Liczy się zmęczenie, nie ciężar
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Wielokrotnie mogliśmy się przekonać, że jeśli nie używamy jakichś mięśni, to one zanikają. Jeszcze do niedawna naukowcy sądzili, że wraz z zanikaniem mięśni zanikają też jądra komórek, które je tworzyły. Jednak z najnowszego artykułu opublikowanego we Frontiers in Physiology dowiadujemy się, że jądra komórkowe, które zyskaliśmy podczas treningu, zostają zachowane, nawet jeśli włókna mięśniowe zanikają.
Te pozostałe jądra działają jak „pamięć” mięśni, dzięki której, gdy wrócimy do treningu, szybciej jesteśmy w stanie mięśnie odzyskać. Naukowcy sądzą, że mechanizm ten ma zapobiegać zbytniej utracie masy mięśniowej w późniejszym wieku, gdy nie jesteśmy już tak aktywni, co w wieku nastoletnim. Wskazuje to również, że łatwo jest przeoczyć sportowca, który oszukuje i wspomaga rozwój mięśni środkami dopingującymi.
Największe komórki w ciele człowieka, to właśnie komórki mięśniowe. W mięśniach poprzecznie prążkowanych tworzą one syncytia, czyli więlojądrowe komórki powstające poprzez połączeni luźnych komórek jednojądrowych. Syncytia zachowują się jak jedna wielka komórka. Syncytia występują w sercu, kościach czy łożysku. Jednak największe komórki i największe syncytia znajdziemy w naszych mięśniach, mówi profesor Lawrence Schwartz z University of Massachusetts.
Wzrostowi mięśni towarzyszy dodawanie nowych jąder komórkowych z komórek macierzystych. Pozwala to na zaspokojenie zapotrzebowania rosnących komórek. To doprowadziło do pojawienia się hipotezy, każde jądro kontroluje ściśle zdefiniowaną objętość cytoplazmy, więc gdy masa mięśniowa się zmniejsza, czy to wskutek choroby czy ich nieużywania, zmniejsza się też liczba jąder komórek mięśni, dodaje uczony. Przypuszczenia takie miały o tyle mocne podstawy, że naukowcy badający tkankę mięśniową ulegającą atrofii donosili i obecnych w nich rozpadających się jądrach komórkowych. Dopiero jednak najnowsze techniki badawcze pozwoliły stwierdzić, że te rozpadające się jądra komórkowe nie pochodzą z komórek mięśni, ale z innych komórek, które pojawiły się w przeżywającej problemy tkance mięśniowej.
Dwa niezależne badania, jedno przeprowadzone na gryzoniach, a drugie na owadach, wykazały, że podczas atrofii włókien mięśniowych nie dochodzi do utraty jąder komórkowych, stwierdza Schwartz w swoim artykule. Niewykluczone, że jądro komórkowe, które pojawiło się w mięśniach, pozostaje w nich na zawsze. Profesor Schwartz nie jest zaskoczony takimi wynikami. Mięśnie ulegają uszkodzeniu podczas intensywnych ćwiczeń, często zachodzą w nich zmiany związane z dostępnością pożywienia i innymi czynnikami środowiskowymi prowadzącymi do atrofii. Nie przetrwałyby długo, gdyby przy każdym takim zdarzeniu traciły jądra komórkowe, stwierdza.
Skoro więc jądra komórkowe pozostają, to wiemy już, dlaczego łatwo jest odzyskać raz utraconą tkankę mięśniową. Dobrze udokumentowany jest fakt, że jest znacznie łatwiej odzyskać pewien poziom utraconej masy mięśniowej niż ją zbudować od podstaw, nawet jeśli przez długi czas nie ćwiczyliśmy. Innymi słowy, zamiast stwierdzać, że nieużywane mięśnie zanikają, powinniśmy powiedzieć, że nieużywane mięśnie zanikają, dopóki nie zaczniemy ich znowu używać.
Odkrycie to pokazuje, jak ważne jest zbudowanie masy mięśniowej w młodości. Wówczas jesteśmy bardziej aktywni fizycznie, a wzrost masy mięśniowej jest wspomagany poprzez hormony, większy apetyt i duże zapasy komórek macierzystych. To idealny moment, by zbudować sobie zapas jąder komórkowych w mięśniach. Mogą się one przydać po wielu latach, gdy będziemy potrzebowali szybko nadrobić utraconą masę mięśniową, co pomoże nam w zachowaniu dobrego stanu zdrowia i niezależności w sędziwym wieku.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Miomezyna to małe białko, które jest jednym z czynników stabilizujących miofibryle - włókienka kurczliwe mięśni. Wykorzystując kilka różnych technik, naukowcy z European Molecular Biology Laboratory (EMBL) w Hamburgu wykazali, że w pracujących mięśniach elastyczna część tego białka rozciąga się aż 2,5-krotnie.
Ogony dwóch cząsteczek miomezyny tworzą elastyczne mostki między pęczkami włókien mięśniowych. Na każdym z ogonów znajdują się domeny immunoglobulinopodobne rozmieszczone na helisie alfa - trójwymiarowej strukturze w kształcie taśmy skręconej wzdłuż poprzecznej osi (całość przypomina koraliki nanizane na nitkę). Gdy białko jest rozciągane, wstęga się rozplata.
Podczas badań zachowania miomezyny Niemcy posłużyli się krystalografią rentgenowską, niskokątowym rozpraszaniem promieniowania X (SAXS – Small Angle X-ray Scattering), a także mikroskopami elektronowym i sił atomowych.
W przyszłości zespół Matthiasa Wilmannsa chce odtworzyć budowę całego filamentu miomezynowego oraz zbadać jego działanie w żywym organizmie.
-
przez KopalniaWiedzy.pl
W artykule, który ukazał się w styczniowym numerze pisma Cell Metabolism, naukowcy opisali związek kluczowy dla wzrostu ćwiczonych i używanych mięśni. Surowiczy czynnik reakcji (ang. serum response factor, Srf), bo o nim mowa, przekłada sygnał mechaniczny na chemiczny.
Sygnał z włókien mięśniowych kontroluje zachowanie komórek progenitorowych i ich udział we wzroście mięśnia - wyjaśnia Athanassia Sotiropoulos z Inserm. Komórki progenitorowe przypominają komórki macierzyste, ale ze względu na częściową specjalizację mogą się przekształcić nie w jakikolwiek, lecz w jeden lub co najwyżej kilka typów komórek.
Wcześniejsze badania Francuzów na myszach i ludziach wykazały, że stężenie Srf spada z wiekiem, dlatego akademicy przypuszczali, że jest to przyczyną atrofii mięśni podczas starzenia. Mechanizm działania czynnika okazał się jednak inny niż zakładano. Naukowcy wiedzieli, że Srf kontroluje aktywność wielu genów włókien mięśniowych, ale nie mieli pojęcia, że potrafi wpływać na działanie mięśniowych komórek satelitarnych (komórek progenitorowych, które biorą udział w regeneracji uszkodzonego mięśnia).
Podczas eksperymentów Sotiropoulos zademonstrowała, że myszy, u których w mięśniach nie występował Srf, pod wpływem obciążenia nie rozbudowywały muskulatury. Do komórek satelitarnych nie docierał sygnał, aby się dzieliły i łączyły z istniejącymi włóknami. Francuzi sądzą, że trudno byłoby wyznaczyć optymalną dawkę surowiczego czynnika reakcji, dlatego lepiej regulować kontrolowane przez niego prostaglandyny czy interleukiny.
Srf działa m.in. na gen COX2 (cyklooksygenazy-2). Ponieważ inhibitorem cyklooksygenazy-2 jest choćby popularny środek przeciwbólowy i przeciwzapalny ibuprofen, warto się zastanowić, czy nie hamuje on przypadkiem regeneracji mięśni.
-
przez KopalniaWiedzy.pl
Wydajność mięśni zależy m.in. od zdolności wykorzystania węglowodanów jako źródła energii. Ćwiczenia wpływają na nią korzystnie, a otyłość czy przewlekłe choroby wręcz przeciwnie. Naukowcy z Sanford-Burnham Medical Research Institute odkryli mechanizm, dzięki któremu można u myszy przeprogramować geny metaboliczne mięśni, wpływając na ich umiejętność zużywania cukrów. Niewykluczone, że w ten sposób będzie się w przyszłości zapobiegać bądź leczyć cukrzycę, zespół metaboliczny i otyłość.
Zasadniczo te transgeniczne myszy są w stanie magazynować węglowodany i spalać je w stopniu występującym tylko u wytrenowanych sportowców - wyjaśnia dr Daniel P. Kelly.
Mięśnie wyhodowanych przez Amerykanów myszy wytwarzają białko PPARβ/δ. Jest ono receptorem jądrowym, a więc czynnikiem transkrypcyjnym, który przez przyłączanie ligandów reguluje ekspresję genów metabolicznych mięśni w odpowiedzi na bodźce zewnętrzne.
Wcześniejsze badania pokazały, że gryzonie z wyższym poziomem PPARβ/δ w mięśniach cechuje większa wydolność wysiłkowa. Jak napisali w artykule opublikowanym na łamach Genes & Development członkowie zespołu Kelly'ego, mięśnie zwierząt z grupy PPARβ/δ przewyższają mięśnie zwykłych zwierząt pod względem zdolności wychwytywania cukru z krwiobiegu, a także magazynowania go i wykorzystywania w formie energii. Myszy PPARβ/δ są supersprawne. W porównaniu do przeciętnych gryzoni, biegną dłużej i szybciej, a w ich mięśniach powstaje mniej kwasu mlekowego.
Główną rolę w mechanizmie odkrytym przez ekipę z Sanford-Burnham Medical Research Institute odgrywają kompleksy tworzone przez 3 białka: 1) PPARβ/δ, 2) AMPK (kinazę aktywowaną 5'AMP) oraz 3) czynnik transkrypcyjny MEF2A, który pomaga w aktywowaniu miocytospecyficznych genów. Wspólnie białka włączają ekspresję genu kodującego dehydrogenazę mleczanową - enzym kierujący cukropochodne metabolity do mitochondriów, gdzie możliwe jest całkowite spalanie "surowca".
-
przez KopalniaWiedzy.pl
Rada od naukowców dla osób pracujących nad muskulaturą? Podnoście ciężary i jedzcie gorczycę, np. w postaci musztardy. Badania na szczurach wykazały bowiem, że występujący w gorczycy homobrasinolid sprzyja syntezie białek, zwiększa apetyt i masę mięśniową, a także liczbę i rozmiary włókien mięśniowych (FASEB Journal).
Akademicy z Uniwersytetu Stanowego Północnej Karoliny zauważyli, że gdy szczurom podawano doustnie ten roślinny steroid, pojawiała się reakcja podobna do zażycia sterydów anabolicznych. Co ważne, skutki uboczne ograniczono do minimum. Homobrasinolid prowadził do zwiększenia beztłuszczowej masy ciała (LBM), masy mięśniowej i wydajności fizycznej.
Mamy nadzieję, że pewnego dnia brasinosteroidy staną się skuteczną, naturalną i bezpieczną alternatywą dla wywołanej starzeniem lub chorobą utraty masy mięśniowej albo że zostaną wykorzystane do poprawy wytrzymałości i osiągów fizycznych. Ponieważ pewne rośliny, które jemy, np. gorczyca, zawierają te substancje, niewykluczone, że w przyszłości uda nam się wyhodować lub uzyskać dzięki inżynierii genetycznej rośliny o wyższym stężeniu brasinosteroidów. W ten sposób zyskalibyśmy szansę na wyprodukowanie pokarmów funkcjonalnych, które leczą albo zapobiegają chorobom i zwiększają możliwości fizyczne organizmu – cieszy się dr Slavko Komarnytsky.
Podczas eksperymentów amerykański zespół wystawiał hodowlane komórki szczurzych mięśni szkieletowych na oddziaływanie różnych stężeń homobrasinolidu. Okazało się, że w wyniku tego zabiegu nasilała się synteza i zmniejszał się rozkład białek. Gdy zdrowym szczurom przez 24 dni codziennie podawano ten sterydowy hormon roślinny, u zwierząt zwiększyła się waga, wzrósł też nieco apetyt. Skład ciała oceniano za pomocą absorpcjometrii podwójnej energii promieniowania rentgenowskiego. Stwierdzono, że u gryzoni z grupy eksperymentalnej wzrosła beztłuszczowa masa ciała. Badania powtórzono na zwierzętach karmionych paszą wysokobiałkową i uzyskano podobne rezultaty.
Zespół Komarnytsky'ego wykastrował też młode samce w okresie okołopokwitaniowym i obserwował, czy homobrasinolid odtworzy androgenozależne tkanki (wywrze skutek maskulinizacyjny). Zauważono, że wzrosła siła chwytu, a także liczba i rozmiary włókien mięśniowych.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.