Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Miomezyna to małe białko, które jest jednym z czynników stabilizujących miofibryle - włókienka kurczliwe mięśni. Wykorzystując kilka różnych technik, naukowcy z European Molecular Biology Laboratory (EMBL) w Hamburgu wykazali, że w pracujących mięśniach elastyczna część tego białka rozciąga się aż 2,5-krotnie.

Ogony dwóch cząsteczek miomezyny tworzą elastyczne mostki między pęczkami włókien mięśniowych. Na każdym z ogonów znajdują się domeny immunoglobulinopodobne rozmieszczone na helisie alfa - trójwymiarowej strukturze w kształcie taśmy skręconej wzdłuż poprzecznej osi (całość przypomina koraliki nanizane na nitkę). Gdy białko jest rozciągane, wstęga się rozplata.

Podczas badań zachowania miomezyny Niemcy posłużyli się krystalografią rentgenowską, niskokątowym rozpraszaniem promieniowania X (SAXS – Small Angle X-ray Scattering), a także mikroskopami elektronowym i sił atomowych.

W przyszłości zespół Matthiasa Wilmannsa chce odtworzyć budowę całego filamentu miomezynowego oraz zbadać jego działanie w żywym organizmie.

 

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wielokrotnie mogliśmy się przekonać, że jeśli nie używamy jakichś mięśni, to one zanikają. Jeszcze do niedawna naukowcy sądzili, że wraz z zanikaniem mięśni zanikają też jądra komórek, które je tworzyły. Jednak z najnowszego artykułu opublikowanego we Frontiers in Physiology dowiadujemy się, że jądra komórkowe, które zyskaliśmy podczas treningu, zostają zachowane, nawet jeśli włókna mięśniowe zanikają.
      Te pozostałe jądra działają jak „pamięć” mięśni, dzięki której, gdy wrócimy do treningu, szybciej jesteśmy w stanie mięśnie odzyskać. Naukowcy sądzą, że mechanizm ten ma zapobiegać zbytniej utracie masy mięśniowej w późniejszym wieku, gdy nie jesteśmy już tak aktywni, co w wieku nastoletnim. Wskazuje to również, że łatwo jest przeoczyć sportowca, który oszukuje i wspomaga rozwój mięśni środkami dopingującymi.
      Największe komórki w ciele człowieka, to właśnie komórki mięśniowe. W mięśniach poprzecznie prążkowanych tworzą one syncytia, czyli więlojądrowe komórki powstające poprzez połączeni luźnych komórek jednojądrowych. Syncytia zachowują się jak jedna wielka komórka. Syncytia występują w sercu, kościach czy łożysku. Jednak największe komórki i największe syncytia znajdziemy w naszych mięśniach, mówi profesor Lawrence Schwartz z University of Massachusetts.
      Wzrostowi mięśni towarzyszy dodawanie nowych jąder komórkowych z komórek macierzystych. Pozwala to na zaspokojenie zapotrzebowania rosnących komórek. To doprowadziło do pojawienia się hipotezy, każde jądro kontroluje ściśle zdefiniowaną objętość cytoplazmy, więc gdy masa mięśniowa się zmniejsza, czy to wskutek choroby czy ich nieużywania, zmniejsza się też liczba jąder komórek mięśni, dodaje uczony. Przypuszczenia takie miały o tyle mocne podstawy, że naukowcy badający tkankę mięśniową ulegającą atrofii donosili i obecnych w nich rozpadających się jądrach komórkowych. Dopiero jednak najnowsze techniki badawcze pozwoliły stwierdzić, że te rozpadające się jądra komórkowe nie pochodzą z komórek mięśni, ale z innych komórek, które pojawiły się w przeżywającej problemy tkance mięśniowej.
      Dwa niezależne badania, jedno przeprowadzone na gryzoniach, a drugie na owadach, wykazały, że podczas atrofii włókien mięśniowych nie dochodzi do utraty jąder komórkowych, stwierdza Schwartz w swoim artykule. Niewykluczone, że jądro komórkowe, które pojawiło się w mięśniach, pozostaje w nich na zawsze. Profesor Schwartz nie jest zaskoczony takimi wynikami. Mięśnie ulegają uszkodzeniu podczas intensywnych ćwiczeń, często zachodzą w nich zmiany związane z dostępnością pożywienia i innymi czynnikami środowiskowymi prowadzącymi do atrofii. Nie przetrwałyby długo, gdyby przy każdym takim zdarzeniu traciły jądra komórkowe, stwierdza.
      Skoro więc jądra komórkowe pozostają, to wiemy już, dlaczego łatwo jest odzyskać raz utraconą tkankę mięśniową. Dobrze udokumentowany jest fakt, że jest znacznie łatwiej odzyskać pewien poziom utraconej masy mięśniowej niż ją zbudować od podstaw, nawet jeśli przez długi czas nie ćwiczyliśmy. Innymi słowy, zamiast stwierdzać, że nieużywane mięśnie zanikają, powinniśmy powiedzieć, że nieużywane mięśnie zanikają, dopóki nie zaczniemy ich znowu używać.
      Odkrycie to pokazuje, jak ważne jest zbudowanie masy mięśniowej w młodości. Wówczas jesteśmy bardziej aktywni fizycznie, a wzrost masy mięśniowej jest wspomagany poprzez hormony, większy apetyt i duże zapasy komórek macierzystych. To idealny moment, by zbudować sobie zapas jąder komórkowych w mięśniach. Mogą się one przydać po wielu latach, gdy będziemy potrzebowali szybko nadrobić utraconą masę mięśniową, co pomoże nam w zachowaniu dobrego stanu zdrowia i niezależności w sędziwym wieku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nasz język wykazuje powinowactwo do tłuszczu, co umożliwia jego wykrywanie. Osoby z różnymi wariantami genu CD36 wykazują różną wrażliwość na "tłusty" smak (Journal of Lipid Research).
      Ostatecznym celem jest zrozumienie, jak nasze postrzeganie tłuszczu w pokarmach może wpłynąć na to, jakie produkty/dania wybieramy i w jakich ilościach je spożywamy. W ramach omawianego studium odkryliśmy, że jedną z potencjalnych przyczyn zmienności osobniczej jest to, jak ludzie wyczuwają tłuszcz. Jak wykazano ostatnio, może być tak, że konsumując więcej tłuszczu, stajemy się na niego mniej wrażliwi i by osiągnąć satysfakcję, musimy zwiększać konsumpcję - opowiada dr Nada A. Abumrad ze Szkoły Medycznej Uniwersytetu Waszyngtona w St. Louis.
      Amerykanie ustalili, że osoby, które wytwarzają więcej odpowiadającego za wychwyt kwasów tłuszczowych białka CD36, łatwo wyczuwają obecność tłuszczu. Okazało się, że badani produkujący najwięcej CD36 byli 8-krotnie bardziej wrażliwi, jeśli chodzi o wykrywanie tłuszczu niż osoby produkujące go o połowę mniej.
      W studium wzięło udział 21 ludzi ze wskaźnikiem masy ciała wynoszącym 30 lub więcej. Poproszono ich o spróbowanie roztworów z 3 kubków. Jeden zawierał niewielką ilość oleju. Pozostałe napełniono substancjami przypominającymi konsystencją olej, które w rzeczywistości nim nie były. Zadanie polegało na wytypowaniu zawartości różniącej się od reszty.
      Z każdym z ochotników wielokrotnie przeprowadzaliśmy ten sam 3-kubkowy test, by określić próg, przy którym identyfikuje tłuszcz w roztworze - wyjaśnia dr M. Yanina Pepino. By wyeliminować wskazówki wzrokowe i zapachowe, eksperyment przebiegał przy czerwonym świetle, a badani mieli na nosie klamerkę.
      Wcześniej naukowcy sądzili, że ludzie rozpoznają tłuszcz dzięki konsystencji, ale wyniki studium zespołu z Uniwersytetu Waszyngtona sugerują, że tłuszcz wpływa na język tak samo, jak substancje odpowiadające za smaki.
      Badania nad funkcją CD36 u ludzi poprzedziły eksperymenty na zwierzętach. Wykazały one, że gdy wyhodowano zwierzęta pozbawione działającego CD36, nie preferowały one tłustych pokarmów. Brak białka sprawiał też, że miały problemy z trawieniem tłuszczów. Uważa się, że do 20% ludzi dysponuje wariantem genu CD36 warunkującym wytwarzanie mniejszych ilości białka CD36.
      U zwierząt dieta oddziałuje na ilość produkowanego CD36. Jeśli u ludzi byłoby tak samo, wysokotłuszczowa dieta mogłaby prowadzić do ograniczenia produkcji CD36 i spadku wrażliwości na tłuszcz - wyjaśnia Pepino. Ilość powstającego w organizmie CD36 zależy zatem zarówno od genów, jak i od diety.
      Podczas testów Pepino i Abumrad podawały ludziom wolne kwasy tłuszczowe i trójglicerydy. Podczas badań na zwierzętach ustalono, że białko CD36 jest aktywowane przez kwasy tłuszczowe, ale nie przez trójglicerydy, jednak ludzie wyczuwali smak i tych, i tych. Pepino sądzi, że przyczyną jest działalność enzymu śliny lipazy, który rozkłada trójglicerydy, uwalniając kwasy tłuszczowe w momencie, gdy pokarm pozostaje jeszcze w ustach. Gdy badanym podano orlistat, lek blokujący enzymy trawienne należące do lipaz, nadal mogli oni wyczuwać kwasy tłuszczowe, ale utrudniało to detekcję trójglicerydów.
    • By KopalniaWiedzy.pl
      W artykule, który ukazał się w styczniowym numerze pisma Cell Metabolism, naukowcy opisali związek kluczowy dla wzrostu ćwiczonych i używanych mięśni. Surowiczy czynnik reakcji (ang. serum response factor, Srf), bo o nim mowa, przekłada sygnał mechaniczny na chemiczny.
      Sygnał z włókien mięśniowych kontroluje zachowanie komórek progenitorowych i ich udział we wzroście mięśnia - wyjaśnia Athanassia Sotiropoulos z Inserm. Komórki progenitorowe przypominają komórki macierzyste, ale ze względu na częściową specjalizację mogą się przekształcić nie w jakikolwiek, lecz w jeden lub co najwyżej kilka typów komórek.
      Wcześniejsze badania Francuzów na myszach i ludziach wykazały, że stężenie Srf spada z wiekiem, dlatego akademicy przypuszczali, że jest to przyczyną atrofii mięśni podczas starzenia. Mechanizm działania czynnika okazał się jednak inny niż zakładano. Naukowcy wiedzieli, że Srf kontroluje aktywność wielu genów włókien mięśniowych, ale nie mieli pojęcia, że potrafi wpływać na działanie mięśniowych komórek satelitarnych (komórek progenitorowych, które biorą udział w regeneracji uszkodzonego mięśnia).
      Podczas eksperymentów Sotiropoulos zademonstrowała, że myszy, u których w mięśniach nie występował Srf, pod wpływem obciążenia nie rozbudowywały muskulatury. Do komórek satelitarnych nie docierał sygnał, aby się dzieliły i łączyły z istniejącymi włóknami. Francuzi sądzą, że trudno byłoby wyznaczyć optymalną dawkę surowiczego czynnika reakcji, dlatego lepiej regulować kontrolowane przez niego prostaglandyny czy interleukiny.
      Srf działa m.in. na gen COX2 (cyklooksygenazy-2). Ponieważ inhibitorem cyklooksygenazy-2 jest choćby popularny środek przeciwbólowy i przeciwzapalny ibuprofen, warto się zastanowić, czy nie hamuje on przypadkiem regeneracji mięśni.
    • By KopalniaWiedzy.pl
      Naukowcy z Wake Forest Baptist Medical Center odkryli białko - proteinę homeostazy wysp (ang. Islet Homeostasis Protein, IHoP) - które prawdopodobnie odgrywa krytyczną rolę w procesie regulowania poziomu cukru we krwi przez organizm. Te dane mogą zmienić aktualnie obowiązujący sposób myślenia o przyczynach cukrzycy typu 1. - uważa dr Bryon E. Petersen, podkreślając, że trzeba jeszcze przeprowadzić wiele pogłębionych badań, zanim zostaną opracowane ewentualne leki na tę nieuleczalną chorobę.
      Jak dotąd IHoP wyizolowano z trzustek gryzoni i ludzi. Jak sama nazwa wskazuje, występuje w wyspach trzustkowych, czyli tam, gdzie produkowana jest zarówno insulina, jak i glukagon. U zdrowej osoby glukagon podwyższa poziom cukru we krwi, a insulina go obniża.
      Amerykanie stwierdzili, że IHoP znajduje się w wytwarzających glukagon komórkach alfa wysp trzustkowych. U myszy i ludzi, u których nie rozwinęła się cukrzyca, występowały wysokie stężenia IHoP. Gdy jednak pojawiała się choroba, nie zachodziła ekspresja białka. Sugeruje to, że IHoP reguluje wzajemny poziom insuliny i glukagonu, odpowiada więc za homeostazę.
      Kiedy zespół z Wake Forest Baptist Medical Center zablokował u gryzoni produkcję proteiny, zmniejszyła się ekspresja glukagonu. Uruchomiło to cały ciąg niekorzystnych zjawisk, które ostatecznie doprowadziły do spadku poziomu insuliny, wzrostu stężenia glukagonu i obumarcia komórek beta wysp Langerhansa.
      Dotąd uważano, że u genetycznie podatnych osób cukrzyca typu 1. jest wywoływana przez wirus lub czynnik środowiskowy. Wskutek tego komórki układu odpornościowego atakują komórki beta wysp trzustkowych. W ciągu 10-15 lat od postawienia diagnozy dochodzi do całkowitego ich zniszczenia. Badania ekipy Petersena także wskazują na proces niszczenia komórek beta, ale jednocześnie sugerują, że na proces ten wpływają zdarzenia związane z IHoP.
      W kolejnym etapie badań akademicy zamierzają ustalić, w jaki sposób IHoP kontroluje interakcje między insuliną a glukagonem.
    • By KopalniaWiedzy.pl
      Wydajność mięśni zależy m.in. od zdolności wykorzystania węglowodanów jako źródła energii. Ćwiczenia wpływają na nią korzystnie, a otyłość czy przewlekłe choroby wręcz przeciwnie. Naukowcy z Sanford-Burnham Medical Research Institute odkryli mechanizm, dzięki któremu można u myszy przeprogramować geny metaboliczne mięśni, wpływając na ich umiejętność zużywania cukrów. Niewykluczone, że w ten sposób będzie się w przyszłości zapobiegać bądź leczyć cukrzycę, zespół metaboliczny i otyłość.
      Zasadniczo te transgeniczne myszy są w stanie magazynować węglowodany i spalać je w stopniu występującym tylko u wytrenowanych sportowców - wyjaśnia dr Daniel P. Kelly.
      Mięśnie wyhodowanych przez Amerykanów myszy wytwarzają białko PPARβ/δ. Jest ono receptorem jądrowym, a więc czynnikiem transkrypcyjnym, który przez przyłączanie ligandów reguluje ekspresję genów metabolicznych mięśni w odpowiedzi na bodźce zewnętrzne.
      Wcześniejsze badania pokazały, że gryzonie z wyższym poziomem PPARβ/δ w mięśniach cechuje większa wydolność wysiłkowa. Jak napisali w artykule opublikowanym na łamach Genes & Development członkowie zespołu Kelly'ego, mięśnie zwierząt z grupy PPARβ/δ przewyższają mięśnie zwykłych zwierząt pod względem zdolności wychwytywania cukru z krwiobiegu, a także magazynowania go i wykorzystywania w formie energii. Myszy PPARβ/δ są supersprawne. W porównaniu do przeciętnych gryzoni, biegną dłużej i szybciej, a w ich mięśniach powstaje mniej kwasu mlekowego.
      Główną rolę w mechanizmie odkrytym przez ekipę z Sanford-Burnham Medical Research Institute odgrywają kompleksy tworzone przez 3 białka: 1) PPARβ/δ, 2) AMPK (kinazę aktywowaną 5'AMP) oraz 3) czynnik transkrypcyjny MEF2A, który pomaga w aktywowaniu miocytospecyficznych genów. Wspólnie białka włączają ekspresję genu kodującego dehydrogenazę mleczanową - enzym kierujący cukropochodne metabolity do mitochondriów, gdzie możliwe jest całkowite spalanie "surowca".
×
×
  • Create New...