Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Złudzenie czterokrotnej nadświetlnej po zderzeniu gwiazd neutronowych

Recommended Posts

Niezwykłe połączenie gwiazd neutronowych, o którego odkryciu informowaliśmy w zeszłym roku, wyrzuciło strumień materiału, który wydawał się poruszać z prędkością... 4-krotnie większą od prędkości światła, informują autorzy najnowszych badań.
To „wydawał się” jest tutaj kluczowym stwierdzeniem. Nadświetlna prędkość materiału była iluzją, spowodowaną bardzo szybkim poruszaniem się strumienia oraz faktem, że pędził niemal prosto w naszym kierunku.

Na podstawie naszych analiz stwierdzamy, że strumień był prawdopodobnie bardzo wąski, co najwyżej miał 5 stopni szerokości, i był odchylony od kierunku Ziemi jedynie o 20 stopni, mówi współautor badań Adam Deller z australijskiego Swinburne University of Technology. Jak wynika z obliczeń, do pojawienia się złudzenia prędkości nadświetlnej konieczne było, by materiał poruszał się z prędkością przekraczającą 97% prędkości światła, dodaje uczony.

Deller wraz z zespołem, kierowanym przez Kunala Mooleya z National Radio Astronomy Observatory i California Institute of Technology, wykorzystali liczne radioteleskopy, do zbadania historycznego połączenia się gwiazd neutronowych, znanego jako GW 170817. Historycznego, gdyż po raz pierwszy udało się bezpośrednio zaobserwować fale grawitacyjne oraz emisję światła pochodzące ze zderzenia takich gwiazd. Oznaczenie pochodzi od słów „fale grawitacyjne” (gravitational waves - GW) oraz od daty obserwacji, czyli 17 sierpnia 2017 roku.

Początkowo strumień materii wszedł w interakcje ze szczątkami gwiazd i utworzył się kokon, który poruszał się wolniej niż strumień. W końcu strumień wyrwał się z kokona do przestrzeni międzygwiezdnej. Uważamy, że kokon dominował w emisji w zakresie fal radiowych przez około 60 dni od zderzenia, a później emisja była zdominowana przez strumień, mówi Ore Gottlieb, teoretyk z Uniwersytetu w Tel Awiwie.

Po 155 dniach od połączenia gwiazd wydawało się, że strumień przebył 2 lata świetlne, przemieszczając się z prędkością 4-krotnie większą od prędkości światła. Było to jednak złudzenie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

To oczywiste, że prędkość [w próżni] jest nieprzekraczalna. Wynika to bezpośrednio z odpowiednich równań!

 

Hmm... a gdyby tak w owych równaniach jako c podstawić prędkość przeciętnego ślimaka?

Share this post


Link to post
Share on other sites

Nic nie jest oczywiste w nauce. Nauka to kwestionowanie wszystkiego w tym i samej nauki :)

Wynika to z równań.

A masz pewność czy w każdych warunkach te równania są słuszne?

Bo ja od razu Ci powiem że w osobliwości nie są słuszne.

Edited by thikim

Share this post


Link to post
Share on other sites

Fakt - artykuł jest wybitnie nie na temat. Tu chyba chodzi o zmianę rozciąganie czasu i przestrzeni  - ale mogę się tylko domyślać - bo nic w artykule o tym nie mówi.

ps. skoro "gale" to fale grawitacyjne - to "gale grawitacyjne" to fale grawitacyjno-grawitacyjne ? :D

Edited by Ergo Sum

Share this post


Link to post
Share on other sites

Złudzenie jest opisane, tylko trzeba sobie to „rozrysować” w głowie. Informacje o kokonie i strumieniu, to domysły naukowców, aby wytłumaczyć zjawisko. Oni podejrzewali najpierw, że strumień (jak zaznaczono obserwacja odbywała się w jakimś zakresie radiowym) emitował dwie długości fal — pierw dłuższe, a potem znacznie krótsze. Z obliczeń (doppler — zbliżająca się karetka, bo leciało pod niewielkim kątem wprost na nas) im wyszło, że taka zmiana długości musiałaby odpowiadać pokonaniu 2 LY z nierealną prędkością 4c. Zatem panowie naukowcy wymyślili sobie, że strumień robi nas w konia i przelatując ze swoją własną prędkością wywołał czoło fali, które zbierało gwiezdny gruz. Gruz ten przez ~60 dni emitował własny sygnał, a potem strumień rzekomo wyrwał się z objęć kokonu i przez kolejne ~90 dni dominowała już jego własna emisja. Wydaje się, że astronomowie nie dokonywali ciągłej obserwacji i przegapili moment wyprzedzania na trzeciego, przez co „karetka” nagle wydała się znacznie bliżej nas.

3 godziny temu, Ergo Sum napisał:

skoro "gale" to fale grawitacyjne

Literówka, zgłosiłem.

  • Like (+1) 1
  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
12 godzin temu, Ergo Sum napisał:

skoro "gale" to fale grawitacyjne - to "gale grawitacyjne" to fale grawitacyjno-grawitacyjne ?

Padłem :D

Share this post


Link to post
Share on other sites

@wilk Gładkość wyjaśnienia jak u rzecznika któregoś z prominentnych polityków.:D

A na serio, nie jest to pierwszy raz, kiedy naukowcy tłumaczą dlaczego ich teoria nie pasuje im do praktyki i naginają tę ostatnią, bo i tak nikt im nic nie może udowodnić.

Inna sprawa, że w kwestii DM I DE robią trochę inaczej - kreują dualizm teoretyczno-praktyczny wg własnych potrzeb, byle udowodnić ich istnienienie i ukryć niezrozumienie elementarnych praw.

Share this post


Link to post
Share on other sites
1 godzinę temu, lester napisał:

Gładkość wyjaśnienia jak u rzecznika któregoś z prominentnych polityków

Też tak uważam :) Zwłaszcza że niezgodne z tekstem.

16 godzin temu, wilk napisał:

Oni podejrzewali najpierw, że strumień (jak zaznaczono obserwacja odbywała się w jakimś zakresie radiowym) emitował dwie długości fal


Podejrzewali że emitował dwie długości fal? :D
Jak można jednocześnie obserwować i podejrzewać? Albo coś obserwuję albo coś podejrzewam. Może tam miało być "podglądali"? :D

Od kiedy to podejrzenia są złudzeniem? Złudzeniem może być obserwacja.

Albo coś obserwujemy i wtedy może być złudzenie prędkości większej od światła.

Albo coś podejrzewamy, wyobrażamy sobie i wtedy nie ma piekła hulaj dusza, ale to nie jest złudzenie tylko celowe działanie.

Edited by thikim

Share this post


Link to post
Share on other sites

Bawisz się semantyką, podczas gdy już dawno byś dał radę zapytać u źródła i pochwalić się odpowiedzią przed nami.

BTW. Można wiedzieć, gdzie widzisz rzekomą niezgodność z tekstem, czy też będziesz teraz pisał o filozoficznej względności niezgodności względem obserwatora?

Share this post


Link to post
Share on other sites
20 godzin temu, wilk napisał:

Literówka, zgłosiłem.

Serio - myślałam że "gale" to jest jakieś nowe określenie na "fale grawitacyjne" - a może by się w sumie przyjęło? ;)

Dzięki za wyjaśnienie, zimniejsze czoło materii świeciło "na zielono" a potem powierzchnia została zwiana i zostało gorętsze wnętrze świecące "na niebiesko" - w efekcie przesunięcie wyszło ku fioletowi na 4c - na przykład ... oczywiście przyczyn podobnych może być więcej, ale wreszcie rozumiem co było tym złudzeniem :) W tym wszystkim kompletnie przeszkadza ta informacja o kierunku strumienia, bo tylko sugeruje złudzenie przeciwne dopiero informacja że obserwacje się nałożyły pomaga to zrozumieć

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronomom udało się odnaleźć gwiazdę zaginioną od ponad 30 lat. W 1987 roku zaobserwowano eksplozję supernowej, a dane z badań neutrino wskazują, że pozostałością supernowej powinna być gwiazda neutronowa. Jednak od tamtej pory nie udało się jej odnaleźć.
      SN 1987A jest najbliższą Ziemi supernową od 1604 roku. Znajduje się ona w Wielkim Obłoku Magellana, w odległości 163 000 lat świetlnych od Ziemi. Zwykle widzimy tylko bardzo jasne światło z odległej galaktyki, ale nie możemy zbyt dokładnie się temu przyjrzeć. Tutaj po raz pierwszy mamy supernową tak blisko, że możemy zajrzeć do jej wnętrza, mówi Phil Cigan, z Cardiff University. Jest też pierwszą nową supernową, którą współczesna astronomia może szczegółowo badać. Nic więc dziwnego, że budzi ona szczególne zainteresowanie, a zaginiona gwiazda neutronowa tylko napędza ciekawość.
      Olbrzymia ilość pyłu i gazu nie pozwoliła dotychczas dojrzeć gwiazdy neutronowej. Teraz Cigan i jego koledzy odnaleźli jej sygnaturę za pomocą urządzenia ALMA (Atacama Large Milimeter/submilimeter Array), złożonego z 66 radioteleskopów w Chile.
      Dzięki temu potężnemu narzędziu udało się zarejestrować obszar jaśniejszy i cieplejszy niż otoczenie. Znajduje się on dokładnie w miejscu, w którym powinna być gwiazda neutronowa. Przetestowaliśmy wiele innych scenariuszy istnienia tego obszaru, ale najbardziej prawdopodobny jest ten mówiący o istnieniu tam gwiazdy neutronowej, która podgrzewa otaczający ją pył i gaz, powodując ich świecenie, wyjaśnia Cigan.
      Uczony mówi, że obecnie nie jesteśmy w stanie bezpośrednio zobaczyć gwiazdy neutronowej pozostałej po ekplozji SN 1987A. Jednak w ciągu 50–100 lat gaz i pył powinny na tyle się rozproszyć, że ją zobaczymy. Wówczas astronomowie będą mogli zbadać ją bardziej szczegółowo, co z kolei pozwoli nam lepiej zrozumieć ewolucję supernowych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańscy naukowcy opracowali syntetyczne rozwiązanie, które wykazuje fototropizm, czyli podąża za kierunkiem padającego światła. Jest ono porównywane do sztucznego słonecznika. Opis systemu SunBOT (od ang. sunflower-like biomimetic omnidirectional tracker) ukazał się w periodyku Nature Technology.
      Akademicy podkreślają, że wiele sztucznych materiałów wykazuje reakcje nastyczne, co oznacza. że kierunek wygięcia nie zależy od tego, z jakiego miejsca działa bodziec. Niestety, dotąd żaden nie wykrywał i nie podążał precyzyjnie za kierunkiem bodźca, a więc nie wykazywał tropizmu.
      SunBOT powstał z połączenia 2 rodzajów nanomateriałów: światło- i termowrażliwego. Pierwszy pochłania światło i przekształca je w ciepło, drugi zaś kurczy się pod wpływem ekspozycji na ciepło.
      Zespół nadał polimerowi formę łodygi i oświetlał ją pod różnymi kątami. Okazało się, że łodyga wyginała się, nakierowując się na źródło światła. Jak tłumaczą Amerykanie, światło było absorbowane przez konkretny fragment łodygi, a powstające ciepło prowadziło do kurczenia się materiału po stronie źródła światła, przez co łodyga wyginała się w jego kierunku. Łodyga zatrzymywała się, gdy zaczynała częściowo zasłaniać promień.
      Podczas testów na łodydze umieszczano też "kwiat" będący małym panelem słonecznym. Wyniki pokazują, że urządzenie można wykorzystać do utrzymania ogniw fotowoltaicznych nakierowanych na słońce (znacząco podwyższa to ich wydajność).
       

       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przedstawiciele trzech wykrywaczy fal grawitacyjnych, amerykańskiego LIGO, włoskiego Virgo i japońskiego KAGRA, podpisali porozumienie o współpracy i wymianie danych oraz przewidują rozszerzenie współpracy na przyszłych partnerów.
      Istnienie fal grawitacyjnych przewidział ponad 100 lat temu Albert Einstein. Po raz pierwszy wykryto je w detektorze LIGO w 2015 roku, a o odkryciu poinformowano w roku 2016. Obserwacje fal grawitacyjnych pozwalają na poznanie kolejnych tajemnic wszechświata.
      KAGRA to najmłodsze ze wspomnianych obserwatoriów. Powstało ono w Kamioce w prefekturze Gifu, a za konstrukcję odpowiadały Instytut Badań Promieni Kosmicznych Uniwersytetu Tokijskiego, Narodowe Obserwatorium Astronomiczne Japonii oraz Organizacja Badań nad Akceleratorami Wysokich Energii. Budowa urządzenia rozpoczęła się w 2010 roku i jest ono niemal gotowe do pracy. Mamy nadzieję, że przed końcem bieżącego roku rozpoczniemy obserwacje i dołączymy do globalnej sieci wykrywaczy fal grawitacyjnych, powiedział główny badacz KAGRA, Takaaki Kajita.
      LIGO (Laser Interferometer Gravitational-Wave Observatory) oraz LIGO Scientific Collaboration to amerykańskie instytucje, w pracach których bierze udział ponad 100 instytucji z całego świata. To właśnie w LIGO wykryto pierwsze fale grawitacyjne. Dołączenie KAGRA do naszej sieci obserwatoriów fal grawitacyjnych znakomicie zwiększy możliwości naukowe w nadchodzącej dekadzie. KAGRA pozwoli na bardziej precyzyjne określenie położenia źródła fal grawitacyjnych, co jest głównym celem badawczym, mówi dyrektor i główny naukowiec LIGO, David Reitze.
      Z kolei Virgo to wspólne dzieło 96 europejskich instytucji naukowych. Dołączenie KAGRA powoduje, że prace nad badaniem fal grawitacyjnych stają się projektem ogólnoświatowym, stwierdził rzecznik prasowy Virgo, Jo van den Brand.
      Porozumienie pomiędzy KAGRA, LIGO i Virgo zastępuje dotychczasową umowę pomiędzy LIGO a Virgo. Będzie ono obowiązywało do 30 września 2023 roku. Po tej dacie umowa może zostać przedłużona.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W połączeniu z limonenem, który zapewnia produktom czyszczącym i odświeżaczom powietrza cytrusowy zapach, oraz światłem opary wybielaczy prowadzą do powstawania związków szkodliwych dla ludzi i zwierząt.
      Stosowanie w pomieszczeniach roztworów wybielacza chlorowego (głównym składnikiem jest tu podchloryn sodu, NaClO) prowadzi do emisji dwóch silnych utleniaczy: gazowego kwasu podchlorawego (HOCl) i chloru (Cl2). W słabo wentylowanych środowiskach podczas sprzątania mogą one osiągać stosunkowo wysokie stężenia. Zespół Chena Wanga z Uniwersytetu w Toronto dodaje, że HOCl i Cl2 reagują z nienasyconymi związkami organicznymi na powierzchniach i w powietrzu.
      Chcąc uzupełnić luki w wiedzy, akademicy sprawdzali, czy limonen, który należy do lotnych związków organicznych najczęściej występujących we wnętrzach, i opary wybielacza mogą reagować, tworząc ostatecznie wtórne aerozole organiczne (ang. secondary organic aerosols, SOAs). Testy prowadzono w obecności światła i w ciemności.
      Warto przypomnieć, że SOAs powiązano m.in. z problemami dot. układu oddechowego.
      Autorzy artykułu z pisma Environmental Science & Technology dodawali limonen, HOCl i Cl2 do powietrza w komorze klimatycznej. Produkty reakcji badano za pomocą spektrometrii mas. W ciemności limonen i HOCl/Cl2 szybko reagowały, dając szereg lotnych związków. Kiedy zespół włączał fluorescencyjne światła albo wystawiał komorę na oddziaływanie światła słonecznego, te lotne związki wchodziły w interakcje z generowanymi przez światło rodnikami hydroksylowymi i atomami chloru, tworząc SOAs.
      Naukowcy dodają, że choć trzeba przeprowadzić dalsze pogłębione badania, bardzo możliwe, że powstające SOAs stwarzają zagrożenie dla osób zawodowo zajmujących się sprzątaniem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie obserwują ostatnie etapy łączenia się trzech supermasywnych czarnych dziur. Krążą one wokół siebie w centrum trzech galaktyk, do połączenia których dochodzi w odległości około miliarda lat świetlnych od Ziemi. Niezwykły taniec czarnych dziur specjaliści zauważyli wewnątrz obiektu SDSS J084905.51+111447.2.
      Obserwowaliśmy parę czarnych dziur, a gdy użyliśmy kolejnych technik [obrazowania rentgenowskiego o wysokiej rozdzielczości przestrzennej, obrazowania w bliskiej podczerwieni oraz spektroskopii optycznej – red.] znaleźliśmy ten niezwykły system, mówi główny autor badań, Ryan Pfeifle z George Mason University. Mamy tutaj najsilniejsze z dostępnych dowodów na istnienie systemu trzech aktywnych supermasywnych czarnych dziur.
      Badania wspomnianego systemu rozpoczęły się od jego obrazowania w świetle widzialnym za pomocą teleskopu Sloan Digital Sky Survey (SDSS) w Nowym Meksyku. Dane udostępniono w społecznościowym projekcie Galaxy Zoo, którego użytkownicy oznaczyli SDSS J084905.51+111447.2 jako miejsce, w którym właśnie dochodzi do łączenia się czarnych dziur. Naukowcy przeanalizowali więc dane zebrana przez teleskop kosmiczny Wide-field Infrared Survey Explorer (WISE). Pracuje on w podczerwieni i jeśli rzeczywiście w galaktyce dochodzi do łączenia się czarnych dziur, to powinien on zaobserwować co najmniej dwa źródła gwałtownego pochłaniania materii. Kolejne obserwacje potwierdziły podejrzenia. Chandra X-ray Observatory wykrył istnienie silnych źródeł promieniowania X, co wskazuje, że czarne dziury pochłaniają tam duże ilości pyłu i gazu. Podobne dowody zdobył Nuclear Spectroscopic Telescope Array (NuSTAR). Kolejne obrazowanie w świetle widzialnym przeprowadzone za pomocą SDSS i Large Binocular Telescope potwierdziły obecność trzech aktywnych czarnych dziur.
      Dzięki użyciu wielu instrumentów opracowaliśmy nową technikę identyfikowania potrójnych układów supermasywnych czarnych dziur. Każdy z tych teleskopów dostarczył nam nieco innych informacji o tym, co się tam dzieje. Mamy nadzieję, że za pomocą tej techniki znajdziemy więcej układów potrójnych, mówi Pfeifle.
      Naukowcy stwierdzili, że odległość pomiędzy każdą z czarnych dziur, a jej sąsiadami wynosi od 10 do 30 tysięcy lat świetlnych. Będzie ona malała, gdyż galaktyki, do których należą te dziury, łączą się, więc i czarne dziury są skazane na połączenie.
      Dzięki wykryciu przez LIGO fal grawitacyjnych pochodzących z łączenia się czarnych dziur, wiemy co nieco o tym, jak przebiega taki proces. Jednak łączenie się układu potrójnego wygląda prawdopodobnie nieco inaczej. Specjaliści podejrzewają, że obecność trzeciej dziury powoduje, iż dwie pierwsze łączą się znacznie szybciej.
      Istnienie układu potrójnego może pozwolić też na wyjaśnienie teoretycznego „problemu ostatniego parseka”. Gdy dochodzi do połączenia dwóch galaktyk ich czarne dziury nie zderzają się czołowo, ale powinny minąć się po orbicie hiperbolicznej. Musi istnieć mechanizm, który spowoduje, że zbliżą się do siebie. Najważniejszym takim mechanizmem jest dynamiczne tarcie. Gdy czarna dziura zbliża się do gwiazdy, gwiazda jest przyspieszana, a czarna dziura spowalniana. Mechanizm ten spowalnia czarne dziury na tyle, że tworzą powiązany ze sobą układ podwójny. Dynamiczne tarcie nadal działa, dziury zbliżają się do siebie na odległość kilku parseków. Jednak proces krążenia czarnych dziur wokół siebie powoduje, że w pobliżu zaczyna brakować materii. W końcu jest jej tak mało, że jej oddziaływanie nie wystarczy, by dziury się połączyły.
      Ostatecznie do połączenia się czarnych dziur mogłyby doprowadzić fale grawitacyjne, ale ich oddziaływanie ma znaczenie dopiero, gdy dziury zbliżą się do siebie na odległość 0,01–0,001 parseka. Wiemy jednak, że czarne dziury się łączą, pozostaje więc pytanie, co rozwiązuje problem ostatniego parseka, czyli co powoduje, że zbliżą się do siebie na tyle, iż utworzą jedną czarną dziurę. Obecność trzeciej czarnej dziury wyjaśniałaby, jaka siła powoduje, że czarne dziury się łączą.
      Nie można też wykluczyć, że w układach potrójnych dochodzi nie tylko do połączenia się dwóch czarnych dziur, ale i do wyrzucenia trzeciej z nich w przestrzeń kosmiczną.

      « powrót do artykułu
×
×
  • Create New...