
Życie na Ziemi istnienie dzięki zderzeniu dwóch planet?
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Pełniący obowiązki administratora NASA Sean Duffy, wydał dyrektywę, której celem jest przyspieszenia budowy reaktora atomowego na powierzchni Księżyca. Agencja niejednokrotnie prowadziła prace nad reaktorami służącymi eksploracji kosmosu. Dotychczas żaden nie przyniósł oczekiwanych rezultatów. Administracja prezydenta Trumpa – w obliczu rosnącej konkurencji ze strony Chin i Rosji – chce wreszcie doprowadzić tę kwestię do końca.
Chiny i Rosja mają ambitne plany. Chcą do połowy lat 30. wybudować w pobliżu bieguna południowego Księżyca stację zasilaną energią jądrową. Biegun południowy znajduje się też w kręgu zainteresowań USA, które chcą w 2027 roku wysłać tam misję załogową. W tamtym regionie znajdują się wiecznie zacienione kratery, zawierające zamarzniętą wodę, którą można wykorzystać zarówno do picia, jak i do produkcji paliwa.
Prezydent Trump już w czasie swojej pierwszej kadencji naciskał na zorganizowanie załogowej misji na Księżyc. W 2022 roku NASA, zainspirowana częściowo polityką byłego już wówczas prezydenta, prowadziła projekt, w ramach którego trzy firmy otrzymały po 5 milionów dolarów na opracowanie koncepcji niewielkiego, 40-kilowatowego reaktora atomowego o masie nie przekraczającej 6 ton.
Projekt Duffy'ego jest bardziej ambitny. Reaktor ma mieć moc co najmniej 100 kW i być gotowy do wystrzelenia w 2029 roku. Teraz NASA ma 30 dni na wyznaczenie urzędnika, który będzie nadzorował cały projekt i 60 dni na opublikowanie oferty dla partnerów.
Powstanie takiego reaktora na Księżycu może pozwolić też USA de facto na przecięcie niewielkiej części Srebrnego Globu. Traktat o przestrzeni kosmicznej zabrania co prawda jakiemukolwiek państwu zawłaszczania jakiegokolwiek fragmentu przestrzeni kosmicznej czy ogłaszania swojego zwierzchnictwa nad nim, jednak ten sam traktat mówi, o konieczności poszanowania uzasadnionych interesów innych państw. To zaś może oznaczać, że w pewnej odległości od takiego reaktora inne państwa nie będą mogły prowadzić żadnej działalności mogącej utrudnić jego działanie. De facto mogłaby powstać w jego pobliżu wyłączna strefa zarządzana przez USA.
Wielu ekspertów wątpi, czy rok 2029 jest realistycznym terminem wysłania na Księżyc reaktora atomowego. Tym bardziej, że – ich zdaniem – zorganizowanie misji załogowej w 2027 roku też jest zbyt ambitnym celem.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Łaziki pracujące na Marsie czy Księżycu, mierzą się z wieloma problemami. Jednym z nich jest ryzyko utknięcia w grząskim gruncie. Gdy tak się stanie operatorzy podejmują serię delikatnych manewrów, by pojazd wydobyć. Nie zawsze się to udaje. Łazik Spirit zakończył misję jako stacjonarna platforma badawcza po tym, jak utknął w luźnym piasku. Czy takim wydarzeniom da się zapobiec? Inżynierowie z University of Wisconsin-Madison informują o znalezieniu poważnego błędu w procedurach testowania łazików. Jego usunięcie może spowodować, że pojazdy na Marsie i Księżycu będą narażone na mniejsze ryzyko.
Błąd ten polega na przyjęciu zbyt optymistycznych i uproszczonych założeń co do tego, jak łaziki zachowują się poza Ziemią. Ważnym elementem testów naziemnych takich pojazdów jest sprawdzenie, w jaki sposób mogą się one poruszać po luźnym podłożu. Na Księżycu grawitacja jest 6-krotnie mniejsza niż na Ziemi, więc przez dekady, testując łaziki, naukowcy tworzyli prototypy o masie sześciokrotnie mniejszej niż łazik docelowy i testowali je na pustyni. Jednak ta metoda pomijała pewien istotny szczegół – wpływ grawitacji na piasek.
Profesor Dan Negrut i jego zespół przeprowadzili symulacje, które wykazały, że Ziemia przyciąga ziarenka piasku silniej niż Mars czy Księżyc. Dzięki temu piasek na Ziemi jest bardziej zwarty. Jest mniejsze prawdopodobieństwo, że ziarna będą się pod nimi przesuwały. Jednak na Księżycu piasek jest luźniejszy, łatwiej się przemieszcza, więc obracające się koła trafiają na mniejszy opór. Przez to pojazdowi trudniej się w nim poruszać.
Jeśli chcemy sprawdzić, jak łazik będzie sobie radził na Księżycu, musimy rozważać nie tylko wpływ grawitacji na pojazd, ale również wpływ grawitacji na piasek. Nasze badania pokazują, jak ważne są symulacje do badania możliwości jezdnych łazika na luźnym podłożu, wyjaśnia uczony.
Uczeni dokonali swojego odkrycia podczas prac związanych z misją łazika VIPER, który ma trafić na Księżyc. We współpracy z naukowcami z Włoch stworzyli silnik Chrono, służący do symulacji zjawisk fizycznych, który pozwala na szybkie modelowanie złożonych systemów mechanicznych. I zauważyli istotne różnice pomiędzy wynikami testów VIPERA na Ziemi, a wynikami symulacji. Po przeanalizowaniu problemu znaleźli wspomniany błąd w procedurach testowych.
Chrono to produkt opensource'owy, z którego skorzystały już setki firm i organizacji. Pozwala on lepiej zrozumieć najróżniejsze złożone mechanizmy, od mechanicznych zegarków po czołgi jeżdżące poza utwardzonymi drogami.
Źródło: A Study Demonstrating That Using Gravitational Offset to Prepare Extraterrestrial Mobility Missions Is Misleading
« powrót do artykułu -
przez KopalniaWiedzy.pl
Uczeni z University of Manchester i Australian National University (ANU) stworzyli magnes składający się z pojedynczej molekuły, który przechowuje zapisane w nim informacje w najwyższej temperaturze ze wszystkich tego rodzajów pamięci. Tego typu molekuły charakteryzuje niezwykle duża pojemność zapisu, nawet 100-krotnie większa niż limit współczesnych technologii. W przyszłości tego typu molekuły mogą zostać wykorzystane do zbudowania pamięci kwantowych czy w spintronice.
Nowa molekuła zachowuje zapisane w niej dane w temperaturze 100 kelwinów, czyli -173 stopni Celsjusza. Jej stworzenie to znaczący krok naprzód w porównaniu z wcześniejszymi „molekularnymi magnesami”, które przechowywały dane w temperaturze 80 kelwinów (-193 stopnie Celsjusza). Oczywiście temperatura potrzebna do pracy wspomnianej molekuły jest znacznie niższa od temperatury pokojowej czy temperatur możliwych do uzyskania za pomocą standardowych urządzeń chłodniczych. Jednak, na co warto zwrócić uwagę, jest to temperatura znacząco wyższa od temperatury ciekłego azotu (77 kelwinów, -196 stopni Celsjusza).
Ciekły azot jest łatwo dostępnym chłodziwem, więc dla koncernów wykorzystujących olbrzymie bazy danych, jak Google, Microsofot, Meta czy Amazon, jego użycie nie powinno stanowić problemu. Natomiast korzyści z zastosowania wspomnianej molekuły mogą być olbrzymie. Dość wspomnieć, że teoretycznie pozwala ona przechować ponad 3TB na powierzchni 1 cm2. To na przykład pół miliona filmików z TikToka czy 3600 płyt CD z muzyką zapisanych na dysku twardym wielkości znaczka pocztowego.
Pamięci magnetyczne są wykorzystywane od dziesięcioleci. Obecnie używane dyski twarde przechowują dane poprzez namagnesowanie niewielkich regionów składających się z wielu atomów, które współdziałają w podtrzymaniu zapisanych danych. Chemiczne molekuły magnetyczne nie potrzebują pomocy sąsiadów, by zachować zapisane w nich dane. To stwarza okazję do zbudowania z nich układów pamięci o olbrzymiej gęstości zapisu. Jednak problemem jest tutaj fakt, że do przechowania tego zapisu wymagają one bardzo niskich temperatur. Badacze z Manchesteru zaprezentowali molekułę, której można zapewnić odpowiednie warunki za pomocą tak powszechnie dostępnego chłodziwa jak ciekły azot.
Kluczem do sukcesu jest tutaj unikatowa struktura złożona z atomu dysprozu umieszczonego między dwoma atomami azotu. Te trzy atomu układają się niemal w linii prostej. Taka architektura zwiększa zdolność materiału do generowania i utrzymania pola magnetycznego. O tym wiadomo było nie od dzisiaj. Dopiero teraz jednak udało się to zrealizować w praktyce.
Zwykle gdy dysproz jest związany jedynie z 2 atomami azotu, powstaje molekuła o zagiętym, nieregularnym kształcie. Uczeni z Manchesteru dodali do całości alken, który łączy się z atomem dysprozu, utrzymując pożądany kształt całości.
Naukowcy z ANU są twórcami analizy numerycznej i nowego modelu opisującego zachowanie się tego typu molekuł. Na ich podstawie uczeni z Manchesteru będą teraz pracowali nad jeszcze lepszymi magnesami molekularnymi.
Źródło: Soft magnetic hysteresis in a dysprosium amide–alkene complex up to 100 kelvin, https://www.nature.com/articles/s41586-025-09138-0
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na opisywanej przez nas przed kilkunastoma miesiącami planecie hyceańskiej K2-18b odkryto najsilniejsze dotychczas wskazówki mogące świadczyć o istnieniu życia pozaziemskiego. Naukowcy z Uniwersytetu w Cambridge poinformowali właśnie, że dzięki Teleskopowi Webba zauważyli w atmosferze K2-18b sygnały świadczące o istnieniu tam siarczku dimetylu (DMS) i/lub disiarczku dimetylu (DMDS). Na Ziemi związki te powstają wyłącznie w wyniku działania organizmów żywych. To oznacza, że albo na K2-18b istnieje życie, albo zachodzi tam nieznany nauce proces chemiczny, albo... że to fałszywy sygnał.
W przypadku opisywanych tutaj badań wartość odchylenia standardowego wynosi 3 sigma, co oznacza, że istnienie 0,3-procentowe prawdopodobieństwo, iż zaobserwowany sygnał jest fałszywy. Wartość odchylenia standardowego, od której w nauce ogłaszane jest odkrycie wynosi 5 sigma. Przy tym poziomie prawdopodobieństwo, iż zarejestrowane dane są przypadkowym fałszywym sygnałem wynosi poniżej 0,00006%. Naukowcy z Cambridge mówią, że potrzebują od 16 do 24 godzin obserwacji za pomocą Teleskopu Webba, by (ewentualnie) zwiększyć poziom ufności do 5 sigma.
K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hyceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hyceańskich jest łatwiej badać, mówił przed kilkunastoma miesiącami Nikku Madhusudhan z Uniwersytetu w Cambridge.
Termin „planety hyceańskie" został ukuty – na podstawie badań K2-18b – przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
Badacze z Cambridge obserwują K2-18b za pomocą Teleskopu Webba. Już wcześniej za pomocą instrumentów NIRISS i NIRSpec zauważyli sygnały, które mogą pochodzić od siarczku dimetylu. Niedawno potwierdzili je za pomocą instrumentu MIRI. To niezależna linia dowodowa, zdobyta za pomocą instrumentu, którego wcześnie nie wykorzystywaliśmy. Działa on w zakresie fal świetlnych, który nie nakłada się na zakres wcześniej używanych instrumentów. Sygnał jest silny i czytelny, mówi główny autor badań, profesor Nikku Madhusudhan.
Dotychczas przeprowadzone badania wskazują jednak, że poziom DMS/DMDS w atmosferze K2-18b jest tysiące razy wyższy, niż w atmosferze Ziemi i wynosi ponad 10 części na milion. Wcześniejsze prace teoretyczne wskazywały, że atmosfera planet hyceańskich może być bogata w gazy zawierające siarkę. Nasze obserwacje zgadzają się z teoretycznymi obliczeniami. Biorąc pod uwagę to, co dotychczas wiemy o tej planecie, najbardziej możliwym scenariuszem jest świat hyceański, w którego oceanie istnieje życie, dodaje uczony.
Naukowiec studzi jednak zapał i podkreśla, że jest zbyt wcześnie, by ogłaszać istnienie życia na egzoplanecie. Może bowiem istnieć nieznany nam proces chemiczny, w wyniku którego powstają DMS i DMDS. Dlatego też chce przeprowadzić eksperymenty i badania teoretyczne, by sprawdzić, czy wspomniane związki mogą powstawać w procesach nie związanych z biologią i w takiej ilości, jak zostały zaobserwowane.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na łamach Physical Review Research ukazał się artykuł, którego autorzy informują o skonstruowaniu urządzenia generującego energię elektryczną z... ruchu obrotowego Ziemi. Christopher F. Chyba (Princeton University), Kevin P. Hand (Jet Propulsion Laboratory) oraz Thomas H. Chyba (Spectral Sensor Solutions) postanowili przetestować hipotezę, zgodnie z którą energię elektryczną można generować z ruchu obrotowego Ziemi za pomocą specjalnego urządzenia wchodzącego w interakcje z ziemskim polem magnetycznym.
W 2016 roku Christopher Chyba i Kevin Hand opublikowali na łamach Physical Review Applied artykuł, w którym rozważali możliwość użycia ruchu obrotowego Ziemi i jej pola magnetycznego do generowania energii elektrycznej. Artykuł został skrytykowany, gdyż obowiązując teorie wskazywały, że każde napięcie elektryczne wygenerowane w takiej sytuacji zostanie zniwelowane wskutek przemieszczenia się elektronów podczas tworzenia pola elektrycznego.
Naukowcy zaczęli więc szukać sposobów na uniknięcie niwelacji napięcia. Żeby sprawdzić swoje pomysły stworzyli urządzenie złożone z cylindra z ferrytu manganowo-cynkowego, który działał jak osłona magnetyczna. Cylinder umieścili na linii północ-południe pod kątem 57 stopni. W ten sposób był on zorientowany prostopadle do ruchu obrotowego planety i ziemskiego pola magnetycznego. Na obu końca cylindra umieścili elektrody. Pomiary wykazały, że w ten sposób wygenerowali napięcie elektryczne rzędu 18 mikrowoltów, którego nie byli w stanie przypisać do żadnego innego źródła, niż ruch obrotowy Ziemi.
Eksperyment odbywał się w ciemności, by uniknąć efektu fotoelektrycznego, uczeni wzięli pod uwagę napięcie, jakie mogło się pojawić w wyniku różnicy temperatur pomiędzy oboma końcami cylindra. Zauważyli też, że napięcie – zgodnie z przewidywaniami – nie pojawia się przy innych ustawiniach cylindra. Takie same wyniki uzyskano podczas badań w innej lokalizacji o podobnym środowisku geomagnetycznym.
Eksperyment nie został jeszcze powtórzony przez inne zespoły badawcze, które mogłyby sprawdzić, czy zmierzone napięcie nie jest wynikiem zjawiska, którego trzej naukowcy nie wzięli pod uwagę. Autorzy badań stwierdzają, że jeśli uzyskane przez nich wyniki zostaną potwierdzone, warto będzie rozpocząć prace nad zwiększeniem uzyskiwanego napięcia do bardziej użytecznego poziomu.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.