Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Uczniowie i studenci na całym świecie uczą się, że rozpad promieniotwórczy odbywa się ze stałą prędkością, dzięki czemu można wykorzystać węgiel C-14 do precyzyjnego datowania. Jednak naukowcy z dwóch renomowanych uczelni Stanford University i Purdue University sądzą, że rozpad nie jest równomierny, a wpływ na jego prędkość ma... Słońce.

Profesor fizyki Ephraim Fischenbach z Purdue potrzebował długiej listy przypadkowo generowanych liczb. Uczeni używają ich do najróżniejszych obliczeń, jednak uzyskanie list jest bardzo trudne. Powinny to być bowiem liczby losowe, a więc na ich wybór nie powinno nic wpływać. Fischenbach postanowił zatem wykorzystać radioaktywne izotopy jako źródło liczb. Co prawda np. kawałek cezu-137 rozpada się - jak dotąd sądzono - ze stałą prędkością, jednak wiadomo, że do rozpadu poszczególnych atomów dochodzi w całkowicie nieprzewidywalny, przypadkowy sposób. Naukowiec chciał zatem wykorzystać materiał radioaktywny i licznik Geigera i notując czas upływający pomiędzy momentami rozpadu poszczególnych atomów uzyskać szereg przypadkowych liczb.

Fischenbach chciał najpierw wybrać najlepszy materiał radioaktywny, więc wraz ze swoimi kolegami zaczął przeglądać publikacje na temat ich rozpadu. I odkryli znajdujące się w nich różnice w pomiarach.

Naukowcy, zdumieni tym faktem, porównali dane zebrane przez amerykańskie Brookhaven National Laboratory oraz niemiecki Federalny Instytut Fizyki i Techniki. Tutaj czekała ich jeszcze większa niespodzianka. Okazało się bowiem, że tempo rozpadu zarówno krzemu-32 jak i radu-226 wykazywało sezonowe odchylenia. Latem rozpad pierwiastków był nieco szybszy niż zimą.

Wszyscy myśleliśmy, że mamy tu do czynienia z błędami pomiarowymi [różne pory roku charakteryzują się przecież różną temperaturą czy wilgotnością, co może wpływać na instrumenty pomiarowe - red.], ponieważ byliśmy przekonani, że tempo rozpadu jest stałe - mówi emerytowany profesor fizyki, ekspert fizyki słońca Peter Sturrock ze Stanford University.

Rozwiązanie zagadki nadeszło, przynajmniej częściowo, 13 grudnia 2006 roku, gdy w nocy w laboratorium Purdue University inżynier Jere Jenkins zanotowanł niewielkie spowolnienie tempa rozpadu manganu-54. Nastąpiło ono na 1,5 doby przed  pojawieniem się flary słonecznej.

Uczeni opisali swoje spostrzeżenia i w kolejnych artykułach stwierdzili, że zmiany w tempie rozpadu izotopów związane są z ruchem obrotowym Słońca, a najbardziej prawdopodobną ich przyczyną jest wpływ neturin na izotopy. Zresztą sam Sturrock poradził kolegom z Purdue, by przyjrzeli się rozpadowi, a z pewnością stwierdzą, że zmiany następują co 28 dni.

Tymczasem okazało się, że zmiany zachodzą co... 33 dni.

To, jak uważa Sturrock wskazuje, wbrew intuicji, że wnętrze naszej gwiazdy - w którym zachodzą reakcje - wiruje wolniej niż jej obszar zewnętrzny.

Jednak te spostrzeżenia nie wyjaśniają kolejnej, wielkiej tajemnicy. W jaki sposób neutrino miałyby wpływać na materiał radioaktywny na tyle, by zmienić tempo jego rozpadu.

Z punktu widzenia standardowych teorii to nie ma sensu - mówi Fischbach. A Jenkins dodaje: Sugerujemy, że coś, co nie wchodzi w interakcje z niczym zmienia coś, co nie może być zmienione.

Uczonym pozostaje więc do rozwiązania poważna zagadka. Albo nasza wiedza o neutrino wymaga weryfikacji, albo też na rozpad ma wpływ nieznana jeszcze cząstka.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeżeli za "prędkość rozpadu" uznamy aktywność izotopu to nigdzie na świecie nie uczą, że rozpad promieniotwórczy odbywa się ze stałą prędkością. Natomiast owszem, uczą że prawdopodobieństwo rozpadu cząstek jest dla każdej z nich jednakowe i  nie zmienia się w czasie trwania procesu rozpadu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Drugi dzisiaj bardzo ważny nius z fizyki jądrowej i nie tylko!

Jeśli jądra nie są rozmytymi, fluktuującymi bytami do czego chce wszystko sprowadzić mechanika kwantowa, tylko konkretnymi strukturami (jak sugeruje sąsiedni artykuł http://kopalniawiedzy.pl/jadro-atomowe-platyna-rezonans-elektrownia-atomowa-Paul-Koehler-Oak-Ridge-National-Laboratory-11198.html ) - strukturami w pewnym (lokalnym?) minimum energetycznym - żeby wybić z tego dołka np. w celu rozpadu promieniotwórczego, potrzebne jest całkiem sporo energii - kilka rzędów wielkości więcej niż normalnie występuje na poziomie chemii.

Skąd ta energia?

Niby rozkład Boltzmanna mówi że rzadko, ale czasem jednak z tej chemii może się spontanicznie skumulować dowolnie duża energia ... ale jest to jednak pewna idealizacja - tak na prawdę nie możemy chyba być pewni że ten rozkład dalej dobrze się zachowuje dla energii kilka rzędów wielkości wyższej niż średnia.

Więc przydałoby się szukać innych źródeł takich energii...

Kiedyś myślałem o po prostu promieniowaniu tła ( http://www.scienceforums.net/topic/40163-can-we-be-sure-that-decay-times-are-constant/ ) - niby mniejsze energie, ale jednak wydaje się mieć większą zdolność do fluktuacji niż chemia ... innym pomysłem to to że może coś pozostało z kaskad z wysokoenergetycznego promieniowania kosmicznego ... ale rzeczywiście wytłumaczenie używające neutrin (głównie) słonecznych wydaje się najsensowniejsze i przy okazji możliwe do zweryfikowania eksperymentalnie ...

 

Jakie są dalsze konsekwencje? (oprócz konieczności przemyślenia np. wyników datowań, ale i modelów planetarnych ... kosmologicznych)

Na przykład przypatrzmy się hipotetycznemu rozpadowi protonu - z jednej strony jest wymagany przez wiele współczesnych teorii cząstek (jak supersymetrie), z drugiej wydaje się konieczny żeby wytłumaczyć niezerową liczbę barionową naszego wszechświata ... a tu nie możemy go zaobserwować nawet w gigantycznych zbiornikach ...

A może właśnie problemem jest to że tak gigantyczna energia potrzebna do wyrwania struktury protonu z bardzo głębokiej studni potencjału po prostu nie może spontanicznie powstać na poziomie chemii ani być dostarczona w neutrinach słonecznych ...

Gdzie w takim razie go szukać?

Może tylko w rzeczywiście ekstremalnych temperaturach jak jądro zapadającej się gwiazdy neutronowej ... taki rozpad wydawałby się być 'bezpiecznikiem natury' zapobiegającym dążeniu do nieskończonej gęstości materii - po prostu wcześniej zamieniłaby się w energię ... co też mogłoby pomóc w wytłumaczeniu obserwowanego promieniowania kosmicznego o energiach daleko poza skalą której mechanizm potrafimy obecnie wytłumaczyć ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Co w takim razie z datowaniem obiektów archeologicznych? Trzeba będzie przeszacować dotychczasowe datowania.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Owszem - wspomniałem też ten 'problem' ale jest chyba dość niewielki i dotyczy na prawdę starych próbek - trzeba po prostu przyglądnąć się dobrze modelom ewolucji słońca ... i może zastanowić się też nad wpływem promieniowania kosmicznego, szczególnie neutrin ... ale chyba jest zaniedbywany?

Chociaż pewnie gdy Ziemia miała słabiej rozwiniętą atmosferę, jego wpływ mógł być większy ... narzuca się badanie przekroju składu izotopowego głębokich odwiertów ...

 

Bardzo ważne pytanie - jak ta zależność 'słoneczna' wygląda dla różnych izotopów - ich minimum energetyczne wygląda pewnie trochę inaczej, ma różną głębokość, szerokość - takie porównanie może niedługo stać się wręcz podstawowym narzędziem fizyki jądrowej ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Co w takim razie z datowaniem obiektów archeologicznych? Trzeba będzie przeszacować dotychczasowe datowania.

 

Odnoszę wrażenie, że różnice będą w granicach 10% i nie będą grały większej roli. Jak dla mnie nie ma różnicy czy znajdą skamielinę sprzed miliona lat, czy też 2 milionów - to są i tak czasy zupełnie abstrakcyjne i nie do ogarnięcia, szczególnie jak popatrzysz na kalendarz :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dla mnie w tej hecy najbardziej istotne jest, że może się wreszcie okaże, iż rozpad atomowy nie jest wcale samorzutny.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przejrzałem artykuł "Power Spectrum Analysis of BNL Decay-Rate Data"

(http://arxiv.org/ftp/arxiv/papers/1006/1006.4848.pdf).

Analiza statystyczna wygląda na rzetelną.

Myślę, że warto będzie dobrać się do oryginalnych danych i powtórzyć obliczenia z wykorzystaniem bardziej subtelnych technik statystycznych.

Postaram się to zrobić w najbliższym czasie.

Jeśli potwierdzi się kilka ostatnich niespodzianek, to zadrżą podstawy fizyki jąder atomowych.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Dla mnie w tej hecy najbardziej istotne jest, że może się wreszcie okaże, iż rozpad atomowy nie jest wcale samorzutny.

Bingo, dlaczego zresztą miałoby jakiekolwiek zjawisko zachodzić samorzutnie? Przestrzeń jest wypełniona cząstkami elementarnymi, atomami, w mniejszych skalach fluktuacjami kwantowymi. To że są one niemierzalne, nie oznacza że nie mają wpływu na atomy i cząstki elementarne (nieznanego na obecną chwilę). Dlaczego niby rozpad miałby być samorzutny jeśli cząstki są jak łupiny na morzu pełnym fal? Wiemy że są 'fale', wiemy że są 'łupiny' a założyliśmy że jedno na drugie nie wpływa tylko z wygody ponieważ na razie stan wiedzy nie pozwala nam się tym zająć.

To może być przełom, wprowadzenie fizyki do poziomu fluktuacji kwantowych. Jeden poziom niżej w budowie materii, tak jak kiedyś stwierdzenie istnienia atomów, a póżniej stwierdzenie ich budowy, później kwarków.

Żadne zjawisko według mnie nie zachodzi samorzutnie, co najwyżej nie jesteśmy w stanie technicznie przeprowadzić lub teoretycznie zrozumieć powodów dla którego zachodzi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wytłumaczenie mam proste: przy większej aktywności Słońca kot Schrödingera częściej się budzi i rozrabia… :)

A poważnie, to jestem w lekkim szoku. Jeśli to się potwierdzi… W „Głosie Pana” Lem wymyślił, że promieniowanie neutrinowe sprzyja większej trwałości wiązań chemicznych, i gdyby ten jego pomysł się okazał rzeczywistością, wcale nie zdziwiłoby mnie bardziej niż to, co przeczytałem wyżej. Być może stoimy na krawędzi rewolucji w fizyce, a dzisiejszą wiedzę będzie się kiedyś traktować, jak my traktujemy teorie eteru i flogistonu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@Jarek Duda:

1) Rozkład Boltzmanna odnosi się do znaczącej liczby elementów (cząstek) w równowadze termodynamicznej w "dużych" temperaturach. Nie znajdzie on zastosowania w pojedynczym jądrze ( o ile dobrze Pana zrozumiałem).

2) Za rozpad alfa, zgodnie z moim stanem wiedzy, odpowiada efekt tunelowania. Co prawda prawdopodobieństwo uzyskania typowej energii (5MeV) jest dość małe, ale biorąc pod uwagę częstość zderzania się ze ścianami studni energetycznej, jest całkowicie realne i częste.

 

Nawet jeżeli wpływ na rozpad mają neutrina, to niby w jaki sposób mają zamiar to sprawdzić. Są one bardzo ciężko reaktywne z używaną przez nas i, jak do tej pory, znaną nam materią. Nie będzie wiadomo czy w trakcie zwiększania 'prędkości' rozpadu Słońce wyrzuca więcej czy mniej neutrin niż wcześniej.

 

Poza tym, Słońce nie tylko neutrinami w nas sieje. Ma też dość duże pole magnetyczne. Oraz czasem zmienia kolor ( siła kolorowa ).

 

Tam, w świecie małych rozmiarów i dużych energii, istnieją również cząsteczki wirtualne. Skoro nie widzimy kto w kogo kopie to powiedzmy, że się samo kopie, tak? (to tak odnośnie procesów samorzutnych)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@kretyn:

Rozpad jest przejściem ze stanu wyżej energetycznego do niżej - czyli z perspektywy mechaniki kwantowej: kolapsem funkcji falowej, prawda?

Ona mówi że jest to przejście z jednej gęstości prawdopodobieństwa do wybranej losowo jednej z nowych - natychmiastowy proces bez wewnętrznej dynamiki ... więc jak z tej perspektywy chcemy opisywać rozpad?

A może jednak nie jest ona fundamentalna jak próbuje się nam wmawiać, a tylko praktyczną idealizacją - za kolapsem jednak jest pewna konkretna dynamika, która trwa pewien czas (zobacz http://kopalniawiedzy.pl/forum/index.php/topic,16057.msg66064.html )

 

Jak więc szukać takiej dynamiki?

Zasada Heisenberga mówi że trudno ją bezpośrednio mierzyć, ale nie zakazuje próbować ją modelować - wyobrazić sobie co się dzieje za kurtyną, prawda?

Żeby ją zobaczyć nie powinniśmy zaczynać od rozmytej mechaniki kwantowej, tylko jednak spróbować z drugiej strony: od klasycznych modeli solitonowych, a dopiero potem (ewentualnie) martwić się o kwantowanie - dobrze działają tego typu modele skyrmionowe pojedynczych mezonów, barionów ...

W tym obrazie mamy coś jak fałdowanie białka - konkretny krajobraz energetyczny i jądro zwykle jest w jednym z głębszych lokalnych minimów.

Jak się z niego wydostać? Skąd bierze tą energię do wyskoczenia z dołka?

Powiesz tunelowanie - jasne używając probabilistycznych idealizacji jak mechanika kwantowa, możemy wzniośle powiedzieć że z cząstek wirtualnych z próżni (co prowadzi do nieskończonej jej tam gęstości etc...) .. jeśli jednak rzeczywiście chcemy zrozumieć tą dynamikę, nie możemy po prostu wypchać się w ten sposób, tylko jednak przydałoby się próbować zlokalizować jej źródło.

Jedno to lokalne interakcje elektromagnetyczne, czyli po prostu chemia - i tu wchodzi rozkład Boltzmanna: mówi że bardzo rzadko udaje się spontanicznie zlokalizować dowolnie duże energie - o ile ta kolejna idealizacja dalej dobrze się zachowuje w jakościowo zupełnie różnej jądrowej skali energii, czasem udaje się w ten sposób stochastycznie 'rozbujać' jądro i wybić z tego minimum.

Idealnym źródłem koniecznej energii są działające prawie jednorodnie na całą objętość Ziemi neutrina - oddziaływają bardzo rzadko, ale jest ich bardzo dużo, więc możemy zastosować twierdzenie Poissona dostając statystycznie znowu wykładniczy zanik niestabilnych jąder.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dziwna sprawa. Skoro kiedy Ziemia jest w peryhelium zwiększa się tempo rozpadu, to dlaczego przed flarami słonecznymi to samo tempo spada? Flary są w końcu echem tego co się dzieje wewnątrz naszej gwiazdy.

Poza tym co z neutrinami pochodzącymi z supernowych? Mają znacznie większe energie a więc i powinny działać kilka rzędów mocniej niż te słoneczne. Takich "pików" na wykresie nie dałoby się przegapić.

 

Może tu nie chodzi o neutrina? A może taka śmielsza hipoteza - co jeżeli zdarzenia na Słońcu powodują w jakiś sposób stabilizację jąder atomów z otoczenia poprzez absorpcję energii która wywołuje rozpad?

 

Może też się mylę i są to neutrina, tylko poruszające się w obu kierunkach osi czasu (coś jak doświadczenie Wheelera ale na znacznie większe odległości i angażujące cały łańcuch procesów)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
  Flary są w końcu echem tego co się dzieje wewnątrz naszej gwiazdy. 

 

Najpierw trzeba sobie odpowiedzieć: dlaczego Słońce wiedzione siłą odśrodkową nie opuszcza ramion galaktyki??

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Webby, sytuacja jest bardzo skomplikowana: przekrój czynny dla neutrin jest kosmicznie mały, to znaczy że muszą idealnie wstrzelić się ze swoimi parametrami: zarówno uderzyć w dobry punkt pod odpowiednim kątem ... ale i pewnie mieć energię w pewnym wąskim przedziale charakterystycznym dla danego rozpadu.

Dalej wewnętrzna dynamika słońca jest strasznie skomplikowana i neutrina o różnym (statystycznym) widmie energii mogą powstawać w różnych obszarach ... a powierzchnia pokazuje sytuację dość opóźnioną z bardzo skomplikowaną zależnością od tego co się dzieje w środku...

Więc ogólnie myślę że różne izotopy mogą preferować różne energie neutrin, a więc i ich zależność od obserwowanej aktywności słońca może być bardzo różna ... podobnie z innych źródeł - fajnie żeby w końcu ruszyły na poważnie tego typu systematyczne badania, co może bardzo pomóc zrozumieć zarówno dynamikę gwiazd jak i fizykę jądrową...

 

Co do śmiesznej hipotezy :) - generalnie jak najbardziej się zgadzam że intuicyjny dla nas kierunek ciągów przyczynowo->skutkowych jest tylko rezultatem tego że 'w tym kierunku powstaliśmy': poprzez wielki wybuch, powstanie Ziemi, ewolucję, embriogenezę, życie ... natomiast fizyka działa trochę inaczej: zachowuje symetrię CPT, pewnie jest rządzona przez jakąś deterministyczną mechanikę Lagrangianowską - żyjemy w czasoprzestrzeni, w której każdy punkt jest w równowadze ze swoim czterowymiarowym otoczeniem - nie ma powodu zakładać że związki przyczynowo-skutkowe zachodzą tylko w jednym kierunku czasowym, co dosłownie widzimy w doświadczeniu Wheelera ...

... czyli neutrina wyprodukowane przez słońce są połączone trajektorią w czasoprzestrzeni z ewentualnym celem - mamy czterowymiarową równowagę, którą rzeczywiście brak/zmiana ośrodka mógłby może jakoś zmodyfikować ... to by było niezłe: obserwować przyszłą kosmologię w zachowaniu słońca :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
to by było niezłe: obserwować przyszłą kosmologię w zachowaniu słońca  

Przecież wszystkie detektory neutrin na ziemi temu służą. Tylko ze między obserwacją neutrin a rozbłyskiem słonecznym może minąć i 1000lat.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Poza tym co z neutrinami pochodzącymi z supernowych? Mają znacznie większe energie a więc i powinny działać kilka rzędów mocniej niż te słoneczne

Ale dociera do nas ich bardzo mało. Chodzi o ilość. Po pierwsze muszą trafić w próbkę. Po drugie z nią wejść w oddziaływanie. Jest to możliwe jedynie przy bardzo dużej ich liczbie. Energia ma tu mniej do rzeczy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Ale dociera do nas ich bardzo mało. Chodzi o ilość.[/size] 

eee.. coś nie tak , przecież są miliony słońc i to nie tylko w naszej galaktyce.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Różnego rodzaju procesy fizyczne jak absorpcje na poziomie fizyki atomowej a więc i pewnie jądrowej, wymagają pewnego rezonansu - czyli nie czym większa energia tym lepiej, tylko czym energia bliżej pewnego zbioru wartości (częstotliwości rezonansowych) tym lepiej.

Poza tym tych innych neutrin jest jednak trochę mniej ...

 

Jeśli ktoś jest zainteresowany tematem, to tutaj jest kilkaset postów na ten temat: http://wattsupwiththat.com/2010/08/23/teleconnected-solar-flares-to-earthly-radioactive-decay/

Na przykład dowiedziałem się że ze 2 lata temu to było w niusach: np. http://physicsworld.com/cws/article/news/36108 , http://www.astroengine.com/?p=1189

Potem była krytyczna odpowiedź: http://donuts.berkeley.edu/papers/EarthSun.pdf

Do której odnosi się ta nowa praca wyglądających poważnie 9 autorów ( http://arxiv.org/abs/1006.4848 ): "Norman et al. [7] have reexamined data from several studies of nuclear decay rates and found no evidence for a correlation with Sun-Earth distance. However, our collaboration has recently re-analyzed Norman’s data, which Norman and his collaborators generously provided, and we have detected an annual periodicity with a small amplitude but the same phase as that found in the BNL and PTB datasets.", która ponoć już została zaakceptowana przez redaktorów Astroparticle Physics (34 (2010) 121-127).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Rząd Japonii dał zielone światło budowie Hyper-Kamiokande, największego na świecie wykrywacza neutrin, którego konstrukcja pochłonie 600 milionów dolarów. Gigantyczna instalacja powstanie w specjalnie przygotowanej dlań grocie niedaleko kopalni w miejscowości Kamioka. Pomieści ona 250 000 ton ultraczystej wody. To 5-krotnie więcej niż obecnie używany Super-Kamiokande. Ten z kolei jest następcą 3000-tonowego Kamiokande, który działał w latach 1983–1995.
      Dzięki olbrzymim rozmiarom Hyper-K możliwe będzie zarejestrowanie większej liczby neutrin niż dotychczas. Będą one pochodziły z różnych źródeł – z promieniowania kosmicznego, Słońca, supernowych oraz z akceleratora cząstek. Instalacja posłuży też do ewentualnej obserwacji rozpadu protonów. Istnienie takiego zjawiska przewidują niektóre rozszerzenia Modelu Standardowego, jednak dotychczas nie udało się go zarejestrować.
      Budowa wykrywacza ma kosztować 600 milionów dolarów, z czego Japonia pokryje 85%, a resztę sfinansują inne kraje, w tym Wielka Brytania i Kanada. Dodatkowo Japonia wyda 66 milionów dolarów na rozbudowę akceleratora J-PARC. To znajdujące się 300 kilometrów dalej urządzenie będzie źródłem neutrin dla Hyper-K.
      Głównym elementem nowego wykrywacza będzie zbiornik o głębokości 71 i średnicy 68 metrów. Grota, do której trafi, powstanie 8 kilometrów od istniejącej infrastruktury Kamioka, by uniknąć wibracji mogących zakłócić prace przygotowywanego właśnie do uruchomienia wykrywacza fal grawitacyjnych KAGRA.
      Wnętrze zbiornika Hyper-K zostanie wyłożone fotopowielaczami, które będą przechwytywały fotony powstałe w wyniku zderzeń neutrino z atomami w wodzie.
      Hyper-Kamiokande będzie jednym z trzech dużych instalacji służących do wykrywania neutrin, jakie mają ruszyć w nadchodzącej dekadzie. Dwa pozostałe to Deep Underground Neutrino Experiment (DUNE), który ma zacząć pracę w USA w 2025 roku oraz Jiangmen Underground Neutrino Observatory (JUNO), jaki Chiny planują uruchomić w roku 2021.
      Takaaki Kajita, fizyk z Uniwersytetu Tokijskiego, mówi, że naukowcy są podekscytowani możliwościami Hyper-K, który ma pozwalać na badanie różnic w zachowaniu neutrin i antuneutrin. Już w Super-K zauważono istnienie takich różnic, jednak to Hyper-K i DUNE pozwolą na ich bardziej szczegółowe zbadanie. Zaś dzięki temu, że oba detektory będą korzystały z różnej techniki – w DUNE znajdzie się płynny argon a nie woda – będzie można nawzajem sprawdzać uzyskane wyniki.
      Jednak,jak podkreśla Masayuki Nakahata, fizyk z Uniwersytetu Tokijskiego i rzecznik prasowy Super-K, największą nadzieją, jaką pokłada się w Hyper-K jest odkrycie rozpadu protonu.
      Na razie rząd Japonii nie wydał oficjalnego oświadczenia w sprawie budowy Hyper-Kamiokande. Jednak japońscy naukowcy mówią, że właśnie zaproponowano poprawkę budżetową, w ramach której przewidziano pierwszą transzę w wysokości 32 milionów dolarów na rozpoczęcie budowy wykrywacza. Poprawka musi jeszcze zostać zatwierdzona przez parlament, co prawdopodobnie nastąpi w przyszłym miesiącu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowców pracujący w ramach znajdującego się w Japonii eksperymentu T2K zaobserwował sygnały, które mogą być przełomem w dziedzinie badań neutrino i symetrii pomiędzy materią a antymaterią. Zauważone sygnały sugerują, że neutrino może oscylować pomiędzy swoimi trzema rodzajami. Na razie nie udało się potwierdzić tych obserwacji, gdyż T2K wyłączono po trzęsieniu ziemi z marca bieżącego roku.
      W ubiegłym roku informowaliśmy, że eksperyment OPERA zanotował zmianę neutrina mionowego w taonowe. Teraz wszystko wskazuje na to, że neutrino mionowe może zamieniać się w neutrino elektronowe.
      Jeśli spostrzeżenia się potwierdzą, otworzy to drogę do nowych badań i koncepcji w fizyce cząstek i budowie wszechświata. Pojawią się nowe pomysły, których celem będzie rozwiązanie problemu widocznej we wszechświecie asymetrii pomiędzy materią a antymaterią. Chcemy poradzić sobie z tym problemem, ale najpierw musimy potwierdzić, że różne zapachy neutrino mogą spontanicznie między sobą oscylować. Jak dotąd nasze eksperymenty przynoszą pozytywne rezultaty - mówi profesor Dave Wark z Impterial College London, który przewodzi brytyjskiemu zespołowi pracującemu w T2K.
      Eksperyment T2K wykorzystuje niezwykły wykrywacz neutrin Super-Kamiokande. Jest on ukryty na głębokości 1000 metrów pod górą Kamioka w pobliżu miasta Hida. W jego skład wchodzi olbrzymi stalowy zbiornik o średnicy 39,3 metra i wysokości 41,4 m, który mieści 50 000 ton niezwykle czystej wody. Wewnątrz zbiornika znajdują się tysiące czujników.
      Podczas badań T2K naukowcy używali akceleratora Japan Proton Accelerator Research Centre (J-Parc), który pod ziemią wystrzeliwał strumień neutrino mionowych w kierunku znajdującego się 295 kilometrów dalej Super-Kamiokande. Czujniki Super-K rejestrowały rzadkie i słabe rozbłyski światła, powstające w wyniku interakcji neutrin z cząsteczkami wody.
      Przed trzęsieniem ziemi, które zniszczyło laboratorium T2K, uczeni obserwowali pojawienie się neutrin elektronowych w Super-K. Wydaje się zatem, że neutrina mionowe emitowane przez J-Parc zmieniły się w neutrina elektronowe. Na razie jednak danych jest zbyt mało, by jednoznacznie ogłosić, że doszło do oscylacji. Laboratorium będzie nieczynne do stycznia przyszłego roku. Na potwierdzenie oscylacji neutrin mionowych w elektronowe będziemy musieli poczekać co najmniej rok.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wszechświat jest pełen neutrin. Jest ich tak dużo, że w każdej sekundzie przez nasze ciała przelatuje nawet 100 bilionów tych cząstek subatomowych. Mimo tej obfitości neutrino jest najsłabiej poznaną cząstką elementarną. Bardzo słabo oddziałuje ono z materią, dlatego też trudno jest je zarejestrować i badać. Tymczasem fizycy od kilkunastu lat coraz bardziej interesują się neutrinami, gdyż mogą one wyjaśnić wiele tajemnic, na przykład, dlaczego we wszechświecie jest więcej materii niż antymaterii.
      Jedną z pierwszych cech neutrin, jakie powinniśmy poznać, są ich rozmiary. Znajomość tego parametru pozwoli na zaprojektowanie bardziej precyzyjnych detektorów, dzięki którym można będzie lepiej zbadać neutrina. Międzynarodowy zespół naukowy opisał na łamach Nature opracowaną przez siebie metodę pomiaru rozmiarów neutrino elektronowego oraz uzyskane wyniki.
      Uczeni przeprowadzili eksperyment, podczas którego obserwowali radioaktywny rozpad berylu (7Be). Rozpada się on do litu (7Li). Podczas tego procesu ma miejsce wychwyt elektronu, kiedy to elektron atomu jest przechwytywany przez proton z jego jądra. Powstaje w ten sposób neutron pozostający w jądrze nowego pierwiastka – litu-7 – oraz emitowane jest neutrino elektronowe.
      Uwalniana jest energia, która odrzuca nowo powstały atom litu-7 w jednym kierunku, a neutrino w przeciwnym. Badacze obserwowali ten proces w akceleratorze, w którym umieścili bardzo czułe detektory neutrin. Dzięki temu mogli zbadać moment pędu atomu litu i na tej podstawie obliczyć rozmiary neutrino.
      Pomiar oddaje kwantową naturę neutrino. Co oznacza, że „rozmiar” należy tutaj rozumieć jako pewien stopień niepewności co do przestrzeni zajmowanej przez neutrino. Z obliczeń wynika, że dolną granicą rozmiarów pakietu falowego neutrino elektronowego jest 6,2 pikometrów. To oznacza, że pakiet falowy neutrin jest znacznie większy niż pakiet falowy typowego jądra atomowego, który liczy się w femtometrach. Dla jądra wodoru jest to ok. 1,2 fm, dla jądra węgla, ok 3,5 fm.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Analiza ponad 50 000 gwiazd wykazała, że rozbłyski słoneczne mogą być setki razy potężniejsze, niż najsilniejszy rozbłysk kiedykolwiek zanotowany przez astronomów. Na łamach pisma Science badacze z Instytutu Badań Układu Słonecznego im Maxa Plancka poinformowali, że po przebadaniu 56 540 gwiazd doszli do wniosku, że każda z nich średnio co 100 lat doświadcza gigantycznego rozbłysku. Wyniki badań wskazują, że dotychczas potencjał gwiazd był niedoszacowany. Z danych zebranych przez Teleskop Keplera wynika bowiem, że gigantyczne rozbłyski mają miejsce 10-100 razy częściej niż sądzono.
      Już wcześniejszych badań wiadomo było, że na Słońcu może dochodzić do potężnych erupcji. Ich ślady znajdowano w prehistorycznych drzewach i lodzie z lodowców. Jednak na podstawie takich źródeł nie można było stwierdzić, jak często tego typu wydarzenia mają miejsce. Bezpośrednie pomiary ilości promieniowania docierającego ze Słońca na Ziemię potrafimy wykonywać dopiero od kilkudziesięciu lat.
      Istnieje jednak inny sposób na zdobycie danych na temat długoterminowego zachowania się Słońca. Współczesne teleskopy kosmiczne obserwują tysiące gwiazd i zbierają dane o zmianach ich jasności. W danych tych widać też potężne rozbłyski. Nie możemy obserwować Słońca przez tysiące lat. Możemy jednak badać zachowanie tysięcy gwiazd bardzo podobnych do Słońca w krótkim okresie czasu. To pozwala nam ocenić, jak często dochodzi do superrozbłysków, mówi współautor badań, profesor Sami Solanki.
      Naukowcy z Niemiec, Austrii, USA, Japonii, Finlandii i Francji przeanalizowali dane z 56 450 gwiazd dostarczone w latach 2009–2013 przez Teleskop Kosmiczny Keplera. W sumie Kepler dostarczył nam danych z 220 tysięcy lat aktywności słonecznej, wyjaśnia profesor Alexander Shapiro z Uniwersytetu w Grazu.
      Kluczowym elementem był dobór gwiazd jak najbardziej podobnych do naszej. Badacze wybrali więc te, których temperatura powierzchni i jasność były jak najbardziej zbliżone. W czasie badań zidentyfikowano 2889 superrozbłysków, które miały miejsce na 2527 gwiazdach spośród 56 450 wybranych. To oznacza, że każda z gwiazd generuje jeden superrozbłysk w ciągu stu lat. To było zaskakujące. Naukowcy nie spodziewali się, że potężne rozbłyski mają miejsce tak często. Dotychczas bowiem, na podstawie dowodów znalezionych na Ziemi, wydawało się, że dochodzi do nich znacznie rzadziej.
      Gdy cząstki z potężnego rozbłysku trafią do ziemskiej atmosfery, dochodzi do wytwarzania mierzalnych ilości pierwiastków promieniotwórczych, takich jak węgiel-14. Pierwiastki te trafiają do naturalnych archiwów, jak pierścienie drzew czy lód w lodowcach. Więc informacje o takim wydarzeniu na Słońcu można odczytać tysiące lat później na Ziemi. W ten sposób naukowcom udało się zidentyfikować 5 ekstremalnych wydarzeń tego typu i 3 kandydatów na rozbłyski. Doszło do nich w ciągu ostatnich 12 tysięcy lat. Z tego też powodu sądzono, że Słońce generuje superrozbłyski raz na około 1500 lat. I o ile wiadomo, ostatnie takie wydarzenie miało miejsce w 775 roku.
      Wyniki badań mogą niepokoić. O ile w roku 775 wynikiem skierowanego w stronę Ziemi rozbłysku mógł być niewielki wzrost zachorowań na nowotwory skóry, to współczesna cywilizacja techniczna bardzo boleśnie odczułaby skutki takiego wydarzenia.
      Już przed kilkunastu laty amerykańskie Narodowe Akademie Nauk opublikowały raport dotyczący ewentualnych skutków olbrzymiego koronalnego wyrzutu masy, który zostałby skierowany w stronę Ziemi. Takie wydarzenie spowodowałoby poważne perturbacje w polu magnetycznym planety, co z kolei wywołałoby przepływ dodatkowej energii w sieciach energetycznych. Nie są one przygotowane na tak gwałtowne zmiany.

      Omawiając ten raport, pisaliśmy, że mogłoby dojść do stopienia rdzeni w stacjach transformatorowych i pozbawienia prądu wszystkich odbiorców. Autorzy raportu stwierdzili, że gwałtowny koronalny wyrzut masy mógłby uszkodzić 300 kluczowych transformatorów w USA. W ciągu 90 sekund ponad 130 milionów osób zostałoby pozbawionych prądu. Mieszkańcy wieżowców natychmiast straciliby dostęp do wody pitnej. Reszta mogłaby z niej korzystać jeszcze przez około 12 godzin. Stanęłyby pociągi i metro. Z półek sklepowych błyskawiczne zniknęłaby żywność, gdyż ciężarówki mogłyby dostarczać zaopatrzenie dopóty, dopóki miałyby paliwo w zbiornikach. Pompy na stacjach benzynowych też działają na prąd. Po około 72 godzinach skończyłoby się paliwo w generatorach prądu. Wówczas stanęłyby szpitale.

      Najbardziej jednak przerażającą informacją jest ta, iż taki stan mógłby trwać całymi miesiącami lub latami. Uszkodzonych transformatorów nie można naprawić, trzeba je wymienić. To zajmuje zespołowi specjalistów co najmniej tydzień. Z kolei duże zakłady energetyczne mają na podorędziu nie więcej niż 2 grupy odpowiednio przeszkolonych ekspertów. Nawet jeśli część transformatorów zostałaby dość szybko naprawiona, nie wiadomo, czy w sieciach byłby prąd. Większość rurociągów pracuje bowiem dzięki energii elektrycznej. Bez sprawnego transportu w ciągu kilku tygodni również i elektrowniom węglowym skończyłyby się zapasy. Sytuacji nie zmieniłyby też elektrownie atomowe. Są one zaprojektowane tak, by automatycznie wyłączały się w przypadku poważnych awarii sieci energetycznych. Ich uruchomienie nie jest możliwe przed usunięciem awarii.

      O tym, że to nie tylko teoretyczne rozważania, świadczy chociażby fakt, że w marcu 1989 roku burza na Słońcu na 9 godzin pozbawiła prądu 6 milionów Kanadyjczyków. Z kolei najpotężniejszym tego typu zjawiskiem, jakie zachowało się w ludzkiej pamięci, było tzw. wydarzenie Carringtona z 1859 roku. Kilkanaście godzin po tym, jak astronom Richard Carrington zaobserwował dwa potężne rozbłyski na Słońcu, Ziemię zalało światło zórz polarnych. Przestały działać telegrafy, doszło do pożarów drewnianych budynków stacji telegraficznych, a w Ameryce Północnej, gdzie była noc, ludzie mogli bez przeszkód czytać gazety. Igły kompasów poruszały się w sposób niekontrolowany, a zorze polarne było widać nawet w Kolumbii. A pamiętać trzeba, że wydarzenie Carringtona było znacznie słabsze, niż superrozbłyski, o których tutaj mowa.

      Obecnie ucierpiałyby nie tylko sieci elektromagnetyczne, ale również łączność internetowa. Na szczególne niebezpieczeństwo narażone byłyby kable podmorskie, a konkretnie zainstalowane w nich wzmacniacze oraz ich uziemienia. Więc nawet gdy już uda się przywrócić zasilanie, problemem będzie funkcjonowanie globalnego internetu, bo naprawić trzeba będzie dziesiątki tysięcy kilometrów kabli.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
      Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
      Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
      Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
      Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...