Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Uczniowie i studenci na całym świecie uczą się, że rozpad promieniotwórczy odbywa się ze stałą prędkością, dzięki czemu można wykorzystać węgiel C-14 do precyzyjnego datowania. Jednak naukowcy z dwóch renomowanych uczelni Stanford University i Purdue University sądzą, że rozpad nie jest równomierny, a wpływ na jego prędkość ma... Słońce.

Profesor fizyki Ephraim Fischenbach z Purdue potrzebował długiej listy przypadkowo generowanych liczb. Uczeni używają ich do najróżniejszych obliczeń, jednak uzyskanie list jest bardzo trudne. Powinny to być bowiem liczby losowe, a więc na ich wybór nie powinno nic wpływać. Fischenbach postanowił zatem wykorzystać radioaktywne izotopy jako źródło liczb. Co prawda np. kawałek cezu-137 rozpada się - jak dotąd sądzono - ze stałą prędkością, jednak wiadomo, że do rozpadu poszczególnych atomów dochodzi w całkowicie nieprzewidywalny, przypadkowy sposób. Naukowiec chciał zatem wykorzystać materiał radioaktywny i licznik Geigera i notując czas upływający pomiędzy momentami rozpadu poszczególnych atomów uzyskać szereg przypadkowych liczb.

Fischenbach chciał najpierw wybrać najlepszy materiał radioaktywny, więc wraz ze swoimi kolegami zaczął przeglądać publikacje na temat ich rozpadu. I odkryli znajdujące się w nich różnice w pomiarach.

Naukowcy, zdumieni tym faktem, porównali dane zebrane przez amerykańskie Brookhaven National Laboratory oraz niemiecki Federalny Instytut Fizyki i Techniki. Tutaj czekała ich jeszcze większa niespodzianka. Okazało się bowiem, że tempo rozpadu zarówno krzemu-32 jak i radu-226 wykazywało sezonowe odchylenia. Latem rozpad pierwiastków był nieco szybszy niż zimą.

Wszyscy myśleliśmy, że mamy tu do czynienia z błędami pomiarowymi [różne pory roku charakteryzują się przecież różną temperaturą czy wilgotnością, co może wpływać na instrumenty pomiarowe - red.], ponieważ byliśmy przekonani, że tempo rozpadu jest stałe - mówi emerytowany profesor fizyki, ekspert fizyki słońca Peter Sturrock ze Stanford University.

Rozwiązanie zagadki nadeszło, przynajmniej częściowo, 13 grudnia 2006 roku, gdy w nocy w laboratorium Purdue University inżynier Jere Jenkins zanotowanł niewielkie spowolnienie tempa rozpadu manganu-54. Nastąpiło ono na 1,5 doby przed  pojawieniem się flary słonecznej.

Uczeni opisali swoje spostrzeżenia i w kolejnych artykułach stwierdzili, że zmiany w tempie rozpadu izotopów związane są z ruchem obrotowym Słońca, a najbardziej prawdopodobną ich przyczyną jest wpływ neturin na izotopy. Zresztą sam Sturrock poradził kolegom z Purdue, by przyjrzeli się rozpadowi, a z pewnością stwierdzą, że zmiany następują co 28 dni.

Tymczasem okazało się, że zmiany zachodzą co... 33 dni.

To, jak uważa Sturrock wskazuje, wbrew intuicji, że wnętrze naszej gwiazdy - w którym zachodzą reakcje - wiruje wolniej niż jej obszar zewnętrzny.

Jednak te spostrzeżenia nie wyjaśniają kolejnej, wielkiej tajemnicy. W jaki sposób neutrino miałyby wpływać na materiał radioaktywny na tyle, by zmienić tempo jego rozpadu.

Z punktu widzenia standardowych teorii to nie ma sensu - mówi Fischbach. A Jenkins dodaje: Sugerujemy, że coś, co nie wchodzi w interakcje z niczym zmienia coś, co nie może być zmienione.

Uczonym pozostaje więc do rozwiązania poważna zagadka. Albo nasza wiedza o neutrino wymaga weryfikacji, albo też na rozpad ma wpływ nieznana jeszcze cząstka.

Share this post


Link to post
Share on other sites

Jeżeli za "prędkość rozpadu" uznamy aktywność izotopu to nigdzie na świecie nie uczą, że rozpad promieniotwórczy odbywa się ze stałą prędkością. Natomiast owszem, uczą że prawdopodobieństwo rozpadu cząstek jest dla każdej z nich jednakowe i  nie zmienia się w czasie trwania procesu rozpadu.

Share this post


Link to post
Share on other sites

Drugi dzisiaj bardzo ważny nius z fizyki jądrowej i nie tylko!

Jeśli jądra nie są rozmytymi, fluktuującymi bytami do czego chce wszystko sprowadzić mechanika kwantowa, tylko konkretnymi strukturami (jak sugeruje sąsiedni artykuł http://kopalniawiedzy.pl/jadro-atomowe-platyna-rezonans-elektrownia-atomowa-Paul-Koehler-Oak-Ridge-National-Laboratory-11198.html ) - strukturami w pewnym (lokalnym?) minimum energetycznym - żeby wybić z tego dołka np. w celu rozpadu promieniotwórczego, potrzebne jest całkiem sporo energii - kilka rzędów wielkości więcej niż normalnie występuje na poziomie chemii.

Skąd ta energia?

Niby rozkład Boltzmanna mówi że rzadko, ale czasem jednak z tej chemii może się spontanicznie skumulować dowolnie duża energia ... ale jest to jednak pewna idealizacja - tak na prawdę nie możemy chyba być pewni że ten rozkład dalej dobrze się zachowuje dla energii kilka rzędów wielkości wyższej niż średnia.

Więc przydałoby się szukać innych źródeł takich energii...

Kiedyś myślałem o po prostu promieniowaniu tła ( http://www.scienceforums.net/topic/40163-can-we-be-sure-that-decay-times-are-constant/ ) - niby mniejsze energie, ale jednak wydaje się mieć większą zdolność do fluktuacji niż chemia ... innym pomysłem to to że może coś pozostało z kaskad z wysokoenergetycznego promieniowania kosmicznego ... ale rzeczywiście wytłumaczenie używające neutrin (głównie) słonecznych wydaje się najsensowniejsze i przy okazji możliwe do zweryfikowania eksperymentalnie ...

 

Jakie są dalsze konsekwencje? (oprócz konieczności przemyślenia np. wyników datowań, ale i modelów planetarnych ... kosmologicznych)

Na przykład przypatrzmy się hipotetycznemu rozpadowi protonu - z jednej strony jest wymagany przez wiele współczesnych teorii cząstek (jak supersymetrie), z drugiej wydaje się konieczny żeby wytłumaczyć niezerową liczbę barionową naszego wszechświata ... a tu nie możemy go zaobserwować nawet w gigantycznych zbiornikach ...

A może właśnie problemem jest to że tak gigantyczna energia potrzebna do wyrwania struktury protonu z bardzo głębokiej studni potencjału po prostu nie może spontanicznie powstać na poziomie chemii ani być dostarczona w neutrinach słonecznych ...

Gdzie w takim razie go szukać?

Może tylko w rzeczywiście ekstremalnych temperaturach jak jądro zapadającej się gwiazdy neutronowej ... taki rozpad wydawałby się być 'bezpiecznikiem natury' zapobiegającym dążeniu do nieskończonej gęstości materii - po prostu wcześniej zamieniłaby się w energię ... co też mogłoby pomóc w wytłumaczeniu obserwowanego promieniowania kosmicznego o energiach daleko poza skalą której mechanizm potrafimy obecnie wytłumaczyć ...

Share this post


Link to post
Share on other sites

Owszem - wspomniałem też ten 'problem' ale jest chyba dość niewielki i dotyczy na prawdę starych próbek - trzeba po prostu przyglądnąć się dobrze modelom ewolucji słońca ... i może zastanowić się też nad wpływem promieniowania kosmicznego, szczególnie neutrin ... ale chyba jest zaniedbywany?

Chociaż pewnie gdy Ziemia miała słabiej rozwiniętą atmosferę, jego wpływ mógł być większy ... narzuca się badanie przekroju składu izotopowego głębokich odwiertów ...

 

Bardzo ważne pytanie - jak ta zależność 'słoneczna' wygląda dla różnych izotopów - ich minimum energetyczne wygląda pewnie trochę inaczej, ma różną głębokość, szerokość - takie porównanie może niedługo stać się wręcz podstawowym narzędziem fizyki jądrowej ...

Share this post


Link to post
Share on other sites

Co w takim razie z datowaniem obiektów archeologicznych? Trzeba będzie przeszacować dotychczasowe datowania.

 

Odnoszę wrażenie, że różnice będą w granicach 10% i nie będą grały większej roli. Jak dla mnie nie ma różnicy czy znajdą skamielinę sprzed miliona lat, czy też 2 milionów - to są i tak czasy zupełnie abstrakcyjne i nie do ogarnięcia, szczególnie jak popatrzysz na kalendarz :)

Share this post


Link to post
Share on other sites

Dla mnie w tej hecy najbardziej istotne jest, że może się wreszcie okaże, iż rozpad atomowy nie jest wcale samorzutny.

Share this post


Link to post
Share on other sites

Przejrzałem artykuł "Power Spectrum Analysis of BNL Decay-Rate Data"

(http://arxiv.org/ftp/arxiv/papers/1006/1006.4848.pdf).

Analiza statystyczna wygląda na rzetelną.

Myślę, że warto będzie dobrać się do oryginalnych danych i powtórzyć obliczenia z wykorzystaniem bardziej subtelnych technik statystycznych.

Postaram się to zrobić w najbliższym czasie.

Jeśli potwierdzi się kilka ostatnich niespodzianek, to zadrżą podstawy fizyki jąder atomowych.

Share this post


Link to post
Share on other sites
Dla mnie w tej hecy najbardziej istotne jest, że może się wreszcie okaże, iż rozpad atomowy nie jest wcale samorzutny.

Bingo, dlaczego zresztą miałoby jakiekolwiek zjawisko zachodzić samorzutnie? Przestrzeń jest wypełniona cząstkami elementarnymi, atomami, w mniejszych skalach fluktuacjami kwantowymi. To że są one niemierzalne, nie oznacza że nie mają wpływu na atomy i cząstki elementarne (nieznanego na obecną chwilę). Dlaczego niby rozpad miałby być samorzutny jeśli cząstki są jak łupiny na morzu pełnym fal? Wiemy że są 'fale', wiemy że są 'łupiny' a założyliśmy że jedno na drugie nie wpływa tylko z wygody ponieważ na razie stan wiedzy nie pozwala nam się tym zająć.

To może być przełom, wprowadzenie fizyki do poziomu fluktuacji kwantowych. Jeden poziom niżej w budowie materii, tak jak kiedyś stwierdzenie istnienia atomów, a póżniej stwierdzenie ich budowy, później kwarków.

Żadne zjawisko według mnie nie zachodzi samorzutnie, co najwyżej nie jesteśmy w stanie technicznie przeprowadzić lub teoretycznie zrozumieć powodów dla którego zachodzi.

Share this post


Link to post
Share on other sites

Wytłumaczenie mam proste: przy większej aktywności Słońca kot Schrödingera częściej się budzi i rozrabia… :)

A poważnie, to jestem w lekkim szoku. Jeśli to się potwierdzi… W „Głosie Pana” Lem wymyślił, że promieniowanie neutrinowe sprzyja większej trwałości wiązań chemicznych, i gdyby ten jego pomysł się okazał rzeczywistością, wcale nie zdziwiłoby mnie bardziej niż to, co przeczytałem wyżej. Być może stoimy na krawędzi rewolucji w fizyce, a dzisiejszą wiedzę będzie się kiedyś traktować, jak my traktujemy teorie eteru i flogistonu.

Share this post


Link to post
Share on other sites

@Jarek Duda:

1) Rozkład Boltzmanna odnosi się do znaczącej liczby elementów (cząstek) w równowadze termodynamicznej w "dużych" temperaturach. Nie znajdzie on zastosowania w pojedynczym jądrze ( o ile dobrze Pana zrozumiałem).

2) Za rozpad alfa, zgodnie z moim stanem wiedzy, odpowiada efekt tunelowania. Co prawda prawdopodobieństwo uzyskania typowej energii (5MeV) jest dość małe, ale biorąc pod uwagę częstość zderzania się ze ścianami studni energetycznej, jest całkowicie realne i częste.

 

Nawet jeżeli wpływ na rozpad mają neutrina, to niby w jaki sposób mają zamiar to sprawdzić. Są one bardzo ciężko reaktywne z używaną przez nas i, jak do tej pory, znaną nam materią. Nie będzie wiadomo czy w trakcie zwiększania 'prędkości' rozpadu Słońce wyrzuca więcej czy mniej neutrin niż wcześniej.

 

Poza tym, Słońce nie tylko neutrinami w nas sieje. Ma też dość duże pole magnetyczne. Oraz czasem zmienia kolor ( siła kolorowa ).

 

Tam, w świecie małych rozmiarów i dużych energii, istnieją również cząsteczki wirtualne. Skoro nie widzimy kto w kogo kopie to powiedzmy, że się samo kopie, tak? (to tak odnośnie procesów samorzutnych)

Share this post


Link to post
Share on other sites

@kretyn:

Rozpad jest przejściem ze stanu wyżej energetycznego do niżej - czyli z perspektywy mechaniki kwantowej: kolapsem funkcji falowej, prawda?

Ona mówi że jest to przejście z jednej gęstości prawdopodobieństwa do wybranej losowo jednej z nowych - natychmiastowy proces bez wewnętrznej dynamiki ... więc jak z tej perspektywy chcemy opisywać rozpad?

A może jednak nie jest ona fundamentalna jak próbuje się nam wmawiać, a tylko praktyczną idealizacją - za kolapsem jednak jest pewna konkretna dynamika, która trwa pewien czas (zobacz http://kopalniawiedzy.pl/forum/index.php/topic,16057.msg66064.html )

 

Jak więc szukać takiej dynamiki?

Zasada Heisenberga mówi że trudno ją bezpośrednio mierzyć, ale nie zakazuje próbować ją modelować - wyobrazić sobie co się dzieje za kurtyną, prawda?

Żeby ją zobaczyć nie powinniśmy zaczynać od rozmytej mechaniki kwantowej, tylko jednak spróbować z drugiej strony: od klasycznych modeli solitonowych, a dopiero potem (ewentualnie) martwić się o kwantowanie - dobrze działają tego typu modele skyrmionowe pojedynczych mezonów, barionów ...

W tym obrazie mamy coś jak fałdowanie białka - konkretny krajobraz energetyczny i jądro zwykle jest w jednym z głębszych lokalnych minimów.

Jak się z niego wydostać? Skąd bierze tą energię do wyskoczenia z dołka?

Powiesz tunelowanie - jasne używając probabilistycznych idealizacji jak mechanika kwantowa, możemy wzniośle powiedzieć że z cząstek wirtualnych z próżni (co prowadzi do nieskończonej jej tam gęstości etc...) .. jeśli jednak rzeczywiście chcemy zrozumieć tą dynamikę, nie możemy po prostu wypchać się w ten sposób, tylko jednak przydałoby się próbować zlokalizować jej źródło.

Jedno to lokalne interakcje elektromagnetyczne, czyli po prostu chemia - i tu wchodzi rozkład Boltzmanna: mówi że bardzo rzadko udaje się spontanicznie zlokalizować dowolnie duże energie - o ile ta kolejna idealizacja dalej dobrze się zachowuje w jakościowo zupełnie różnej jądrowej skali energii, czasem udaje się w ten sposób stochastycznie 'rozbujać' jądro i wybić z tego minimum.

Idealnym źródłem koniecznej energii są działające prawie jednorodnie na całą objętość Ziemi neutrina - oddziaływają bardzo rzadko, ale jest ich bardzo dużo, więc możemy zastosować twierdzenie Poissona dostając statystycznie znowu wykładniczy zanik niestabilnych jąder.

Share this post


Link to post
Share on other sites

Dziwna sprawa. Skoro kiedy Ziemia jest w peryhelium zwiększa się tempo rozpadu, to dlaczego przed flarami słonecznymi to samo tempo spada? Flary są w końcu echem tego co się dzieje wewnątrz naszej gwiazdy.

Poza tym co z neutrinami pochodzącymi z supernowych? Mają znacznie większe energie a więc i powinny działać kilka rzędów mocniej niż te słoneczne. Takich "pików" na wykresie nie dałoby się przegapić.

 

Może tu nie chodzi o neutrina? A może taka śmielsza hipoteza - co jeżeli zdarzenia na Słońcu powodują w jakiś sposób stabilizację jąder atomów z otoczenia poprzez absorpcję energii która wywołuje rozpad?

 

Może też się mylę i są to neutrina, tylko poruszające się w obu kierunkach osi czasu (coś jak doświadczenie Wheelera ale na znacznie większe odległości i angażujące cały łańcuch procesów)

Share this post


Link to post
Share on other sites
  Flary są w końcu echem tego co się dzieje wewnątrz naszej gwiazdy. 

 

Najpierw trzeba sobie odpowiedzieć: dlaczego Słońce wiedzione siłą odśrodkową nie opuszcza ramion galaktyki??

Share this post


Link to post
Share on other sites

Webby, sytuacja jest bardzo skomplikowana: przekrój czynny dla neutrin jest kosmicznie mały, to znaczy że muszą idealnie wstrzelić się ze swoimi parametrami: zarówno uderzyć w dobry punkt pod odpowiednim kątem ... ale i pewnie mieć energię w pewnym wąskim przedziale charakterystycznym dla danego rozpadu.

Dalej wewnętrzna dynamika słońca jest strasznie skomplikowana i neutrina o różnym (statystycznym) widmie energii mogą powstawać w różnych obszarach ... a powierzchnia pokazuje sytuację dość opóźnioną z bardzo skomplikowaną zależnością od tego co się dzieje w środku...

Więc ogólnie myślę że różne izotopy mogą preferować różne energie neutrin, a więc i ich zależność od obserwowanej aktywności słońca może być bardzo różna ... podobnie z innych źródeł - fajnie żeby w końcu ruszyły na poważnie tego typu systematyczne badania, co może bardzo pomóc zrozumieć zarówno dynamikę gwiazd jak i fizykę jądrową...

 

Co do śmiesznej hipotezy :) - generalnie jak najbardziej się zgadzam że intuicyjny dla nas kierunek ciągów przyczynowo->skutkowych jest tylko rezultatem tego że 'w tym kierunku powstaliśmy': poprzez wielki wybuch, powstanie Ziemi, ewolucję, embriogenezę, życie ... natomiast fizyka działa trochę inaczej: zachowuje symetrię CPT, pewnie jest rządzona przez jakąś deterministyczną mechanikę Lagrangianowską - żyjemy w czasoprzestrzeni, w której każdy punkt jest w równowadze ze swoim czterowymiarowym otoczeniem - nie ma powodu zakładać że związki przyczynowo-skutkowe zachodzą tylko w jednym kierunku czasowym, co dosłownie widzimy w doświadczeniu Wheelera ...

... czyli neutrina wyprodukowane przez słońce są połączone trajektorią w czasoprzestrzeni z ewentualnym celem - mamy czterowymiarową równowagę, którą rzeczywiście brak/zmiana ośrodka mógłby może jakoś zmodyfikować ... to by było niezłe: obserwować przyszłą kosmologię w zachowaniu słońca :D

Share this post


Link to post
Share on other sites
to by było niezłe: obserwować przyszłą kosmologię w zachowaniu słońca  

Przecież wszystkie detektory neutrin na ziemi temu służą. Tylko ze między obserwacją neutrin a rozbłyskiem słonecznym może minąć i 1000lat.

Share this post


Link to post
Share on other sites
Poza tym co z neutrinami pochodzącymi z supernowych? Mają znacznie większe energie a więc i powinny działać kilka rzędów mocniej niż te słoneczne

Ale dociera do nas ich bardzo mało. Chodzi o ilość. Po pierwsze muszą trafić w próbkę. Po drugie z nią wejść w oddziaływanie. Jest to możliwe jedynie przy bardzo dużej ich liczbie. Energia ma tu mniej do rzeczy.

Share this post


Link to post
Share on other sites
Ale dociera do nas ich bardzo mało. Chodzi o ilość.[/size] 

eee.. coś nie tak , przecież są miliony słońc i to nie tylko w naszej galaktyce.

Share this post


Link to post
Share on other sites

Różnego rodzaju procesy fizyczne jak absorpcje na poziomie fizyki atomowej a więc i pewnie jądrowej, wymagają pewnego rezonansu - czyli nie czym większa energia tym lepiej, tylko czym energia bliżej pewnego zbioru wartości (częstotliwości rezonansowych) tym lepiej.

Poza tym tych innych neutrin jest jednak trochę mniej ...

 

Jeśli ktoś jest zainteresowany tematem, to tutaj jest kilkaset postów na ten temat: http://wattsupwiththat.com/2010/08/23/teleconnected-solar-flares-to-earthly-radioactive-decay/

Na przykład dowiedziałem się że ze 2 lata temu to było w niusach: np. http://physicsworld.com/cws/article/news/36108 , http://www.astroengine.com/?p=1189

Potem była krytyczna odpowiedź: http://donuts.berkeley.edu/papers/EarthSun.pdf

Do której odnosi się ta nowa praca wyglądających poważnie 9 autorów ( http://arxiv.org/abs/1006.4848 ): "Norman et al. [7] have reexamined data from several studies of nuclear decay rates and found no evidence for a correlation with Sun-Earth distance. However, our collaboration has recently re-analyzed Norman’s data, which Norman and his collaborators generously provided, and we have detected an annual periodicity with a small amplitude but the same phase as that found in the BNL and PTB datasets.", która ponoć już została zaakceptowana przez redaktorów Astroparticle Physics (34 (2010) 121-127).

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Astrofizycy z Uniwersytetu Harvarda opublikowali na łamach The Astrophysical Journal Letters teorię, zgodnie z którą Słońce było kiedyś częścią układu podwójnego. Nasza gwiazda miała krążącego wokół niej towarzysza o podobnej masie. Jeśli teoria ta zostanie potwierdzona, zwiększy to prawdopodobieństwo istnienia Obłoku Oorta w takim kształcie, jak obecnie przyjęty i będzie można uznać teorię mówiącą, że tajemnicza Dziewiąta Planeta (Planeta X) została przez Układ Słoneczny przechwycona, a nie uformowała się w nim.
      Autorzy nowej teorii – profesor Avi Loeb i jego student Amir Siraj – postulują, że obecność towarzysza Słońca w klastrze, w którym gwiazdy się uformowały, pozwala wyjaśnić istnienie Obłoku Oorta. Naukowcy mówią, że dotychczasowe teorie pozostawiały wiele niewyjaśnionych zagadnień związanych z Obłokiem Oorta. Przyjęcie, że Słońce było częścią układu podwójnego, pozwala wyjaśnić liczne wątpliwości. Tym bardziej, że nie jest to wcale nieprawdopodobne. Większość gwiazd podobnych do Słońca zaczyna życie w układach podwójnych, mówią uczeni.
      Jeśli Obłok Oorta rzeczywiście został utworzony z obiektów przechwyconych dzięki pomocy towarzysza Słońca, to będzie to niosło istotne implikacje dla naszego rozumienia uformowania się Układu Słonecznego. Układy podwójne znacznie efektywniej przechwytują różne obiekty niż pojedyncze gwiazdy. Jeśli Obłok Oorta rzeczywiście tak się utworzył, będzie to znaczyło, że Słońce miało towarzysza o podobnej masie, stwierdza Loeb.
      Przyjęcie teorii o układzie podwójnym ma też znaczenie dla wyjaśnienia pojawienia się życia na Ziemi. Obiekty z zewnętrznych części Obłoku Oorta mogły odgrywać istotną rolę historii Ziemi. Mogły dostarczyć tutaj wodę i spowodować zagładę dinozaurów. Zrozumienie ich pochodzenia jest bardzo ważne, przypomina Siraj.
      Obaj naukowcy podkreślają, że ich teoria ma też znacznie dla wyjaśnienia zagadki Planety X. Dotyczy to nie tylko Obłoku Oorta ale również ekstremalnie dalekich obiektów transneptunowych, takich jak Dziewiąta Planeta. Nie wiadomo, skąd one pochodzą, jednak nasz model przewiduje, że jest więcej obiektów o orbitach takich jak Dziewiąta, stwierdza Loeb.
      Obecnie nie posiadamy instrumentów, które pozwoliłyby zaobserwować Obłok Oorta czy Dziewiątą Planetę. Jednak już w przyszłym roku ma zacząć działać Vera C. Rubin Observatory (VRO). Będzie ono w stanie zweryfikować istnienie Dziewiątej Planety. Jeśli VRO potwierdzi, że Dziewiąta Planeta istnieje i została przechwycona oraz zaobserwuje podobnie przechwycone planety karłowate, wtedy model binarny zyska przewagę nad obecnymi teoriami o początkach Słońca, mówi Siraj.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki wykryciu neutrin pochodzących z jądra Słońca fizycy byli w stanie potwierdzić ostatni brakujący element opisu fuzji zachodzącej wewnątrz naszej gwiazdy. Potwierdzili tym samym obowiązujący od dziesięcioleci model teoretyczny przewidujący, że część energii słonecznej pochodzi z łańcucha reakcji, w którym udział mają atomy węgla i azotu.
      W procesie tym cztery protony łączą się w jądro helu. Dochodzi do uwolnienia dwóch neutrin, innych cząstek subatomowych i olbrzymich ilości energii. Ten cykl węglowo-azotowo-tlenowy (CNO) nie odgrywa większej roli w Słońcu, gdzie dzięki niemu powstaje mniej niż 1% energii. Uważa się jednak, że gdy gwiazda się starzeje, zużywa wodór i staje się czerwonym olbrzymem, wówczas rola cyklu CNO znacząco rośnie.
      O odkryciu poinformowali naukowcy pracujący przy włoskim eksperymencie Borexino. To wspaniałe, że udało się potwierdzić jedno z podstawowych założeń teorii dotyczącej gwiazd, mówi Marc Pinsonnealut z Ohio State University.
      Borexino już wcześniej jako pierwszy wykrył neutrina pochodzące z trzech różnych etapów reakcji zachodzącej w Słońcu, która odpowiada za produkcję większości energii naszej gwiazdy. Dzięki obecnemu odkryciu Borexino w pełni opisał dwa procesy zasilające Słońce, mówi rzecznik eksperymentu Gioacchino Branucci z Uniwersytetu w Mediolanie. Kończymy wielkim bum!, dodał Marco Pallavicini z Uniwersytetu w Genui. Może to być bowiem ostatnie odkrycie Borexino, któremu grozi zamknięcie z powodu ryzyka dla źródła wody pitnej.
      Odkrycie neutrin pochodzących z cyklu węglowo-azotowo-tlenowego nie tylko potwierdza teoretyczne modele procesów zachodzących w Słońcu, ale rzuca też światło na strukturę jego jądra, szczególnie zaś na koncentrację w nim metali. Tutaj trzeba podkreślić, że astrofizycy pod pojęciem „metal” rozumieją wszelkie pierwiastki o masie większej od wodoru i helu.
      Liczba neutrin zarejestrowanych przez Borexino wydaje się zgodna ze standardowym modelem przewidującym, że metaliczność jądra jest podobna do metaliczności powierzchni. To ważne spostrzeżenie, gdyż w ostatnim czasie pojawiało się coraz więcej badań kwestionujących taki model.
      Badania te sugerowały, że metaliczność jądra jest niższa niż powierzchni. A jako, że to skład pierwiastków decyduje o tempie przepływu energii z jądra, badania te sugerowały jednocześnie, że jądro jest nieco chłodniejsze niż sądzono. Jako, że proces, w którym powstają neutrina jest niezwykle wrażliwy na temperaturę, dane zarejestrowane przez Borexino wskazują raczej na starsze wartości temperatury, nie na te sugerowane przez nowe badania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Słońce wydaje się znacznie mniej aktywne niż inne podobne mu gwiazdy. Do takich zaskakujących wniosków doszedł międzynarodowy zespół astronomów, który przeanalizował dane z Teleskopu Kosmicznego Keplera. Odkrycie, dokonane przez grupę kierowaną przez Timo Reinholda z Instytutu Badań Układu Słonecznego im. Maxa Plancka, pozwoli na lepsze zrozumienie ewolucji naszej gwiazdy.
      Ludzkość od wieków obserwuje Słońce i od dawna wiemy, że znaczących zmianach liczby plam na nim występujących. Wiemy też, że im więcej plam, tym większa aktywność gwiazdy i tym silniejsze gwałtowne wydarzenia, jak wyrzuty masy. Specjaliści spodziewali się, że inne gwiazdy podobne do Słońca zachowują się w podobny sposób na tym samym etapie życia.
      Nie jesteśmy w stanie obserwować plam na innych gwiazdach, jednak przemieszczanie się plam na powierzchni gwiazd powoduje zmiany ich jasności. Dzięki temu możemy obserwować aktywność magnetyczną odległych gwiazd. Zespół Reinholda postanowił wykorzystać te dane do porównania aktywności Słońca z innymi podobnymi mu gwiazdami.
      Teleskop Kosmiczny Keplera badał i rejestrował zmiany w jasności 150 000 gwiazd. W tym samym czasie sonda Gaia obserwowała gwiazdy i określała ich pozycję oraz ruch we wszechświecie. Teraz uczeni przeanalizowali te dane i na ich podstawie zidentyfikowali 369 gwiazd o temperaturze, masie, wieku, składzie chemicznymi i prędkości obrotowej podobnych do Słońca. Okazało się, że – wbrew oczekiwaniom – większość tych gwiazd jest znacznie bardziej aktywnych od Słońca. Średnia wartość zmian ich jasności była aż 5-krotnie większa niż zmiany jasności naszej gwiazdy.
      Naukowcy proponują dwa możliwe wyjaśnienia tak wielkiej różnicy. Jedno z nich zakłada, że zmiany jasności niektórych gwiazd podobnych do Słońca są tak niewielkie, iż Kepler ich nie zauważył, co sztucznie zwiększyło średnią dla całej grupy. Drugie wyjaśnienie brzmi, że mamy tu do czynienia z prawdziwymi średnimi zmianami jasności, a to sugeruje, że w przeszłości Słońce również przechodziło okres tak dużej aktywności. To drugie przypuszczenie jest zgodne z wcześniejszymi badaniami, które wskazywały, że gwiazdy z ciągu głównego, gdy zbliżają się do połowy okresu swojego istnienia, znacznie zmniejszają swoją aktywność utrzymując wcześniejszą prędkość obrotową.
      Zespół Reinholda ma zamiar wyjaśnić te kwestie, wykorzystując w tym celu przyszłe pomiary, jakie będą dokonywane przez instrumenty TESS i PLATO.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańska Narodowa Fundacja Nauki (NSF) chwali się najbardziej szczegółowymi zdjęciami Słońca, jakie kiedykolwiek udało się wykonać. Fotografie to dzieło nowego instrumentu badawczego Daniel K. Inouye Solar Telescope, który właśnie rozpoczął pracę. To największy na Ziemi teleskop wyspecjalizowany w badaniu Słońca. Apertura jego lustra wynosi imponujące 424 centymetry. To aż dwuipółkrotnie więcej niż drugiego największego Goode Solar Telescope.
      Inouye Solar Telescope stoi na szczycie Haleakala na Hawajach. Pierwsze wykonane przezeń zdjęcia pokazują powierzchnię naszej gwiazdy w niespotykanej dotychczas rozdzielności. Widzimy na nich, że Słońce pokryte jest „ziarnami” obszarów gotującej się plazmy. Taki wzorzec pokrywa całą jego powierzchnię. Na fotografii widzimy ciasno ułożone „komórki” – każda z nich ma powierzchnię dwukrotnie większą od powierzchni Polski – które są dowodem na intensywny transport ciepła z wnętrza gwiazdy ku jej powierzchni. Gorąca plazma wypływa na powierzchnię, schładza się i ponownie zanurza wgłąb Słońca. Do zanurzania się dochodzi w miejscach widocznych ciemnych linii. Cały ten proces zwany jest konwekcją.
      Od kiedy NSF zaczęła budować ten teleskop, z niecierpliwością czekaliśmy na pierwsze obrazy. Teraz możemy pokazać zdjęcia i materiały wideo. To najbardziej szczegółowe obrazy naszego Słońca w historii. Inouye Solar Telescope stworzy mapę pól magnetycznych korony słonecznej, miejsca, w którym zachodzą procesy mające wpływ na życie na Ziemi. Polepszy on nasze rozumienie pogody kosmicznej i pomoże lepiej przewidywać burze na Słońcu, stwierdził France Cordova, dyrektor NSF.
      W każdej sekundzie Słońce spala około 5 milionów ton paliwa. Minimalna część energii z tego procesu trafia na Ziemię. W latach 50. ubiegłego wieku naukowcy zauważyli, że od naszej gwiazdy wieje wiatr słoneczny. Stwierdzili również, że żyjemy wewnątrz atmosfery Słońca. Jednak o zjawiskach w niej zachodzących wciąż niewiele wiemy.
      Jeśli chodzi o atmosferę ziemską, to jesteśmy w stanie z dużym prawdopodobieństwem przewidzieć, czy i gdzie będzie padało. W odniesieniu do pogody kosmicznej takich umiejętności nie mamy. Nasze możliwości przewidywania pogody kosmicznej są o co najmniej 50 lat opóźnione w stosunku do umiejętności przewidywania pogody na Ziemi. Musimy zrozumieć zjawiska fizyczne stanowiące podstawę pogody kosmicznej, a ta zaczyna się na Słońcu. Teleskop Słoneczny Inouye będzie je badał przez następne dekady, dodaje Matt Mountain, prezydent Association of Universities for Research in Astronomy, które zarządza teleskopem.
      Daniel K. Inouye Solar Telescope to imponujące urządzenie. Już samo kierowanie 4-metrowego lustra w stronę Słońca wiąże się z dostarczeniem doń olbrzymiej ilości ciepła, które trzeba w jakiś sposób usunąć. Teleskop korzysta ze specjalnego systemu chłodzącego, na który składa się ponad 11 kilometrów rur z chłodziwem, od którego część ciepła jest odbierana przez lód, tworzący się na szczycie w ciągu nocy.
      Kopuła nad teleskopem została wykonana z cienkich chłodzących płyt stabilizujących temperaturę wokół teleskopu, a specjalny system osłon pozawala na regulowanie przepływu powietrza i zapewnia cień. Specjalny wysoko zaawansowany zespół chłodzący składający się z metali i chłodziwa otacza główne lustro, blokując większość zbieranej przez nie energii. Teleskop wykorzystuje też zaawansowane układy optyczne kompensujące zakłócenia wywoływane obecnością ziemskiej atmosfery.
      Prace nad teleskopem rozpoczęły się ponad 20 lat temu. Jego budowa ruszyła w styczniu 2013 roku, a we wrześniu gotowy był już budynek teleskopu. W sierpniu 2017 na miejsce dostarczono główne lustro. W 2019 roku urządzenie zostało testowo uruchomione, a w styczniu 2020 rozpoczęło pracę i dostarczyło wyjątkowe zdjęcia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Satelita Solar Dynamics Observatory (SDO) zaobserwował na Słońcu nowy rodzaj erupcji magnetycznej. Najpierw doszło do wyrzucenia z powierzchni Słońca plazmy, która po zatoczeniu łuku zaczęła opadać na powierzchnię naszej gwiazdy. Zanim jednak tam dotarła, wpadła w plątaninę linii pola magnetycznego i wywołała kolejną eksplozję. Naukowcy mówią o wymuszonej rekoneksji magnetycznej.
      Na Słońcu już wcześniej obserwowano spontaniczne rekoneksje magnetyczne i wywołane nimi wyrzuty plazmy. Nigdy wcześniej nie obserwowano jednak, by jedna eksplozja była wywołana drugą.
      To pierwsza obserwacja zewnętrznej rekoneksji magnetycznej zachodzącej pod wpływem czynnika zewnętrznego. Może być to bardzo użyteczne dla zrozumienia innych systemów, takich jak magnetosfera Ziemi i innych planet, innych namagnetyzowanych źródeł plazmy, w tym eksperymentów w laboratorium, gdzie plazmę trudno jest kontrolować, mówi Abhishek Srivastava z Indyjskiego Instytutu Technologicznego w Indiach.
      Spontaniczną rekoneksję magnetyczną obserwowano już zarówno na Słońcu jak i wokół Ziemi. Przed 15 laty pojawiła się teoria mówiąca, że może zachodzić też zjawisko wymuszonej rekoneksji magnetycznej.
      Nowy rodzaj eksplozji był ukryty w danych sprzed lat. Analiza danych zebranych przez SDO wykazała, że do wymuszonej rekoneksji magnetycznej doszło 3 maja 2012 roku.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...