Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Życie na Ziemi istnienie dzięki zderzeniu dwóch planet?

Recommended Posts

12 godzin temu, Warai Otoko napisał:

Co do tych mas słońca etc. trza by zajrzeć do literatury - jesteś pewien, że w gwiazdach o masie 0,08 M zachodzi synteza CIĘŻKICH pierwiastków ? 

We wszystkich karłach ciągu głównego, w tym w Słońcu, zachodzi synteza helu z wodoru. Masa 0,08 \(M_\odot) jest faktycznie tą graniczną, przykładowo https://pl.wikipedia.org/wiki/Czerwony_karzeł

8 godzin temu, ozeo napisał:

Co do szukania życia to obserwując Słońce nawet z odległości najbliższych gwiazd niczym się ono nie wyróżnia od taka sobie słaba kropeczka. A od zauważenia Słońca do zauważenia Ziemi i tego co się na niej dzieje to bardzo długa droga. 

W zakresie radiowym Ziemia to nie taka kropeczka. Sieje dość sporym nietermicznym szumem. Faktem jest, że ta kropeczka nie rozsmarowała się jeszcze zbytnio po Galaktyce: http://www.planetary.org/blogs/emily-lakdawalla/2012/3390.html

Podejrzewam, że zanim ten sygnał dotrze do jakiejś zdolnej go przeanalizować cywilizacji, naszej już nie będzie.

P.S. Z cywilizacją techniczną zgoda, ale ze znalezieniem inteligencji w ludziach mam problem.

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
1 godzinę temu, Szedar napisał:

ze znalezieniem inteligencji w ludziach mam problem

Czytam wątek i aż mnie kusiło, żeby napisać, że jak na razie nigdzie nie odnaleziono inteligentnego życia. A tu masz - wyręczyłeś mnie :)

Share this post


Link to post
Share on other sites
4 godziny temu, Szedar napisał:

We wszystkich karłach ciągu głównego, w tym w Słońcu, zachodzi synteza helu z wodoru. Masa 0,08 \(M_\odot) jest faktycznie tą graniczną, przykładowo

Hel to raczej nie jest ciężki pierwiastek... chodzi o pierwiastki typu tlen, azot, węgiel. Nie każda gwiazda może wytworzyć te pierwiastki. 

 

4 godziny temu, Szedar napisał:

P.S. Z cywilizacją techniczną zgoda, ale ze znalezieniem inteligencji w ludziach mam problem.

 

3 godziny temu, Jarkus napisał:

Czytam wątek i aż mnie kusiło, żeby napisać, że jak na razie nigdzie nie odnaleziono inteligentnego życia. A tu masz - wyręczyłeś mnie :)

Jak rozumiem siebie samych również nie uważacie za inteligentnych? :) Taka skromność, o ile nie fałszywa - jest godna pochwały ;p 

Share this post


Link to post
Share on other sites

 

Cytat

Jak zajdzie potrzeba to i orzeł skonstruuje otwieracz do żółwi

Daleko posunięty optymizm. 

W tym leży główna różnica między zwierzęciem a człowiekiem. Zarówno jastrząb, jak i człowiek jedzą kurczaki, ale im więcej jastrzębi tym mniej kurczaków, podczas gdy im więcej ludzi tym więcej kurczaków (Henry George)
Jakoś większość zwierząt  (oczywiście nie tych trzymających sztame z człowiekiem)  nie potrafi zmierzyć się z szybko zmieniającą się rzeczywistością.  Jakoś wielkiemu Orłu Haasta inteligencja i siła  na niewiele się zdała. Otwieracza nie znalazł.;)
 
Cytat

Co do tych mas słońca etc. trza by zajrzeć do literatury - jesteś pewien, że w gwiazdach o masie 0,08 M zachodzi synteza CIĘŻKICH pierwiastków ? 

Przecież jako gwiazdę definiuje się ciało niebieskie zdolne do syntezy wodoru, a takie ma masę minimum 8% Słońca.(przy wysokiej metaliczności 76 mas Jowisza przy niskiej 87 mas Jowisza czyli tak około 8% masy S.). Co mają do tego pierwiastki ciężkie?

 

16 godzin temu, ozeo napisał:

Ta wyjątkowość wcale nie musi być przypadkowa. Być może nasi przodkowie eliminowali każdą inteligentną konkurencję. I dopiero gdy zostaliśmy sami zachwiana została równowaga i nasze możliwości wystrzeliły. Nie musimy się martwić że nas napadną inne homo to mamy możliwości aby budować rakiety. 

 

Jedyna konkurencja to był nasz daleki kuzyn, Neandertalczyk. Odkrycie przyczyn jego wyginięcia to Święty Graal archeologii pradziejowej.

Ale obydwaj, Neandertalczyk jak i h.s.s. mieliśmy przodka wspólnego z już ukształtowanym mózgiem, z inteligencją. 

Bardzo mi się podoba hipoteza homo przypadkiem sapiens jako rozwinięcie architektury von Neumanna, budowy niezawodnego systemu z zawodnych elementów. Dużo zmiennych, które zaistniały w określonym czasie i przestrzeni. Może tam gdzieś w Kosmosie przebiegało to w podobny sposób albo zupełnie odmienny dając podobny skutek..ciekawe.

 
Edited by venator

Share this post


Link to post
Share on other sites
3 godziny temu, venator napisał:

Przecież jako gwiazdę definiuje się ciało niebieskie zdolne do syntezy wodoru, a takie ma masę minimum 8% Słońca.(przy wysokiej metaliczności 76 mas Jowisza przy niskiej 87 mas Jowisza czyli tak około 8% masy S.). Co mają do tego pierwiastki ciężkie?

eh... kolega chyba nie przeczytał moich wcześniejszych postów. 

Share this post


Link to post
Share on other sites
W dniu 30.01.2019 o 15:27, Warai Otoko napisał:

jesteś pewien, że w gwiazdach o masie 0,08 M zachodzi synteza CIĘŻKICH pierwiastków ?

W naszym Słońcu również nie zachodzi synteza pierwiastków ciężkich (pomijam to, co można pominąć) i nic nie zapowiada, by zmieniło się to w ciągu najbliższych 5 miliardów lat. Pod koniec życia Słońce dozna błysku helowego, w którym gwałtownie nastąpi synteza węgla, ale uwolniona energia i wytworzone pierwiastki "ciężkie" niewiele zasilą krwioobieg Wszechświata. Nie ma to kompletnie związku z wykwitłym już na Ziemi życiem. Kto powiedział, że preferowana masa gwiazdy macierzystej musi leżeć w przedziale 0,85-1,25?

P.S. Dostrzegam tu argumentację żywcem z liczącej około pół wieku, choć mistrzowskiej Summa technologiae. Od tego czasu nasza wiedza trochę się jednak pogłębiła.

Edited by Szedar

Share this post


Link to post
Share on other sites
W dniu 30.01.2019 o 12:48, Warai Otoko napisał:

potrzeba też nie rozwalania życia raz na dekadę

Może nie co dekadę ale co jakiś czas jest wskazane. Wielkie wymierania sprzyjały ewolucji. Przyspieszyły powstanie inteligentnego życia.

Share this post


Link to post
Share on other sites
3 hours ago, Delor said:

Wielkie wymierania sprzyjały ewolucji. Przyspieszyły powstanie inteligentnego życia

To wcale nie jest pewne..

Share this post


Link to post
Share on other sites
14 godzin temu, Szedar napisał:

W naszym Słońcu również nie zachodzi synteza pierwiastków ciężkich (pomijam to, co można pominąć) i nic nie zapowiada, by zmieniło się to w ciągu najbliższych 5 miliardów lat. Pod koniec życia Słońce dozna błysku helowego, w którym gwałtownie nastąpi synteza węgla, ale uwolniona energia i wytworzone pierwiastki "ciężkie" niewiele zasilą krwioobieg Wszechświata. Nie ma to kompletnie związku z wykwitłym już na Ziemi życiem. Kto powiedział, że preferowana masa gwiazdy macierzystej musi leżeć w przedziale 0,85-1,25?

Dobrze, widzę, że ten argument jest sporny i dzięki powyższemy komentarzowi również zauważyłem jego słabość. Być może jest nieprawdziwy, choć nikt (łącznie ze mną) nie podał żadnych źródeł (pamiętam te dane z wykładu na wydziale fizyki którego kiedyś słuchałem, ale nie mogę znaleźć źródeł). Widzę kilka rozwiązań tego problemu. 

Po pierwsze - nawet jeśli ten jeden czynnik nie jest prawdą, to reszta w zupełności wystarcza do utrzymania mojej argumentacji. Także nic straconego :P

Po drugie - moze to jest kewstia którejś generacji gwiazdy np. 3 - tak, żeby w okolicy, i w dysku protoplanetarnym etc. nagromadziła się juz wystarczająca ilość ciężkich pierwiastków. 

Niemniej jedno jest pewne - skądś musiały się wziąć cieżkie pierwiastki u nas na ziemi, i w naszym przypadku były one koneiczne. Ciężkie pierwiastki powstają w gwiazdach - więc jakiś warunek związany z czasem życia gwiazd, może nie jednej a kilku generacji - musi być spełniony aby sytuacja taka jak na ziemi miała miejsca. Twierdzenie, że inteligentne życie (a nawet i bakteryjne jak sądze) mogłoby powstać bez cięzkich pierwiastków jest całkowicie wyssane z palca bo nigdy nic takiego nie zaobserwowaliśmy. Nie kojarzę bakterii zrobionych z helu i wodoru :P

7 godzin temu, Delor napisał:

Może nie co dekadę ale co jakiś czas jest wskazane. Wielkie wymierania sprzyjały ewolucji. Przyspieszyły powstanie inteligentnego życia.

Jak kolega ex nihilo zauważył - nie jest to pewne, a po drugie - ja mówię o sytuacji niemal totalnej zagłady, która niszczyła by życie albo całkowicie, albo cofałaby ewolucję do bakterii etc. Musi być względnie bezpiecznie przez kilka miliardów lat żeby wyewoluował człowiek - upadek meteorytu i wymieniranie dinozaurów to nic takiego w porównaniu do np. kolizji z gwiazdą... lub zwiększeniem 1000 krotnie kolizji z dużymi planetoidami i kometami. 

Share this post


Link to post
Share on other sites

A co jest tezą? Czy

W dniu 29.01.2019 o 10:57, Warai Otoko napisał:

Czynników które umożliwiły lub znacznie zwiększyły prawdopodobieństwo powstania życia jakie znamy na ziemi jest bardzo dużo i jeden jest rzadszy i dziwniejszy od kolejnego

Być może życie jakie znamy z Ziemi jest wyjątkowe, a istnieje zdecydowanie więcej innych podejść natury do tematu. By to rozstrzygnąć potrzeba jakiejś statystyki, a tymczasem ekstrapolujesz z jednego punktu jaki znamy. Dość ryzykowne podejście.

Jeśli chodzi o zawartość pierwiastków ciężkich w dysku protoplanetarnym, to nasz układ nie jest niczym wyjątkowym. Tak, głównym ich dostawcą są wybuchy supernowych, których czas życia jest mikry wobec czasu życia Wszechświata, a ich eksplozje są niemal koniecznością. Patrząc w dłuższej perspektywie sprzyjają powstawaniu i niszczeniu życia.

Edited by Szedar

Share this post


Link to post
Share on other sites
3 godziny temu, Szedar napisał:

Być może życie jakie znamy z Ziemi jest wyjątkowe, a istnieje zdecydowanie więcej innych podejść natury do tematu. By to rozstrzygnąć potrzeba jakiejś statystyki, a tymczasem ekstrapolujesz z jednego punktu jaki znamy. Dość ryzykowne podejście.

Co niby ekstrapoluje? Robię właśnie dokładnie na odwrót :) To wszyscy Ci którzy twierdzą, że ze względu na ilość potencjalnych egzoplanet w ekosferze we wszechświecie roi się od inteligentnego życia - własnie popełniają ten błąd zw. z oceną prawdopodobieństwa ponieważ znany przypadek życia int. mamy tylko jeden i powstał on przy wystąpieniu przynajmniej kilku rzadkich czynników więcej niż tylko ekosfera. Ja nie twierdze, że każdy z czynników który wymieniłem jest wyjątkowy w skali wszechświata i np. że TYLKO u nas są cieżkie pierwiastki... Jeszcze raz napisze, może innymi słowami - chodzi o jednoczesne występowanie wszystkich tych czynników które wypisałem kilka postów wyżej. Możemy znać nawet egzoplanety/układy z których każdy spełnia po jednym albo może nawet po dwa lub trzy takie czynniki, ale nie znamy takiego który spełnia wszystkie. I to jest właśnie naiwne - twierdzić, bez odp. obliczeń - że NA PEWNO musi gdzieś tam istnieć inteligentne życie bo tak dużo planet etc. Może tak, może nie (zw względu na te czynniki właśnie). A to, że BYĆ MOŻE natura ma inne podejście do tematu - to jest BYĆ MOŻE właśnie, a być może jest to niemożliwe w naszym wszechświecie ze względu na warunki początkowe i takie a nie inne prawa przyrody. Krótko mówiąc - na podstawie obecnych danych i samego faktu, że jest dużo planet nie możemy powiedzieć NIC na temat wielkości prawdopodobieństwa występowania inteligentnego życia. 

Share this post


Link to post
Share on other sites

Nie robisz na odwrót, a dokładnie tak samo:

W dniu 29.01.2019 o 10:57, Warai Otoko napisał:

Czynników które umożliwiły lub znacznie zwiększyły prawdopodobieństwo powstania życia jakie znamy na ziemi jest bardzo dużo i jeden jest rzadszy i dziwniejszy od kolejnego - a to znacznie redukuje prawodopodobieństwo powstania życia na innych planetach.

Przemyśl podkreślenia. Na jakiej statystyce się opierasz? Ledwo, i to pośrednio głównie, odkrywamy planety pozasłoneczne, a Ty już wiesz jak tam jest? Dodatkowo, planety które odkrywamy (ich orbity, parametry itp.) to efekt selekcji obserwacyjnej. Dla mnie zarówno twierdzenie, że Galaktyka roi się od inteligentnego życia, jak i twierdzenie przeciwne, to czysta mistyka. Weźmy potencjalnego mędrca z buszu afrykańskiego, który nigdy nie widział i nie słyszał o białym człowieku. Jestem niemal pewien, że według niego czynnikiem niezbędnym do powstania inteligentnego życia jest czarna pigmentacja skóry.

Share this post


Link to post
Share on other sites
2 godziny temu, Szedar napisał:

Przemyśl podkreślenia. Na jakiej statystyce się opierasz? Ledwo, i to pośrednio głównie, odkrywamy planety pozasłoneczne, a Ty już wiesz jak tam jest? Dodatkowo, planety które odkrywamy (ich orbity, parametry itp.) to efekt selekcji obserwacyjnej. Dla mnie zarówno twierdzenie, że Galaktyka roi się od inteligentnego życia, jak i twierdzenie przeciwne, to czysta mistyka. Weźmy potencjalnego mędrca z buszu afrykańskiego, który nigdy nie widział i nie słyszał o białym człowieku. Jestem niemal pewien, że według niego czynnikiem niezbędnym do powstania inteligentnego życia jest czarna pigmentacja skóry.

Generalnie zgoda, ale wyciągasz zdania z kontekstu i czepiasz się słówek. Od kilku postów staram się właśnie wykazać, że ocenianie prawdopodobieństwa życia inteligentnego innego poza nami na podstawie tego, ze istnieje potencjalnie miliardy planet jest błędem i właśnie w tym kontekście pisałem o redukcji prawdopodobieństwa. Redukcji w stosunku do tego źle policzonego/oszacowanego prawdopodobieństwa które właśnie krytykuje. Innymi słowy czynniki które wskazałem powinny znacznie ZREDUKOWAĆ wysokie prawdopodobieństwo istnienia obcych cywilizacji jakie wychodzi z oszacowań na podstawie równania Drake'a. A to, że samo równanie Drake'a jest wg. ciebie mistyka to osobna kwestia, lecz wielu ludzi w to wierzy i stąd moje zarzuty. (swoją drogą antropiczne koincydencje o których pisałem mogą być jednym z wyjaśnień paradoksu Fermiego). A druga kwestia - ja nigdzie nie pisałem, że twierdzę na odwrót - tzn. że nie ma lub jest mało życia int. we wszechświecie. 

Share this post


Link to post
Share on other sites
W dniu 31.01.2019 o 16:09, Warai Otoko napisał:

eh... kolega chyba nie przeczytał moich wcześniejszych postów. 

Czytałem. Chodziło o te, Twoje zdanie:

Cytat

 Masa słońca - musi być między 0,85 M a 1,2 M - gdyby masa była mniejsz anie nastąpiły by reakcje termojądrowe a wtedy patrz punkt 1. Gdyby była większa - zbyt szybko by się wypaliło. (Niektóre gwaizdy żyją np. 1 mld lat, a ewolucja życia na zimei trwa 3.5 mld lat...) 

Ze zdania tego wynika, że ciało o masie mniejszej niż 0,85M nie byłoby gwiazdą a to nieprawda.

Ten układ jest ciekawy, z resztą był inspiracja w Sci-fi:

https://pl.wikipedia.org/wiki/Ran_(gwiazda)#/media/File:System_Epsilon_Eridani.JPG

https://pl.wikipedia.org/wiki/Ran_(gwiazda)

Są dwa pasy asteroid, jest "Jowisz", "pas Kuipera", gwiazda to młody pomarańczowy karzeł. "Zaledwie" 10,5 roku św. od Ziemi. 

Edited by venator

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By KopalniaWiedzy.pl
      Scott S. Sheppard i jego koledzy z Carnegie Institution for Science odkryli 20 nowych księżyców Saturna. Z liczbą 82 znanych księżyców Saturn wyprzedził Jowisza i jego 79 księżyców.
      Każdy z nowo odkrytych księżyców ma około 5 kilometrów średnicy. Siedemnaście z nich obiega planetę w kierunku przeciwnym do kierunku jej ruchu obrotowego (ruch wsteczny). Kierunek ruchu trzech pozostałych jest zgodny z tym, jak wiruje Saturn (ruch prosty). Dwa z tych trzech księżyców znajdują się bliżej planety i pełen obieg wokół niej zajmuje im około 2 lat. Trzeci z księżyców poruszających się ruchem prostym oraz księżyce poruszające się ruchem wstecznym są dalej od Saturna i potrzebują ponad trzech lat na przebycie całej orbity.
      Badanie orbit tych księżyców może zdradzić nam ich pochodzenie oraz informacje o warunkach panujących w otoczeniu Saturna w czasie jego formowania się, mówi Sheppard.
      Wydaje się, że zewnętrzne księżyce Saturna są zorganizowane w trzy grupy w zależności od nachylenia ich orbity względem planety. Dwa z nowo odkrytych księżyców poruszających się ruchem prostym pasują do grupy inuickiej. W jej skład wchodzą księżyce, których orbity są nachylone o około 46 stopni względem planety. Nadawane są im nazwy z mitologii Inuitów. Niewykluczone, że wszystkie one powstały z jednego księżyca, który w przeszłości się rozpadł.
      W kolei nowo odkryte księżyce o ruchu wstecznym wykazują podobieństwa do grupy nordyckiej. To duża bardzo zróżnicowana grupa, której nadawane są nazwy z mitologii nordyckiej. Jedynym wyjątkiem jest tutaj Febe, postać z mitologii greckiej. Księżyc ten został odkryty w 1899 roku, na długo przed innymi, a do roku 2000 był najdalej położonym od Saturna znanym nam księżycem tej planety. Od dzisiaj tytuł ten należy do jednego z nowo odkrytych księżyców z grupy nordyckiej. Również grupa nordycka może być pozostałością jednego księżyca.
      Podobne grupy księżyców zewnętrznych widzimy też wokół Jowisza. Wskazuje to, że dochodziło do potężnych zderzeń albo pomiędzy samymi księżycami, albo z księżycami i zewnętrznymi obiektami, jak asteroidy czy komety, mówi Sheppard.
      Trzeci z nowych księżyców poruszających się ruchem prostym ma orbitę nachyloną pod kątem 36 stopni, co czyni go podobnym do grupy galijskiej. Jednak, jako że jego orbita znajduje się znacznie dalej niż orbita jakiegokolwiek innego księżyca o ruchu prostym, nie można wykluczyć, że albo jest zewnętrznym obiektem przechwyconym przez Saturna, albo nie ma nic wspólnego z innymi księżycami o ruchu prostym.
      Obecność tak licznych niewielkich księżyców sporo mówi o warunkach w chwili ich powstawania. Jeśli bowiem wokół Saturna znajdowałoby się dużo pyłu i gazu w chwili, gdy rozpadały się jego duże księżyce, to z czasem małe księżyce zostałyby na tyle spowolnione przez tarcie, że opadłyby na powierzchnię planety. Fakt, że te małe księżyce obiegają Saturna po tym, jak rozpadły się księżyce, od których pochodzą, wskazuje, iż do kolizji doszło gdy proces formowania się planety był w większości ukończony i dysk protoplanetarny nie wpływał na księżyce.
      W ubiegłym roku Sheppard odkrył 12 nowych księżyców Jowisza, a niedawno informowaliśmy o nadaniu imion pięciu z nim.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W materiale wyrzucanym przez gejzery Enceladusa odkryto nowy związek organiczny, który wchodzi w skład aminokwasów. Odkrycia dokonano dzięki szczegółowej analizie danych przekazanych przez sondę Cassini.
      Na Enceladusie, księżycu Saturna, działają potężne gejzery. Wyrzucają one cząstki lodu z prędkością 400 m/s. Szacuje się, że w ciągu sekundy księżyc wyrzuca 250 kilogramów wody w postaci lodu i pary. Sonda Cassini przechwyciła ten materiał i poddała go analizie. Teraz wiemy, że w ziarnach lodu znajdują się związki organiczne zawierające azot i tlen. Na Ziemi podobne związki wchodzą w reakcje chemiczne tworzące aminokwasy, a cała reakcja napędzana jest energią z kominów hydrotermalnych. Naukowcy sądzą, że podobny proces ma miejsce na Enceladusie, gdzie gejzery zapewniają energię potrzebną do powstawania aminokwasów.
      Jeśli panują tam odpowiednie warunki, to te molekuły pochodzące z głębi oceanicznych Enceladusa mogą podlegać takim samym reakcjom chemicznym, jakie mają miejsce na Ziemi. Nie wiemy jeszcze, czy aminokwasy są niezbędne, by powstało życie poza Ziemią, ale znalezienie molekuł tworzących aminokwasy to ważna część układanki, mówi Nozair Khawaja z Wolnego Uniwersytetu w Berlinie.
      Misja sondy Cassini zakończyła się przed 2 laty, ale dostarczyła ona tyle danych, że naukowcy będą je analizowali przez wiele dekad. Zespół, na którego czele stoi Khawaja, wykorzystał dane z urządzenia Cosmic Dust Analyzer, które w pierścieniu E Saturna wykryło lód pochodzący z Enceladusa.
      Odkryte związki najpierw rozpuściły się w oceanie Enceladusa, później zamarzły na jego powierzchni skąd zostały wyrzucone przez gejzery. Ich odnalezienie uzupełnia ubiegłoroczne odkrycie tego samego zespołu, który stwierdził, że na powierzchni oceanu Enceladusa pływają duże nierozpuszczalne molekuły organiczne. Teraz znaleźliśmy mniejsze rozpuszczalne molekuły, potencjalne prekursory aminokwasów i innych składników, niezbędnych do powstania życia na Ziemi, mówi współautor badań Jon Hillier.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Za trzy tygodnie zostanie przedstawione szczegółowe podsumowanie projektu Deep Carbon Observatory (DCO), prowadzonego od 10 lat przez amerykańskie Narodowe Akademie Nauk. W programie bierze obecnie udział niemal 1000 naukowców z niemal 50 krajów na świecie. Mediom udostępniono już główne wnioski z raportu, które zostały opublikowane w piśmie Elements.
      Z badań wynika, że w oceanach, najwyższej warstwie gleby oraz w atmosferze znajduje się 43 500 gigaton (Gt – miliardów ton) węgla. Cała reszta jest uwięziona w ziemskiej skorupie, płaszczu i jądrze. Całkowita ilość węgla obecnego na naszej planecie to 1,85 miliarda Gt. Każdego roku z głębi Ziemi za pośrednictwem wulkanów oraz innych aktywnych regionów emitowanych jest od 280 do 360 milionów ton (0,28–0,36 Gt) węgla. Zatem całkowita antropogeniczna emisja węgla jest od 40 do 100 razy większa, niż całkowita emisja z aktywności wulkanicznej.
      Obieg węgla w głębi planety wykazuje długoterminową stabilność. Czasami dochodzi do katastrofalnych wydarzeń, podczas których do atmosfery przedostają się duże ilości węgla, co powoduje ocieplenie klimatu, zakwaszenie oceanów oraz masowe wymieranie. W ciągu ostatnich 500 milionów lat Ziemia doświadczyła co najmniej 5 tego typu wydarzeń. Upadek meteorytu, który przed 66 miliony laty przyczynił się do zagłady dinozaurów, spowodował emisję od 425 do 1400 Gt CO2 powodując ogrzanie klimatu i masowe wymieranie roślin i zwierząt. Niewykluczone, że uda się opracować system wczesnego ostrzegania przed erupcjami wulkanicznymi, gdyż przed 5 laty zaobserwowano, iż przed wybuchem w gazach wulkanicznych zmniejsza się udział dwutlenku siarki, a zwiększa dwutlenku węgla.
      Węgiel, będący podstawą wszelkiego życia i źródłem energii dla ludzkości, obiega planetę od płaszcza po atmosferę. By zabezpieczyć naszą przyszłość, musimy lepiej zrozumieć cały cykl obiegu węgla. Kluczowe jest określenie, jak wiele jest tego węgla, gdzie on się znajduje, jak szybko i w jakiej ilości przemieszcza się pomiędzy głębokimi obszarami ziemi a atmosferą i z powrotem, mówi Marie Edmonds z University of Cambridge, która bierze udział w projekcie DCO. Z kolei Tobias Fischer z University of New Mexico przypomina, że dotychczas w ramach prac DCO powstało ponad 1500 publikacji naukowych. Cieszymy się z postępu, jednak trzeba podkreślić, że głębokie warstwy naszej planety to obszar w dużej mierze nieznany nauce. Dopiero zaczynamy zdobywać potrzebną nam wiedzę.
      Ponad powierzchnią Ziemi występuje 43 500 gigaton węgla. Niemal cały ten węgiel, bo 37 000 gigaton znajduje się w głębinach oceanów. Kolejne 3000 gigaton występuje w osadach morskich, a 2000 Gt w biosferze lądowej. W powierzchniowych wodach oceanów występuje 900 Gt węgla, a w atmosferze jest go 590 Gt.
      Eksperci z DCO oceniają też, że obecnie na Ziemi aktywnych jest około 400 z 1500 wulkanów, które były aktywne od ostatniej epoki lodowej. Kolejnych 670 wulkanów, które były aktywne przed epoką lodową, może emitować gazy. Dotychczas udokumentowano emisję ze 102 takich wulkanów, z czego 22 to wulkany, w przypadku których ostatnia erupcja miała miejsce dawniej niż 2,5 miliona lat temu. Dzięki stacjom monitorującym, modelom cyfrowym i eksperymentom wiemy, że w latach 2005–2017 mierzalne ilości CO2 emitowało do atmosfery ponad 200 systemów wulkanicznych. Jeszcze w roku 2013 ich liczbę oceniano na 150. Udokumentowano też superregiony w których dochodzi do rozproszonej emisji gazów z wnętrza Ziemi, takie jak Yellowstone, Wielki Rów Wschodni w Afryce czy wulkaniczna prowincja Technong w Chinach. Dzięki tym badaniom możliwe było stwierdzenie, że emisja z takich regionów jest porównywalna z emisją wulkaniczną

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jednym z największych problemów eksploracji kosmosu jest olbrzymi koszt pokonania grawitacji Ziemi. Silniki rakietowe zużywają olbrzymie ilości paliwa na osiągnięcie odpowiedniego przyspieszenia, a samo paliwo tylko zwiększa masę, którą trzeba wynieść. Wskutek tego umieszczenie na orbicie każdego kilograma ładunku kosztuje dziesiątki tysięcy dolarów. Wyprawa w dalsze regiony to kolejne koszty. Dlatego też specjaliści od dawna zastanawiają się, w jaki sposób obniżyć te koszty.
      Jeden z pomysłów zakłada zbudowanie kosmicznej windy, kabla rozciągającego się od Ziemi na orbitę, po której można by wysyłać ładunki. Olbrzymią zaletą takiego rozwiązania byłaby możliwość wykorzystania energii słonecznej, zatem nie trzeba by było wynosić paliwa.
      Jest jednak pewien problem. Taki kabel musiałby być niezwykle wytrzymały. Zephyr Penoyre z University of Cambridge oraz Emily Sandford z Columbia University twierdzą, że już teraz istnieją komercyjnie dostępne materiały, z których taki kabel mógłby powstać. Trzeba jedynie zmienić sposób myślenia o budowie kosmicznej windy.
      Rozważana przez licznych ekspertów winda kosmiczna rozciągałaby się od Ziemi po orbitę geosynchroniczną, która znajduje się około 36 000 kilometrów nad powierzchnią naszej planety. Kabel o takiej długości miałby olbrzymią masę. Żeby nie dopuścić do jego upadku, trzeba by umocować go na orbicie do podobnej masy, a tak skonstruowana winda byłaby utrzymywana przez działające na nią siły odśrodkowe.
      Przez dziesięciolecia specjaliści prowadzili odpowiednie obliczenia i zawsze otrzymywali zniechęcające wyniki. Nie istnieje bowiem materiał wystarczająco wytrzymały, z którego można by taką windę zbudować.
      Penoyre i Sandford zaproponowali więc inne rozwiązanie. Zamiast mocować kabel do Ziemi, należy umocować go do Księżyca i opuścić w kierunku Ziemi. Różnica tkwi w sile odśrodkowej. Rozważana dotychczas winda kosmiczna wykonywałaby jeden obrót wokół planety w ciągu doby. Jednak lina mocowana do Księżyca wykonywałaby obrót raz na miesiąc, zatem działałyby na niż mniejsze siły. Co więcej, siły te byłyby inaczej rozłożone. Lina rozciągnięta od Księżyca ku Ziemi przechodziłaby przez obszar, w którym oddziaływania grawitacyjne Ziemi i Księżyca się znoszą. Obszar ten, punkt Lagrange'a, jest kluczowym elementem nowej koncepcji kosmicznej windy. Poniżej niego grawitacja ciągnie linę ku Ziemi, powyżej, ku Księżycowi.
      Penoyre i Sandford wykazali oczywiście, że nie istnieje materiał pozwalający na stworzenie liny rozciągającej się od Księżyca do Ziemi. Jednak kabel taki, by być użytecznym, nie musi być rozciągnięty na całą długość. Naukowcy wykazali, że z dostępnych obecnie polimerów węglowych można zbudować kabel rozciągający się od Księżyca po orbitę geosynchroniczną Ziemi. Tworzenie prototypowego kabla grubości rysika ołówka kosztowałoby miliardy dolarów. Nie jest to jednak coś, czego już teraz nie da się wykonać.
      Dzięki rozciągnięciu umocowanej do Księżyca liny głęboko w studnię grawitacyjną Ziemi możemy zbudować stabilną użyteczną windę kosmiczną pozwalającą na swobodne przemieszczanie się pomiędzy sąsiedztwem Ziemi a powierzchnią Księżyca, mówią Penoyre i Sandford. Wyliczają, że dzięki takiemu rozwiązaniu obecne koszty osiągnięcia powierzchni Księżyca zmniejszyłyby się o około 70%. Co więcej taka winda ułatwiłaby eksplorację  okolic punktu Lagrange'a. To niezwykle interesujący region, gdyż zarówno grawitacja jak i jej gradient wynoszą w nim 0, dzięki czemu można tam bezpiecznie prowadzić różnego typu prace konstrukcyjne. Jeśli z Międzynarodowej Stacji Kosmicznej wypadnie jakieś narzędzie, będzie ono szybko przyspieszało. W punkcie Lagrange'a gradient grawitacji jest praktycznie pomijalny, takie narzędzie przez długi czas będzie znajdowało się blisko ręki, z której wypadło, zauważają naukowcy.
      Dodatkową zaletą punktu Lagrange'a jest fakt, że w regionie tym znajduje się bardzo mało śmieci pozostawionych przez człowieka oraz innych obiektów, mogących stanowić zagrożenie dla pracujących tam ludzi oraz wznoszonych konstrukcji.
      Z tych właśnie powodów Penoyre i Sandford uważają, że dostęp do punktu Lagrange'a jest główną zaletą proponowanej przez nich windy kosmicznej. Możliwość założenia obozu w punkcie Lagrange'a to, naszym zdaniem, najważniejszy i najbardziej obiecujący element wczesnego użycia proponowanej przez nas windy kosmicznej. Taki obóz pozwoliłby na budowanie i konserwację nowej generacji sprzętu kosmicznego, czy to teleskopów, akceleratorów cząstek, wykrywaczy fal grawitacyjnych, generatorów energii, wiwariów czy platform startowych dla podboju dalszych regionów Układu Słonecznego.

      « powrót do artykułu
×
×
  • Create New...