Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Intensywność pola magnetycznego Ziemi zmniejsza się od około 200 lat. Proces ten przebiega na tyle szybko, że niektórzy naukowcy ogłosili, iż w ciągu 2000 lat dojdzie do zamiany biegunów magnetycznych. Przebiegunowanie mogłoby spowodować, że przez kilka tysięcy lat Ziemia byłaby gorzej chroniona przed szkodliwym promieniowaniem kosmicznym i słonecznym. To z kolei doprowadziłoby do poważnych zakłóceń i awarii sprzętu elektronicznego, wzrostu przypadków zachorowań na nowotwory i zwiększenia się liczby mutacji genetycznych. Niewykluczone, że ucierpiałyby też te gatunki zwierząt, które w swoich migracjach orientują się wedle pola magnetycznego.

Naukowcy z MIT-u opublikowali na łamach PNAS artykuł opisujący wyniki ich badań nad stanem pola magnetycznego planety. Ich zdaniem przebiegunowanie nie grozi nam w najbliższym czasie. Uczeni obliczyli średnią intensywność stabilnego ziemskiego pola magnetycznego na przestrzeni ostatnich 5 milionów lat i odkryli, że obecnie pole to jest dwukrotnie bardziej intensywne niż średnia z tego okresu. To oznacza, że minie jeszcze sporo czasu, zanim pole magnetyczne planety stanie się niestabilne i dojdzie do przebiegunowania. To olbrzymia różnica, czy dzisiejsze pole magnetyczne jest takie jak średnia długoterminowa czy też jest powyżej średniej. Teraz wiemy, że nawet jeśli intensywność pola magnetycznego Ziemi się zmniejsza to jeszcze przez długi czas będzie się ono znajdowało w bezpiecznym zakresie - mówi Huapei Wang, główny autor badań.

Z innych badań wiemy, że w przeszłości wielokrotnie dochodziło do przebiegunowania naszej planety. Jest to jednak proces bardzo nieregularny. Czasami przez 40 milionów lat nie było przebiegunowania, a czasem bieguny zmieniały się 10-krotnie w ciągu miliona lat. Średni czas pomiędzy przebiegunowaniami wynosi kilkaset tysięcy lat. Ostatnie przebiegunowanie miało miejsce około 780 000 lat temu, zatem średnia już została przekroczona - dodaje Wang.

Sygnałem nadchodzącego przebiegunowania jest znaczący spadek poniżej średniej długoterminowej intensywności pola magnetycznego. To wskazuje, że stanie się ono niestabilne. Zarówno z badań terenowych jak i satelitarnych mamy dobre dane dotyczące ostatnich 200 lat. Mówiąc o przeszłości musimy opierać się na mniej pewnych szacunkach.

Grupa Wanga zdobywała informacje o przeszłości ziemskiego pola magnetycznego badając skały wyrzucone przez wulkany na Galapagos. To idealne miejsce, gdyż wyspy położone są na równiku. Stabilne pole magnetyczne jest dipolem, jego intensywność powinna być taka sama na obu biegunach, a na równiku powinna być o połowę mniejsza. Wang stwierdził, że jeśli pozna historyczną intensywność pola magnetycznego na równiku i na biegunach uzyska dokładne dane na temat średniej historycznej intensywności. Sam zdobył próbki z Galapagos, a próbki z Antarktyki dostarczyli mu naukowcy ze Scripps Institution of Oceanography. Naukowcy najpierw zmierzyli naturalny magnetyzm skał. Następnie podgrzali je i ochłodzili w obecności pola magnetycznego i zmierzyli ich magnetyzm po ochłodzeniu. Naturalny magnetyzm skał jest proporcjonalny do pola magnetycznego, w którym stygły. Dzięki eksperymentom naukowcy byli w stanie obliczyć średnią historyczną intensywność pola magnetycznego. Wynosiła ona około 15 mikrotesli na równiku i 30 mikrotesli na biegunach. Dzisiejsza intensywność wynosi zaś, odpowiednio, 30 i 60 mikrotesli. To oznacza, że dzisiejsza intensywność jest nienormalnie wysoka i jeśli nawet ona spadnie, to będzie to spadek do długoterminowej średniej, a nie ze średniej do zera, stwierdza Wang.

Uczony uważa, że naukowcy, którzy postulowali nadchodzące przebiegunowanie opierali się na wadliwych danych. Pochodziły one z różnych szerokości geograficznych, ale nie z równika. Dopiero Wang wziął pod uwagę dane z równika. Ponadto odkrył, że w przeszłości źle rozumiano sposób, w jaki w skałach pozostaje zapisana informacja o ziemskim magnetyzmie. Z tego też powodu przyjęto błędne założenie. Uznano, że gdy poszczególne ferromagnetyczne ziarna w skałach ulegały schłodzeniu spiny elektronów przyjmowały tę samą orientację, z której można było odczytać intensywność pola magnetycznego. Teraz wiemy, że jest to prawdą ale tylko do pewnej ograniczonej wielkości ziaren. Gdy są one większe spiny elektronów w różnych częściach ziarna przyjmują różną orientację. Wang opracował więc metodę korekty tego zjawiska i zastosował ją przy badaniach skał z Galapagos.

Wang przyznaje, że nie wie, kiedy dojdzie do kolejnego przebiegunowania. Jeśli założymy, że utrzyma się obecny spadek, to za 1000 lat intensywność pola magnetycznego będzie odpowiadała średniej długoterminowej. Wówczas może zacząć się zwiększać. Tak naprawdę nie istnieje sposób, by przewidzieć, co się stanie. Proces magnetohydrodynamiczny ma bowiem chaotyczną naturę".


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

 

Czasami przez 40 milionów lat nie było przebiegunowania, a czasem bieguny zmieniały się 10-krotnie w ciągu miliona lat

To by świadczyło, że zdudniają się dwa (lub więcej) cykle. A jeśli tak to:

 

Średni czas pomiędzy przebiegunowaniami wynosi kilkaset tysięcy lat

średnia jest bez sensu. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Albo że nie ma żadnych cykli, a niestabilność jest w dużym stopniu losowa lub podlega niecyklicznym fluktuacjom chaosu. Średnia może mieć sens, jako (lepszy niż nic) wskaźnik odległości od punktu przegięcia czy załamania ("katastrofa").

Edytowane przez ex nihilo

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość Astro

 

 

To by świadczyło, że zdudniają się dwa (lub więcej) cykle.

 

No właśnie nie:

 

 

Proces magnetohydrodynamiczny ma bowiem chaotyczną naturę".

Chaos jest może zbyt mocnym terminem, ale z pewnością nie mamy do czynienia z okresowością czy cyklicznością (dudnienie też produkuje okresowość).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

 

Chaos jest może zbyt mocnym terminem, ale z pewnością nie mamy do czynienia z okresowością czy cyklicznością (dudnienie też produkuje okresowość).

Aha, :) Mamy bączek w kulce która się kręci, lata dookoła  gwiazdy latającej dookoła centrum galaktyki. Dodatkowo wszystkie te bączki raczą mieć mniejszą lub większą precesję.... oczywiście możemy się w tym doszukiwać chaosu, ja jednak będę szukał harmonii i harmonicznych :D

A i zapomniałem o Księżycu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

 

Chaos jest może zbyt mocnym terminem, ale z pewnością nie mamy do czynienia z okresowością czy cyklicznością (dudnienie też produkuje okresowość).

Albo... okres jest na tyle długi, że nie mieliśmy okazji go zaobserwować.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@ Jajcenty

 

Owszem, ale mamy też pionowe i poziome przemieszczenia mas, rozkłady temperatur, zwalnianie obrotów i parę innych takich... I pytanie na ile układ jest czuły na tego typu niecykliczne zmiany na wejściu. Ziemia się ciągle zmienia. Co jest w tym przypadku "silniejsze"? Względnie regularne czynniki cykliczne, czy może te zmiany niecykliczne.

Edytowane przez ex nihilo

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość Astro
Mamy bączek w kulce która się kręci

 

Nawet taki mniej "prosty" bączek:

https://www.youtube.com/watch?v=8_P4WpxUYq4

to wciąż zbyt prosty model.

Takie bardziej zaawansowane zabawki MHD jak:

https://en.wikipedia.org/wiki/Magnetohydrodynamics#Geophysics

to mogą być wciąż zbyt uproszczone symulacje. Owszem, raczej to ogarniamy, ale diabeł tkwi w szczegółach.

 

Albo... okres jest na tyle długi, że nie mieliśmy okazji go zaobserwować.

 

Nie sądzę. W takiej skali dzieje się zbyt wiele, by taki "bączek" wciąż zachowywał te same własności. Spotyka się tu zwyczajnie bardzo wiele czynników.

 

Edycja: Nihilo, znów koincydencja. ;)

Edytowane przez Astro

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Edycja: Nihilo, znów koincydencja.  ;)

 

:D Jajcenty to twarda sztuka... całą bandą łatwiej  ;):D

 

A już całkiem serio: o ile pamięć mnie nie oszukuje, to pole magnetyczne planet może całkiem zanikać, pomimo tego, że te podstawowe cykle (wirowanie, ruch orbitalny, księżyce itd.) nadal istnieją. Czyli...

Edytowane przez ex nihilo

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

 

Owszem, ale mamy też pionowe i poziome przemieszczenia mas, rozkłady temperatur, zwalnianie obrotów i parę innych takich...

Zamiast "ale" powinno być "i do tego...."  i normalnie miód na moją wątrobę. Mamy tu tyle cykli, że jak Radar zauważył, może czasu nie starczyć na obserwację pełnego okresu.

 

 

pole magnetyczne planet może całkiem zanikać, pomimo tego, że te podstawowe cykle (wirowanie, ruch orbitalny, księżyce itd.) nadal istnieją. Czyli...

No właśnie, ale pozostaje pytanie: jak już pole zaniknie to co się dzieje, że znowu się pojawia? A jednak się kręci? ;) 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

pole magnetyczne planet może całkiem zanikać, pomimo tego, że te podstawowe cykle (wirowanie, ruch orbitalny, księżyce itd.) nadal istnieją. Czyli...

Przecież Astro napisał: koincydencja.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość Astro

:)

 

 

 

Mamy tu tyle cykli, że jak Radar zauważył, może czasu nie starczyć na obserwację pełnego okresu.

 

Uściślę nieco terminy. O ile okresowość jest cyklicznością, to w drugą stronę już niekoniecznie. Nie wierzę w tak długie okresy, nawet jeśli Ziemia jest rodzaju żeńskiego. ;)

Jakoś trudno wyobrazić mi sobie, by poważnie rozważać niechby i całe stado demonicznych oscylatorków (niekoniecznie harmonicznych ;)) we wnętrzu. Nasze Słoneczko przebiegunowuje się dużo bardziej regularnie, a nawet cyklicznie, ze średnią wartością cyklu coś kole 22 lat; cykli tych już sobie trochę naoglądaliśmy, a okresu jak nie było, tak nie ma. Wciąż obserwujemy Słoneczko, bo temat nie jest zamknięty.


P.S. Pewnie się powtarzam, ale wobec Rzeczywistości stoimy raczej z rozdziawionymi niezmiennie japami niż z poczuciem triumfu…

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

 

Pewnie się powtarzam, ale wobec Rzeczywistości stoimy raczej z rozdziawionymi niezmiennie japami niż z poczuciem triumfu…

Tu się zgadzamy. Osobiście uważam, że Kreator wbudował nam zasadę nieoznaczoności, żeby uwolnić się od nudy determinizmu :) 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Zamiast "ale" powinno być "i do tego...."

 

:) A nie powinno być, bo te czynniki, o których pisałem, mają przebiegi chaotyczne, a nie okresowe (harmoniczne), chociaż czasem mogą sprawiać takie pozory (np. wiry). W ogóle w tym przypadku wygląda to na "wojnę" okresowości (przybliżonej!) z chaosem. Jeśli nie ma silnych czynników podtrzymujących okresowość (a nie ma, energia się rozprasza), chaos wojnę wygra, coraz silniej destabilizując okresowość, aż do takiej czy innej "katastrofy". Coś w stylu tornada.

 

 

 

jak już pole zaniknie to co się dzieje, że znowu się pojawia? A jednak się kręci?

 

 

Chodziło mi całkowity i nieodwracalny zanik pola. Kręci się, ale do czasu...

 

 

 

żeby uwolnić się od nudy determinizmu

 

A może to raczej "smar" dla całego tego mechanizmu... ;)

 

 

 

 

 

Przecież Astro napisał: koincydencja.

 

 

Chodziło o czas i +/- treść :)

Edytowane przez ex nihilo

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Owszem, to było zrozumiałe.

To jednak nie zmienia faktu że:

Astro napisał: koincydencja :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mnie zastanawia co sprawia, ze jądro Ziemi kręci się w przeciwnym kierunku niż powierzchnia.

Czy taki ruch nie powinien być wyhamowywany? Czy po tych kilku miliardach lat nie powinno się to już wyrównać?

Rozumiem, że różne czynniki mogą powodować różnice w prędkości obrotu, ale żeby całkiem przeciwny kierunek? Coś podtrzymuje taką sytuację?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

 

jądro Ziemi kręci się w przeciwnym kierunku niż powierzchnia

 

No raczej w tym samym, tylko nieco szybciej.

 

@ thikim

;)

Edytowane przez ex nihilo

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Internety mówią, że jądro zewnętrzne się kręci zgodnie, a wewnętrzne przeciwnie. I to jest napędzane przez pole magnetyczne. 

Tylko to mi zaczyna śmierdzieć perpetum mobile, bo magnetyzm tworzy się z kręcenia, a kręcenie z magnetyzmu...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Też mnie zastanawiał ten kierunek obrotu bo założyłem że kierunek obrotu powierzchni jest cały czas ten sam, a na filmie który podlinkował Astro widać, że przynajmniej raz na jakiś czas jądro kręci się w przeciwnym kierunku

 

Nawet taki mniej "prosty" bączek:

https://www.youtube.com/watch?v=8_P4WpxUYq4

to wciąż zbyt prosty model.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Może się mylę, ale chodzi o minimalne różnice prędkości obrotu poszczególnych warstw (płaszcz, jądro zewnętrzne, jądro wewnętrzne), czyli jeśli układ odniesienia umieścimy na powierzchni Ziemi (vobr powierzchni = 0), to faktycznie efekt będzie taki, że kierunki obrotów warstw jądra będą (okresowo) różne. Ale w słonecznym układzie odniesienia wszystko kręci się w tym samym kierunku.

 

Edycja:

 

Z tym, że pole magnetyczne jest wytwarzane przez ruchy konwekcyjne (termiczne) w jądrze zewnętrznym, a nie przez te różnice prędkości obrotów warstw. Odwrotnie - to różnice prędkości są skutkiem działania pola magnetycznego.

 

No ale może to mi się to wszystko pokićkało :D Bywa tak :D :D

Edytowane przez ex nihilo

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość Astro

 

 

Może się mylę

 

Zdecydowanie nie. Strzałki pokazują kierunek rotacji jądra wewnętrznego względem reszty (również kierunek prądu). Wszystko razem kręci się (z grubsza :)) w tę samą stronę.

 

 

 

Odwrotnie - to różnice prędkości są skutkiem działania pola magnetycznego.

 

Cholera wie. O ile zrozumiałem, w modelu Glatzmaiera-Robertsa (drugi link) jądro wewnętrzne cały czas rotuje szybciej. Ale mogę się mylić.

W każdym razie kluczem w zabawie jest konwekcja i siła Coriolisa (dynamo α2; dla Słońca raczej αΩ – konwekcja i rotacja różnicowa).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No dobra... to teraz ogarniam.

Pole magnetyczne robi się przez jądro zewnętrzne, a wirowanie jądra wewnętrznego to tylko tego skutek. Wiedziałem, że coś przegapiłem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Trudno tu mówić o "wirowaniu", to raczej baaardzo powolne obroty. Różnica kątowa w stosunku do płaszcza jest teraz w okolicach 0,3-0,5 stopnia rocznie, czyli jeden pełny obrót pod naszymi nogami robi w ciągu 700-1000 lat.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Koala to jedne z najbardziej rozpoznawalnych i lubianych zwierząt na Ziemi. Te niewielkie ssaki są jednak zagrożone w wyniku utraty i fragmentacji siedlisk oraz trapiących je chorób. Wiemy, że niemal całe życie spędzają na drzewach, schodzą z nich tylko, by przemieścić się na inne drzewo. I pomimo tego, że na gatunek ten zwraca się dużo uwagi, nauka niewiele wie o tych nielicznych chwilach, które zwierzęta spędzają na ziemi. Tymczasem z najnowszych badań wynika, że właśnie to zabija koale.
      Już poprzednie badania zgonów koali pokazały, że do 66% zgonów wśród nich dochodzi w momencie, gdy są na ziemi. Są tam głównie zabijane przez psy oraz samochody. Nie wiemy, jak często koala schodzą z drzew, jak daleko i jak szybko się przemieszczają, jak długo pozostają na ziemi, dlaczego schodzą z drzew. To niezwykle ważne informacje, których potrzebujemy, jeśli chcemy zidentyfikować najbardziej zagrożone obszary lub pory dnia i opracować strategie zmniejszenia zagrożeń czyhających na te zwierzęta, mówi doktorantka Gabriella Sparkes z University of Queensland.
      Uczona wraz z zespołem wyposażyła dzikie koale w nadajniki GPS oraz akcelerometry. Urządzenia założono zwierzętom żyjącym na obszarach, na których wiele drzew wycięto na potrzeby rolnictwa. Pozycję koali rejestrowano co 5 minut, a gdy znalazły się na ziemi, była ona odnotowywana co 5 sekund. Dzięki temu możliwe było precyzyjne określenie zachowań zwierząt.
      Tym, co zaszokowało naukowców, był fakt, jak wiele czasu zwierzęta spędzają na drzewach. Okazało się, że schodzą one z nich zaledwie 2-3 razy w ciągu nocy, a łączny czas przebywania na gruncie wynosi zaledwie około 10 minut. Z badań wynika też, że przebywające na ziemi zwierzę porusza się naprawdę powoli. Niemal tyle samo czasu spędzały na siedzeniu i staniu, co na przemieszczaniu się, a szybciej poruszają się jedynie przez 7% czasu spędzanego na gruncie. To może oznaczać, że zwierzęta bardzo szczegółowo oceniają otocznie, być może starannie wybierają drzewa, na które chcą wejść, a być może szybszy ruch wiąże się z olbrzymim wydatkiem energetycznym.
      Dokonane odkrycie przynosi niezwykle ważne informacje i pokazuje, jak wielkim zagrożeniem jest wycinka drzew. Skoro w ciągu tych zaledwie 10 minut przebywania na gruncie, ginie aż 2/3 zwierząt, a fragmentacja siedlisk powoduje, że koala zmuszone są przebywać na gruncie coraz więcej czasu, dalsze niszczenie środowiska może przynieść gatunkowi zagładę.
      Teraz autorzy badań oceniają te cechy habitatów koali, które decydują, jak długo zwierzęta pozostają na drzewach. Jeśli zidentyfikujemy gatunki drzew lub warunki środowiskowe powodujące, że zwierzęta dłużej zostają na drzewach, być może będziemy w stanie tak zarządzać krajobrazem, że rzadziej będą musiały schodzić z drzew, mówi Sparkes.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu ostatnich 200 lat ludzkość wybudowała tyle zapór wodnych, że masa nagromadzonej wody doprowadziła do przesunięcia się skorupy Ziemi w stosunku do osi obrotu naszej planety. Pierwsza ze zmian została wywołana przez zapory wybudowane w Amerykach, drugą zaś spowodowało budowanie zapór w Afryce i Azji.
      Skorupa Ziemi leży na plastycznej, częściowo stopionej górnej części płaszcza planety. Może się więc względem niego przesuwać. I przesuwa się w wyniku zmiany rozkładu masy. Wówczas zmienia się też położenie punktów na skorupie, które wcześniej stanowiły bieguny planety.
      Geolodzy z Uniwersytetu Harvarda opublikowali na łamach Geophysical Research Letters artykuł, w którym ocenili wpływ 6862 zapór wodnych wybudowanych przez człowieka w latach 1835–2011 na położenie skorupy.
      Pomiędzy rokiem 1835 a 1954 w Ameryce Północnej i – w znacznie mniejszym stopniu – w Europie wybudowano tak wiele zapór wodnych, że w wyniku zmian dystrybucji masy na planecie dotychczasowy punkt wyznaczający biegun północny przesunął się 20,5 centymetra w kierunku 103. południka na wschód od Greenwich, który przechodzi przez Rosję, Mongolię, Chiny, Wietnam, Laos i Indonezję. Z tych ponad 20 centymetrów ruchu na wiek XIX przypadało jedynie 0,7 cm. Następnie w latach 1954–2011 tamy wybudowane w Afryce Wschodniej i Azji spowodowały, że doszło do przesunięcia o 57,1 cm w kierunku południka 117. zachodniego, przebiegającego przez zachodnie części Kanady i USA.
      Uwięzienie tak wielkich ilości wody w zaporach spowodowało, że w badanym okresie poziom oceanów spadł o 21 milimetrów. A raczej nie zwiększył się o te 21 mm. W badanych zaporach znajduje się około 8000 kilometrów sześciennych wody.
      W sumie, z różnych przyczyn, w latach 1835–2011 skorupa ziemska przesunęła się o około 113 centymetrów, z czego 104 centymetry przypadają na wiek XX.
      Źródło: True Polar Wander Driven by Artificial Water Impoundment: 1835–2011, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115468

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przez ostatnich 540 milionów lat zmiany w sile pola magnetycznego Ziemi były skorelowane z poziomem atmosferycznego tlenu, donosi amerykańsko-brytyjski zespół naukowy. Wyniki badań sugerują, że procesy zachodzące głęboko wewnątrz naszej planety mogły mieć wpływ na organizmy żywe na powierzchni Ziemi. O swoim odkryciu uczeni poinformowali na łamach Science Advances.
      Historia ziemskiego magnetyzmu zapisana jest w skałach. Gdy rozgrzane minerały znajdujące się magmie stygną, mogą zapisać stan lokalnego pola magnetycznego. I zapis ten pozostanie w nich dopóty, dopóki nie zostaną ponownie silnie rozgrzane. Również ze skał i minerałów można odczytać poziom tlenu w atmosferze, gdyż ich skład chemiczny zależy od ilości tlenu w czasie, gdy się tworzyły. I jeden, i drugi zapis jest od dawna używany w nauce, informacje takie można znaleźć w olbrzymiej liczbę baz danych utworzonych na potrzeby badań geofizycznych i geochemicznych. Jednak, jak twierdzą autorzy nowych badań, dotychczas nikt nie wpadł na pomysł, by dokładnie porównać ze sobą oba zapisy.
      Zadania takiego podjęli się Weijia Kuang i Ravi Kopparapu z NASA Goddard Space Flight Center, Joshua Krissansen-Totton z University of Washington oraz Benjamin J. W. Mills z University of Leeds. Te dwa zestawy danych są bardzo podobne. Ziemia to jedyna znana nam planeta, która podtrzymuje złożone formy życia. Korelacja, którą znaleźliśmy, pozwoli nam lepiej zrozumieć ewolucję oraz jak jest ona powiązana z procesami zachodzącymi wewnątrz planety, mówi Weijia Kiang.
      Uczeni prześledzili zmiany siły pola magnetycznego i poziomu tlenu w atmosferze aż do czasów eksplozji kambryjskiej, w czasie której nagle pojawiło się wiele złożonych form życia. Istnienie korelacji pomiędzy siłą pola magnetycznego, a poziomem tlenu sugeruje, że oba te zjawiska mogą być reakcją na ten sam proces, na przykład na ruch kontynentów, uważa Benjamin Mills.
      Naukowcy mają nadzieję, że uda im się prześledzić jeszcze dłuższy okres historii Ziemi. Chcą sprawdzić, czy znaleziona korelacja się utrzyma. Planują też poddać analizie inne pierwiastki niezbędne do istnienia życia, by przekonać się, czy i w ich przypadku widać taki sam schemat.
      Źródło: Strong link between Earth’s oxygen level and geomagnetic dipole revealed since the last 540 million years, https://www.science.org/doi/10.1126/sciadv.adu8826

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ziemia doświadczyła co najmniej 5 epizodów masowego wymierania. Przyczyny niektórych z nich, jak wymierania kredowego, kiedy wyginęły dinozaury, są znane. Co do innych wymierań, nie mamy takiej pewności. Od pewnego czasu pojawiają się głosy, że za przynajmniej jedno z wymierań odpowiedzialny był wybuch supernowej. Autorzy nowych badań uważają, że bliskie Ziemi supernowe już co najmniej dwukrotnie doprowadziły do wymierania gatunków. I nie mamy gwarancji, że sytuacja się nie powtórzy.
      Podczas eksplozji supernowej dochodzi do emisji olbrzymich ilości promieniowania ultrafioletowego, X czy gamma. Z badań przeprowadzonych w 2020 roku wiemy, że wybuch supernowej w odległości mniejszej niż 10 parseków (ok. 33 lata świetlne) od Ziemi, całkowicie zabiłby życie na naszej planecie. Za wymierania mogą więc odpowiadać wybuchy, do których doszło w odległości około 20 parseków (pc). Zginęłoby wówczas wiele gatunków, ale samo życie by przetrwało.
      Alexis L. Quintana z Uniwersytetu w Alicante oraz Nicholas J. Wright i Juan Martínez García z Keele University przyjrzeli się 24 706 gwiazdom OB znajdujących się w odległości 1 kiloparseka (kpc), czyli 3261 lat świetlnych od Słońca. Dzięki temu obliczyli tempo tworzenia się takich gwiazd, liczbę supernowych oraz liczbę supernowych bliskich Ziemi. Na podstawie tych obliczeń doszli do wniosku, że supernowe mogły odpowiadać za dwa masowe wymierania na Ziemi – ordowickie sprzed 438 milionów lat oraz dewońskie, do którego doszło 374 miliony lat temu.
      Autorzy wspomnianych badań z 2020 roku stwierdzili, że supernowa Typu II była odpowiedzialna z kryzys Hangenberg, końcowy epizod wymierania dewońskiego. Ich zdaniem, promieniowanie z wybuchu supernowej docierało do Ziemi przez 100 000 lat, doprowadziło do olbrzymiego zubożenia warstwy ozonowej i masowego wymierania.
      Quintana, Wright i García wyliczają, że do eksplozji supernowej w odległości 20 pc od Ziemi dochodzi raz na około 2,5 miliarda lat.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...