-
Similar Content
-
By KopalniaWiedzy.pl
W ostatniej chwili doszło do przerwania testu prototypowego pojazdu Starship firmy SpaceX. Starship SN8 miał wystartować z należącego do SpaceX terenu w południowym Teksasie w pobliżu miejscowości Boca Chica i wznieść się na wysokość kilkunastu kilometrów.
Jednak na sekundę przed startem SN8 wykrył nieprawidłowości w działaniu co najmniej jednego z trzech silników Raptor i automatycznie przerwał sekwencję startową. Na razie nie wiadomo, kiedy test zostanie powtórzony. Może to być już dzisiaj lub jutro. Wszystko zależy od tego, jak szybko inżynierowie SpaceX określą, co było przyczyną przerwania startu i usuną ewentualną usterkę.
Celem lotu Starship będzie sprawdzenie szeregu elementów, od działania silników poprzez właściwości aerodynamiczne pojazdów po obieg paliwa.
Samo osiągnięcie zakładanej wysokości nie powinno być trudne, jednak przed Starshipem postawiono bardziej skomplikowane zadanie. W czasie lądowania silniki mają zostać wyłączone, a pojazd ma obrócić się poziomo, by wyhamować, następnie silniki mają zostać włączone ustawią rakietę pionowo i za ich pomocą zostanie dokonane ostateczne spowolnienie i lądowanie na zamontowanych nogach. To ma być pierwszy tego typu test przeprowadzony za pomocą tak dużej rakiety.
W bieżącym roku pojazdy Starship SN5 i SN6 wykonały loty testowe na niskiej wysokości. Przeprowadzono też 330 testowych rozruchów silników bez wznoszenia się w powietrze.
Firma SpaceX wybudowała dotychczas 10 prototypowych pojazdów Starship. Wersje SN5 i SN6 osiągnęły wysokość 150 metrów i wylądowały, SN7 została celowo zniszczona, by sprawdzić jej wytrzymałość. Tymczasem misja SN8 wciąż nie może się odbyć. Już w połowie września informowaliśmy, że wystartuje ona „w przyszłym tygodniu”.
Elon Musk twierdzi, że docelowo Starships mają zabierać na pokład 100 osób lub 100 ton ładunku na Księżyc. Mają też być w stanie przeprowadzić misję załogową na Marsa i z niej powrócić.
« powrót do artykułu -
By KopalniaWiedzy.pl
Dzisiaj o godzinie 1:27 czasu polskiego z Przylądka Canaveral na Florydzie, ze słynnego Launch Complex 39A, wystartowała misja SpaceX Crew-1. To pierwsza pełnoprawna misja załogowa SpaceX zrealizowana na zlecenie NASA. Na pokładzie kapsuły Crew Dragon znaleźli się astronauci Michael Hopkins, Victor Glover i Shannon Walker z NASA oraz Soichi Noguchi z JAXA.
NASA dotrzymuje obietnicy danej Amerykanom i naszym międzynarodowym partnerom. We współpracy z amerykańskim prywatnym przemysłem zapewniamy bezpieczny, wiarygodny i ekonomiczny transport na Międzynarodową Stację Kosmiczną. To ważna misja dla NASA, SpaceX i JAXA, powiedział szef NASA, Jim Bridenstine.
Kapsuła Crew Dragon o nazwie Resilience zadokuje do Międzynarodowej Stacji kosmicznej jutro około godziny 5 czasu polskiego. Astronauci pozostaną na pokładzie ISS przez pół roku.
Jesteśmy bardzo dumni z naszej pracy. Falcon 9 wyglądał wspaniale. Dragon osiągnął idealną orbitę po około 12 minutach od startu, powiedziała Gwynne Shotwell, dyrektor SpaceX.
Misja Crew-1 to pierwsza z sześciu załogowych misji, jakie NASA zamówiła w SpaceX w ramach swojego Commercial Crew Program. Misja już zapisała się w historii. Jest to bowiem pierwsza regularna misja wykonana na certyfikowanym przez NASA (i jakąkolwiek inną agencję kosmiczną) pojeździe prywatnej firmy, który ma posłużyć odbywaniu regularnych misji tego typu. Po raz pierwszy też na Międzynarodowej Stacji Kosmicznej przez dłuższy czas będzie przebywało aż 7 astronautów, co powinno zaowocować większą liczbą badań naukowych. Załoga SpaceX Crew-1 dołączy do znajdujących się obecnie na MSK Siegrieja Ryżikowa i Siergieja Kud-Swierczkowa z Roskosmosu oraz Kate Rubins z NASA.
Podczas lotu nad Crew Dragonem czuwa centrum kontroli lotu SpaceX w Hawthorne, natomiast za przygotowanie MSK do przyjęcia Crew Dragona odpowiada centrum kontroli lotu NASA w Johnson Space Center w Houston.
Załoga Crew-1 pozostanie na Stacji do wiosny przyszłego roku. Ich misja będzie najdłuższą misją załogową wystrzeloną dotychczas z terenu USA. Zgodnie z wymaganiami NASA kapsuła Crew Dragon może pozostać w przestrzeni kosmicznej przez co najmniej 210 dni.
Na pokładzie kapsuły znalazło się też ponad 200 kilogramów zaopatrzenia i sprzętu naukowego. Załoga zajmie się m.in. badaniami wpływu diety na zdrowie osób przebywających w kosmosie, wpływu misji kosmicznych na mózg, badaniami roli mikrograwitacji na różne tkanki i organy organizmu itp. itd. W czasie pobytu na MSK astronauci przyjmą wiele bezzałogowych misji zaopatrzeniowych organizowanych zarówno za pomocą kapsuły Dragon SpaceX, jak i kapsuł Cygnus Northropa Gummana i CST-100 Starliner Boeinga. W międzyczasie dojdzie też do wymiany dotychczasowej załogi stacji na nową, która przyleci na pokładzie rosyjskiego Sojuza. Wiosną 2021 roku powitają zaś kolejną misję SpaceX Crew Dragon.
Po zakończeniu Crew-1 załoga wsiądzie na pokład Crew Dragona, który automatycznie odłączy się od Stacji. Kapsuła wyląduje na wodach na wschód od Florydy lub w Zatoce Meksykańskiej.
« powrót do artykułu -
By KopalniaWiedzy.pl
NASA poinformowała, że satelita OGO-1 spłonął w atmosferze Ziemi po 56 latach przebywania na orbicie okołoziemskiej. Orbiting Geophysics Observatory 1 został wystrzelony we wrześniu 1964 roku. Był pierwszym z 5 satelitów badających pole magnetyczne Ziemi w ramach misji OGO. Był też ostatnim z nich, który wszedł w ziemską atmosferę. Misja satelity zakończyła się w 1971 roku i od tamtej pory krążył bez celu wokół naszej planety.
W wyniku tarcia o górne warstwy atmosfery ważący 487 kilogramów satelita coraz bardziej spowalniał, w wyniku czego zmniejszał wysokość. W końcu 29 sierpnia o godzinie 22:44 czasu polskiego wszedł w atmosferę nad Oceanem Spokojnym i w niej spłonął, nie stanowiąc zagrożenia dla ludzi.
NASA dość precyzyjnie wyliczyła miejsce i moment tego wydarzenia. OGO-1 wszedł w atmosferę o około 25 minut wcześniej, niż przewidywała NASA, w wyniku czego miejsce pojawienia się w atmosferze znajdowało się o około 160 kilometrów na południowy-wschód od Tahiti. Dzięki temu NASA mogła nie tylko śledzić satelitę za pomocą radarów, ale również zebrała relacje od mieszkańców Tahiti, którzy obserwowali płonący w atmosferze pojazd.
Satelity OGO były wystrzeliwane w latach 1964–1969. Wszystkie spłonęły już w atmosferze naszej planety.
« powrót do artykułu -
By KopalniaWiedzy.pl
Satelita Solar Orbiter przysłał właśnie fotografie z największym zbliżeniem Słońca, jakie kiedykolwiek wykonano. Widzimy na nich nawet niewielkie struktury, które naukowcy nazwali „ogniskami w lesie”. Satelita ma na pokładzie instrument skonstruowany przy pomocy Centrum Badań Kosmicznych PAN.
Solar Orbiter to wspólna misja NASA i ESA. Satelita został wystrzelony 9 lutego bieżącego roku i ma przed 7–10 lat badań Słońce. Jego głównym zadaniem jest zbadanie sił napędzających wiatr Słoneczny. Na razie satelita podróżuje w kierunku wyznaczonej orbity. Usadowi się na niej dopiero za dwa lata. Gdy już to się stanie, dostarczy nam unikatowych zdjęć biegunów naszej gwiazdy.
W ubiegłym miesiącu Solar Orbiter zakończył swoją pierwszą orbitę wokół Słońca i zbliżył się na odległość 77 milionów kilometrów do naszej gwiazdy. w tym czasie uruchomiono wszystkie 10 instrumentów służących do jej obserwacji. Na razie instrumenty były testowane, sprawdzano, czy prawidłowo pracują. Naukowcy nie spodziewają się żadnych odkryć na tym etapie misji.
Satelita ma na pokładzie sześć urządzeń do obrazowania. Najbardziej interesujące zdjęcia nadeszły z Extreme Ultraviolet Imager (EURI). Urządzenie zarejestrowało liczne niewielkie jasne miejsca o rozmiarach od miliona do miliarda razy mniejszych od miejsc rozbłysków słonecznych. Zyskały one nazwę „ognisk w lesie”. Jak mówi główny badacz misji EUI, David Berghmans z belgijskiego Obserwatorium Królewskiego w Brukseli, są one „małymi kuzynami” rozbłysków.
Te „ogniska” mogą być albo miniaturowymi wersjami rozbłysków, jakie widzimy z Ziemi, albo też mogą mieć związek z tzw. nanorozbłyskami. Coraz więcej specjalistów sądzi, że to nanoflary są odpowiedzialne za zadziwiająco wysoką temperaturę korony Słońca. Nie wiemy, dlaczego korona jest nawet 300-krotnie cieplejsza od powierzchni gwiazdy. Uczeni mają nadzieję, że Solar Orbiter rozwiąże i tę zagadkę. Jednym z najbliższych zadań satelity będzie próba zmierzenia temperatury „ognisk” za pomocą instrumentu Spectral Imaging of the Coronal Environment.
Z kolei Solar and Heliospheric Imager (SoloHI) wysłał zdjęcia światła zodiakalnego. Pojawia się ono gdy światło słoneczne odbija się od cząstek pyłu. Wykonanie fotografii było ważnym testem, gdyż wykonanie zdjęć światła zodiakalnego wymagało, by instrument o bilion razy przyciemnił blask Słońca. Udany test dowiódł, że SoloHI jest gotowy do rejestrowania obrazów potrzebnych do badania wiatru słonecznego.
Pozytywnie wypadły również testy pozostałych instrumentów Solar Orbitera.
« powrót do artykułu -
By KopalniaWiedzy.pl
Polak, profesor Artur Ekert, wykorzystał chińskiego satelitę Micius do zabezpieczenia za pomocą splątania kwantowej dystrybucji klucza szyfrującego (QKD) na rekordową odległość 1120 kilometrów. Został on przesłany pomiędzy dwoma chińskimi obserwatoriami. Ekert już w swojej pracy doktorskiej wykazał, jak wykorzystać splątanie kwantowe do zabezpieczenia informacji. Obecnie uczony specjalizuje się w przetwarzaniu informacji w systemach kwantowo-mechanicznych.
Satelita Micius został wystrzelony w 2016 roku. Generuje on kwantowo splątane pary fotonów. Już w 2017 roku Micius udowodnił, że jest w stanie wysłać splątane fotony do odbiorców oddalonych od siebie o 1200 kilometrów. Teraz wiemy, że możliwe jest też wykorzystanie go do kwantowej dystrybucji klucza szyfrującego (QKD) zabezpieczonej za pomocą splątania kwantowego.
Ekert i jego grupa znacząco poprawili rekord w odległości kwantowej dystrybucji klucza szyfrującego. Dotychczas udało się go przesłać na odległość 100 kilometrów za pomocą światłowodu. Światłowody są dobre na średnie odległości, jakieś 30 do 50 kilometrów. Jednak generują zbyt duży szum na dłuższych dystansach, wyjaśnia uczony.
Najnowszy system komunikacji charakteryzuje odsetek błędów rzędu 4,5%. To niezwykle ważna cecha przyszłych systemów komunikacji kwantowej, gdyż jakakolwiek próba jej podsłuchania skończy się zwiększeniem odsetka błędów. Zatem niezwykle ważne jest, by znajdował się on na niskim poziomie, gdyż w ten sposób łatwo będzie wyłapać dodatkowe błędy i odkryć próbę podsłuchu.
Prace Ekerta i jego chińskich kolegów to pierwszy, ale niezwykle ważny krok w kierunku bezpiecznego kwantowego internetu. Jak czytamy na łamach Nature, QKD pozwala dobrze zabezpieczyć przesyłaną informację. W laboratoriach udało się go przesłać za pomocą światłowodu na odległość 404 kilometrów, jednak w praktyce granicą jest 100 kilometrów. Co prawda odległość tę można zwiększyć, ale wymaga to zastosowania przekaźników. Te zaś stanową słabe punkty systemu. Długodystansową kwantową dystrybucję klucza można by zabezpieczyć za pomocą splątania kwantowego, jednak to wymagałoby zastosowania kwantowych przekaźników, których technologia jest dopiero w powijakach i nie nadaje się do zastosowań w praktyce.
Stąd też pomysł na wykorzystanie satelity, który pozwala wysłać dane na większą odległość bez konieczności uciekania się do pomocy zaufanych stacji przekaźnikowych. Dzięki wyspecjalizowanemu satelicie oraz obserwatoriom wyposażonym w odpowiednie urządzenia udało się dokonać zabezpieczonej splątaniem kwantowej dystrybucji klucza pomiędzy ośrodkami oddalonymi od siebie w linii prostej o 1120 kilometrów.
Tempo przesyłania klucza wynosiło 0,12 bita na sekundę. Prędkość nie jest oczywiście imponująca, jednak Ekert i naukowcy z Hefei, Szanghaju, Chengdu i Singapuru wykazali, że można wysyłać superbezpieczne dane na duże odległości minimalizując liczbę urządzeń, przez które one przechodzą.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.