nam ze zgrabnym poruszaniem, co znalazło nawet swój wyraz w przysłowiach, ale nie oznacza to, że nie potrafią rozwijać sporych prędkości. Biolodzy zastanawiali się, czy idą wtedy, czy już biegną. Okazało się, że i jedno, i drugie. Słoń biegnie przednimi nogami, podczas gdy tylne cały czas idą (Journal of Experimental Biology).
      Już wcześniejsze badania sugerowały, że rozpędzone słonie trochę biegną, a trochę spacerują. Belgijsko-włosko-tajlandzki zespół zdobył jednak wiele dodatkowych informacji, wykorzystując specjalnie skonstruowany tor. Dzięki temu udało się dokonać dokładnych pomiarów sił działających podczas wykonywania kolejnych kroków.
      Jak wyjaśnia profesor Norman Heglund z Katolickiego Uniwersytetu w Leuven, naukowcy musieli sami skonstruować platformy dynamometryczne– płyty mierzące siłę nacisku. Trzeba je było przecież jakoś dostosować do rozmiarów słoni. Mając już za sobą ten etap, naukowcy udali się do Thai Elephant Conservation Centre. Kornacy dosiadali słoni indyjskich i zachęcali je do przemierzania wyznaczonej trasy. Najszybszy osobnik rozpędził się do 18 km na godzinę. Wyczyny szarych olbrzymów utrwalano na kamerze szybkoklatkowej.
      Biolodzy porównali odczyty z platformy dynamometrycznej z poszczególnymi klatkami. W ten sposób wyliczyli energię potencjalną i kinetyczną poruszającego się słonia. Określenie relacji między energią potencjalną (zmagazynowaną w mięśniach, stawach i ścięgnach) a energią kinetyczną jest kluczowe dla stwierdzenia, czy zwierzę idzie, czy biegnie. Kiedy słoń podnosi nogę i przesuwa ją ku przodowi, energia potencjalna zamienia się w kinetyczną. Gdy noga ląduje na ziemi, na powrót zmienia się w potencjalną. Proces ten powtarza się wiele razy w czasie jednej rundki po okolicy. Podczas biegu zamiana jest ciągła, bez wyraźnie wyodrębnionych cykli. W przypadku słonia energie potencjalna i kinetyczna [...] osiągają minimum i maksimum w tym samym czasie, dlatego nie mogą być "wymieniane" po sobie raz za razem – tłumaczy Heglund.
      Dodatkowo badacze zauważyli, że najszybsze słonie biegną i idą jednocześnie. Wygląda to tak, jakby słoń zbliżał się do prędkości przejściowej, kiedy przestaje iść i zaczyna biec, ale nie doprowadzał tego do końca. Przypomina to niemożność wrzucenia drugiego biegu. Za pomocą platform dynamometrycznych międzynarodowy zespół ustalił również, że słonie poruszają się niezwykle ekonomicznie, zwłaszcza w porównaniu do mniejszych zwierząt. W przyszłości biolodzy zamierzają przeprowadzić identyczny eksperyment z nosorożcami i hipopotamami.
    • By KopalniaWiedzy.pl
      Seniorzy, którzy chodzą wolno, 3-krotnie częściej umierają z powodu chorób sercowo-naczyniowych niż ich szybko maszerujący rówieśnicy.
      Francuscy naukowcy zmierzyli prędkość chodu 3208 kobiet i mężczyzn w wieku od 65 do 85 lat. Każdy uczestnik badania dwukrotnie przebywał korytarz, na którym w odstępie 6 metrów rozmieszczono dwie podłączone do chronometru fotokomórki. Za pierwszym razem odcinek należało przebyć w swoim zwykłym tempie. Potem starszych państwa instruowano, żeby szli (nie biegli!) najszybciej, jak umieją. Wszystkim przysługiwała jedna próba, by sprawdzić, czy polecenie zostało prawidłowo zrozumiane. Panowie i panie startowali z punktu wyznaczonego 3 metry przed korytarzem. W ten sposób z pomiarów eliminowano czas przyspieszania.
      Na początku studium podczas wywiadów przeprowadzanych w domach ochotników wykwalifikowani psycholodzy zebrali też szereg danych demograficznych i medycznych na ich temat. Pytano m.in. o niedawne złamania kości biodrowej, parkinsonizm, udary. Poza tym dwukrotnie zmierzono ciśnienie, a za wartość typową dla danej osoby uznano wyliczoną na tej podstawie średnią. Seniorzy wypełnili całą baterię testów dotyczących funkcjonowania poznawczego. Przez następne 5 lat w regularnych odstępach czasu badania powtarzano.
      Po wzięciu poprawki na informacje zgromadzone na wstępie, okazało się, że w przypadku chodzących najwolniej starszych osób ryzyko zgonu było o 44% wyższe niż u osób chodzących najszybciej. Najbardziej ślamazarni chodziarze 3-krotnie częściej umierali z powodu chorób sercowo-naczyniowych. Co ważne, w przypadku tych ostatnich ryzyko wzrastało zarówno u kobiet, jak i u mężczyzn, u seniorów starszych i młodszych, a także u badanych z niskim i przeciętnym poziomem aktywności ruchowej.
      Nie odnotowano związku między tempem marszu a prawdopodobieństwem zgonu na nowotwór.
      Opisane wyniki uzyskano w ramach studium 3C (Three-City), które obejmuje Bordeaux, Dijon i Montpellier. W tym konkretnym przypadku 6-osobowy zespół naukowców interesował się możliwościami ruchowymi mieszkańców Dijon.
×
×
  • Create New...