Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'jajo' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 12 wyników

  1. Argentyńscy naukowcy znaleźli doskonale zachowane skamieniałości kokonów owadów, co pozwoliło im ustalić, że osy stanowiły część łańcucha pokarmowego gnijących jaj dinozaurów (Paleontology). W 1989 r. w Patagonii odkryto jaja tytanozaurów sprzed ok. 70 mln lat. Ostatnio okazało się, że w jednym z pękniętych jaj występują kiełbaskokształtne twory o długości 2-3 cm i centymetrowej średnicy. Wyglądają jak skamieniałe kokony owadów i najbardziej przypominają rozmiarami i wyglądem kokony współczesnych os. Choć naukowcy dysponują wieloma przykładami sfosylizowanych jaj dinozaurów i kilkoma skamieniałymi kokonami, po raz pierwszy kokony były ściśle powiązane z jajami. Osy stanowiły prawdopodobnie część łańcucha pokarmowego, składającego się głównie z padlinożernych owadów, które rozwijały się w gnijących jajach – podkreśla dr Jorge Genise z Museo Argentino de Ciencias Naturales. Wygląda na to, że w wyniku działania siły opisywane jajo popękało, co pozwoliło padlinożercom dobrać się do jego zawartości. Jako że jajo miało ok. 20 cm długości, nie można było narzekać na brak żółtka. W dalszej kolejności przybywały pająki, które żywiły się pierwszymi zjawiającymi się na miejscu padlinożercami (owadami). Osy znajdowały się na szczycie piramidy pokarmowej i prawdopodobnie zjadały inne owady i/lub pająki. Paleontolodzy uważają, że niektóre duże gady odwiedzały rokrocznie to samo miejsce, by złożyć tam jaja. Padlinożercy musieli więc oczyścić gniazdo przed pojawieniem się nowego miotu. W sumie Argentyńczycy odkryli 8 skamieniałych kokonów datowanych na kredę. Specjaliści sądzą, że kokony znaleziono w miejscu ich powstania, ponieważ delikatne ścianki miały specyficzną teksturę powierzchniową, skład ich zawartości był podobny do składu ciasta skalnego, poza tym kokony były rozmieszczone klastrowato tylko w jednym jaju z 5-jajowego lęgu.
  2. Po złożeniu jaj naturalna ochrona przed patogenami, np. pałeczkami salmonelli, w postaci wysycenia dwutlenkiem węgla stopniowo się zmniejsza. Prof. Kevin Keener z Purdue University opracował proces szybkiego schładzania jaj, który pozwala odtworzyć to zabezpieczenie (Poultry Science). Świeżo złożone jaja są nasycone dwutlenkiem węgla, a ich pH wynosi ok. 7. Z czasem pH wzrasta do 9, a CO2 opuszcza jajo. W takich warunkach aktywność lizozymu chroniącego białko przed bakteriami spada. Podczas eksperymentów Keener nasycił oczyszczone lizozymy białka CO2 i sprawdzał, co będzie się działo przy różnych wartościach pH. Zauważył, że zarówno przy wysokim, jak i niskim pH dodatek dwutlenku węgla zwiększał aktywność enzymu nawet o 50%. Opracowany przez Amerykanina proces chłodzenia odtwarza te warunki. Kiedy chłodzimy jaja, dwutlenek węgla jest zasysany do ich wnętrza. Potrafimy [zatem] ponownie nasycić białko CO2, powracając do pierwotnych "ustawień", typowych dla jaj właśnie złożonych przez kurę. Wg Keenera, dodatkowa aktywność lizozymu daje jaju więcej czasu na samoczynne wyeliminowanie szkodliwych bakterii (oznacza to, że człowiek nie musi się wtrącać, by wspomóc dezynfekcję). Metoda specjalisty z Purdue University polega na wykorzystaniu suchego lodu. Jaja umieszcza się w komorze chłodniczej i wprowadza CO2 o temperaturze -78,88 st. Celsjusza. Gaz cyrkuluje w komorze i tworzy cienką warstwę wewnątrz skorupki jajek. Suchy lód sublimuje i szybko obniża wewnętrzną temperaturę jaj (spada ona poniżej 7 stopni Celsjusza). Udowodniono, że skorupka bez problemu wytrzymuje rozciąganie pod wpływem oddziaływania suchego lodu. W kolejnym etapie badań Keener będzie analizować zmiany molekularne zachodzące podczas ochładzania.
  3. Badacze z Uniwersytetów w Sheffield i Warwick zaprzęgli komputer do zobrazowania tworzenia się skorupki jajka. Wygląda też na to, że przynajmniej częściowo udało im się udzielić odpowiedzi na pytanie: co było pierwsze – jajko czy kura? Wg nich, kura... Brytyjczycy tłumaczą, że pierwsze i ostatnie słowo we wzmiankowanym procesie należy do kurzego białka zwanego owokledydyną-17 (OC-17). Dzięki niemu zespół mógł zdobyć więcej informacji o kontroli wzrostu kryształów, bez którego nie sposób wyobrazić sobie formowania skorupki. Biolodzy od dawna wiedzieli, że owokledydyna musi odgrywać jakąś rolę w tworzeniu skorupki. Proteina ta występuje wyłącznie w mineralnej części jaja. Testy laboratoryjne wykazały, że wpływa na tworzenie z węglanu wapnia kryształów kalcytu (istnieją też inne odmiany polimorficzne CaCO3, np. aragonit, dlatego ważne jest, by odpowiednio pokierować krystalizacją). Długo nie było jednak wiadomo, jak można wykorzystać ten proces podczas formowania skorupki. Brytyjczycy odwołali się do tzw. metadynamiki, która bazuje na zdolności systemu do zapamiętywania, a więc uczenia się po zaprezentowaniu nowych danych. Wykorzystali też moce obliczeniowe superkomputera z Edynburga. Nic zatem dziwnego, że owocem ich prac jest dokładna symulacja "jajecznych" wydarzeń krok po kroku. Okazało się, że na początku OC-17 wiąże się na powierzchni amorficznego węglanu wapnia. Jest to możliwe dzięki dwóm klastrom reszt argininowych, które znajdują się w pętlach. W ten sposób tworzą się nanokleszcze na CaCO3. Później OC-17 "nakłania" węglan wapnia do przekształcenia w krystalit kalcytu. Na takim jądrze będą się nadbudowywać kolejne warstwy minerału. Akademicy zauważyli, że czasami białkowe szczypce nie działają i OC-17 odłącza się od nanocząstki. W doskonale zorganizowanym mechanizmie dochodzi do swoistego recyklingu OC-17. Białko to działa jak katalizator, rozpoczynając tworzenie się sieci krystalicznej. Gdy wiadomo, że konkretne jądro jest już wystarczająco duże i proces będzie przebiegał bez zakłóceń, dochodzi do odłączenia proteiny. Udaje się ona w inne rejony, aby tam wspomóc krystalizację kolejnych ziarenek. W ten oto sposób skorupka kurzego jaja tworzy się w ciągu zaledwie jednej nocy. Zrozumienie, jak kury wytwarzają skorupki, jest fascynujące samo w sobie, lecz daje też wskazówki dotyczące projektowania nowych materiałów i procesów – podsumowuje prof. John H. Harding z Wydziału Inżynierii Materiałów Uniwersytetu w Sheffield.
  4. To, czy małe jaszczurki okażą się samcami, czy samicami, jest kwestią bardziej skomplikowaną niż dotąd uważano. U małego górskiego gatunku z Australii i Tasmanii czynnikiem determinującym płeć okazała się np. wielkość jaj (Current Biology). Z dużych jaj wykluwały się samice, a z małych samce. Kiedy tuż po złożeniu z [dużego] jaja usunie się trochę żółtka, na świat przyjdzie samiec, nawet jeśli chromosomy są żeńskie. Gdy do [małego] jaja wprowadzi się nieco dodatkowego żółtka, urodzi się samica, nawet gdy chromosomy są męskie – opowiada Richard Shine z Uniwersytetu w Sydney. U ssaków i wielu gadów płeć jest determinowana przez chromosomy płciowe (samice to XX, a samce XY). U aligatorów, krokodyli czy żółwi morskich na płeć wpływają jednak warunki środowiskowe, np. temperatura w gnieździe. W przypadku scynek Bassiana duperreyi nie funkcjonuje dylemat albo genetyka, albo środowisko. Już wcześniej Australijczycy wykazali, że temperatura gniazda może "unieważniać" zapis genetyczny i w niektórych przypadkach z jaj XX wylęgają się samce, a z jaj XY samice. Tym razem okazało się, że ważną kwestią jest sama wielkość jaj. Mimo odnotowanej korelacji, Shine nie wierzył w istnienie związku przyczynowo-skutkowego. Dopiero eksperymenty jego kolegi Rajkumara Raddera przekonały go, że tak rzeczywiście jest. Australijczyk uznaje, że w sprawie determinacji płci jaszczurek trzeba jeszcze wiele wyjaśnić. Wg niego, dla każdego gatunku można sporządzić przepis, jak uzyskać samice, a jak samce. Nasz efekt alokacji żółtka to zapewne tylko czubek góry lodowej.
  5. Przysłowie "Czym skorupka za młodu nasiąknie, tym na starość trąci" może nabrać nowego znaczenia w świetle najnowszego odkrycia dotyczącego żab leśnych (Rana sylvatica). Alicia Mathis i zespół z Uniwersytetu Stanowego Missouri odkryli bowiem, że płazy te uczą się rozpoznawać drapieżniki, będąc jeszcze w jaju (Proceedings of the Royal Society B). Wiele płazów i ryb zdobywa tę umiejętność dopiero po wykluciu, kojarząc zapach drapieżnika z feromonami alarmowymi, wydzielanymi przez napadnięte osobniki tego samego gatunku. Chcąc sprawdzić, czy nauka może się rozpocząć jeszcze w skrzeku, przez 6 kolejnych dni na 3 godziny dziennie Amerykanie wystawiali żaby na oddziaływanie specjalnie spreparowanej wody. Była to mieszanka wody z wiadra zawierającego zmiażdżone kijanki i cieczy ze zbiornika z traszkami z rodzaju Cynops. Występują one w Azji i żywią się kijankami innych gatunków żab. Grupa kontrolna zażywała kąpieli w czystej wodzie. W dwa tygodnie po wykluciu tylko grupa eksperymentalna reagowała na wodę ze zbiornika traszek, zastygając w kompletnym bezruchu.
  6. Aby zbadać w laboratorium niektóre procesy zachodzące w organizmie, konieczna jest hodowla komórek z zachowaniem trójwymiarowej struktury tkanki. Problem w tym, że dotychczas było to bardzo skomplikowane i trudne przedsięwzięcie. Okazuje się jednak, że odczynnik pozwalający na rozwiązanie tego problemu jest genialne w swej prostocie, a do tego... znajduje się w niemal każdej kuchni. Hodowle tkankowe dają niezwykłą możliwość symulowania zjawisk zachodzących w żywym organizmie. Niestety mają one też swoje ograniczenia, bowiem niektóre struktury, jak np. kanaliki wydzielnicze gruczołów, można wytworzyć wyłącznie z zastosowaniem bardzo drogich odczynników. Na szczęście badacze z Baylor College of Medicine odkryli bardzo prosty sposób na pokonanie tej niedogodności. Jest nim zastosowanie... białka kurzych jaj. Jak tłumaczy jedna z autorek odkrycia, dr Steffi Oesterreich, to ważne, ponieważ architektura komórki jest inna w dwóch wymiarach, niż w trzech. Zrozumienie, w jaki sposób komórki się komunikują i w jaki sposób działają białka wymaga trzech wymiarów. Badaczka podkreśla, że jest to istotne np. z punktu widzenia badań nad różnymi rodzajami raka, który bardzo często wywodzi się właśnie z nabłonka gruczołowego. Dokładne odwzorowanie jego struktury przestrzennej zwiększa wiarygodność badań: jeśli umieścisz komórki [nowotworowe - red.] w przygotowanym roztworze białka jaja, formują one strukturę podobną do kanalika. W formie dwuwymiarowej nie mogą tego kanalika uformować. Realistyczne odwzorowanie utkania tkanki jest istotne także dla badań nad sygnalizacją międzykomórkową. Nawet laik domyśli się, że w "płaskiej" hodowli każda komórka ma kontakt ze znacznie mniejszą liczbą "sąsiadów", niż w przypadku ich rozmieszczenia w przestrzeni, co może mieć wpływ na uzyskane wyniki. Opracowanie skutecznej i, co nie jest bez znaczenia, taniej metody pozwalającej na odwzorowanie architektury tkanki umożliwi także prowadzenie lepszych badań nad tzw. mikrośrodowiskiem guza, czyli przestrzenią bezpośrednio otaczającą komórki nowotworowe, ułatwiającą jego rozwój bądź blokującą go. Jak więc nietrudno zauważyć, odkrycie otwiera przed naukowcami zupełnie nowe, ekscytujące możliwości. Pomysł na wykorzystanie białka jaja kurzego powstał dzięki pilnej obserwacji procesów spotykanych w naturze i błyskotliwemu umysłowi odkrywcy. Jak tłumaczy asystentka dr Oesterreich, dr Benny A. Kaipparettu, od stuleci wiedzieliśmy, że mały kurczak rośnie w trzech wymiarach, pod skorupką jaja i bez jakiegokolwiek wsparcia z zewnątrz. Teraz odkryliśmy, że Matka Natura ofiarowała nam wartościowe narzędzie przydatne w badaniach medycznych. Badaczka dostrzega jeszcze jedną istotną korzyść wynikającą z zastosowania z nowego "odczynnika": jest on przezroczysty, dzięki czemu analiza rosnącej tkanki jest niezwykle wygodna. Pomysłowe panie doktor zgłosiły swój pomysł do urzędu patentowego. O swoim osiągnięciu, które już teraz wzbudziło ogromne zainteresowanie świata nauki, informują w najnowszym numerze czasopisma BioTechniques.
  7. Południowy zachód Madagaskaru zamieszkuje kameleon Furcifer labordi, który większość, bo aż 3/4 życia spędza w jaju. Po wykluciu dożywa zaledwie 5 miesięcy. Żadne inne czworonożne zwierzę nie osiąga takiego przyspieszenia wzrostu, żyjąc przy tym tak krótko (Proceedings of the National Academy of Sciences). Do tej pory sądzono, że szybka śmierć kameleonów w niewoli to skutek błędów hodowlanych. Teraz okazuje się, że krótkie życie to zjawisko typowe dla tych nadrzewnych jaszczurek, przynajmniej dla niektórych... Kristopher Karsten, doktorant Wydziału Zoologii na Uniwersytecie Stanowym Oklahomy, natrafił na nietypowy cykl życiowy przez przypadek. Pod koniec sezonu nie było już co prawda młodych, lecz w lutym znalazłem padłe osobniki bez okaleczeń czy cech wskazujących na upolowanie. Populacja nagle bardzo się zmniejszyła. Nie widzieliśmy czegoś takiego u innych jaszczurek. Cykl życiowy madagaskarskiego kameleona zamyka się w 12 miesiącach. Większość stanowi okres inkubacji wewnątrz jaja. Po wykluciu cała populacja wymiera w ciągu 4-5 miesięcy. W czasie pięciu sezonów Karsten obserwował ok. 400 osobników. Dzięki temu udało mu się szczegółowo opisać cykl życia F. labordi. Wykluwanie rozpoczyna się razem z porą deszczową w listopadzie. Każdego dnia kameleon rośnie o 2,6 mm. Po osiągnięciu dojrzałości zaczyna się okres godowy. Samice składają jaja pod 138-mm warstwą piasku. Leżą tam przez 8-9 miesięcy do następnej pory suchej. W tym czasie wszystkie dorosłe osobniki giną. W przeprowadzeniu badań terenowych na Madagaskarze pomagał Karstenowi Laza Andriamandimbiarisoa z Wydziału Biologii Zwierząt Uniwersytetu w Antananarywie.
  8. Naukowcy od dawna zastanawiali się, czy dźwięki wydawane zaraz przed wykluciem przez młode krokodyle mają jakieś znaczenie. Dwoje naukowców z francuskiego Uniwersytetu Jeana Monneta, Amélie Vergne i Nicolas Mathevon, postanowiło przyjrzeć się temu problemowi. Odkryli oni, że charakterystyczne zachowanie potomstwa odgrywa istotną rolę w komunikacji zarówno z matką, jak i z przygotowującym się do wyjścia z jaja rodzeństwem. Dźwięki, przypominające nieco ludzkie stękanie, są wyraźnie słyszalne nawet dla znajdującego się poza krokodylim gniazdem obserwatora. Jak donoszą Francuzi, ich zadaniem jest poinformowanie rodzeństwa oraz matki o zbliżającym się wykluciu młodego. Możliwe jest dzięki temu zsynchronizowanie wyjścia z jaj przez możliwie wiele osobników i jednocześnie przywołanie matki do miejsca narodzin. Zdaniem naukowców, obecność dorosłego osobnika w gnieździe jest kluczowa dla przetrwania potomstwa. Odkrycia dokonano dzięki serii eksperymentów z wykorzystaniem odtwarzacza muzyki. Do jego przeprowadzenia wybrano jaja, z których w ciągu dziesięciu dni miały wykluć się młode. Podzielono je na trzy grupy, z których każdą traktowano innego rodzaju dźwiękami. Pierwsze dwie z nich spoczywały otoczone, odpowiednio, nagranymi wcześniej dźwiękami wydawanymi przez wykluwające się krokodyle oraz szumem, który miał na celu zagłuszenie wydawanych odgłosów. Trzecia grupa, mająca charakter kontroli, dojrzewała w naturalnych warunkach, tzn. nie odtwarzano w ich obecności żadnych nagrań. W pierwszej z badanych grup zaobserwowano szybką odpowiedź: ukrywające się w jajach młode zaczęły odpowiadać na "wezwanie" z głośnika i wydawać własne dźwięki, a następnie, w ciągu zaledwie dziesięciu minut od rozpoczęcia eksperymentu, wszystkie osobniki wykluły się. W grupie krokodyli, które spędziły ostatnie chwile życia wewnątrz jaja przy akompaniamencie szumu, w całej serii eksperymentów stwierdzono tylko jeden przypadek wyklucia się młodych. Zwierzęta w grupie kontrolnej opuszczały jaja jeszcze później. Kolejnym etapem eksperymentu było badanie reakcji dziesięciu gadzich matek na ten typ sygnalizacji. W tym celu usunięto z założonych przez nie gniazd jaja (miało to na celu wyeliminowanie wpływu potomstwa na wynik badania), a w ich miejsce wstawiono głośniki, z których odtwarzano, analogicznie, dźwięki wydawane przez potomstwo lub szum. Francuscy naukowcy wykazali, że wszystkie badane krokodyle matki wykazywały wyraźne zainteresowanie głosami "potomstwa", a aż osiem na dziesięć z nich zaczęło rozkopywać gniazdo (samice robią to, by ułatwić wyjście na powierzchnie młodym). Jak tłumaczy Nicholas Mathevon, sygnalizowanie momentu wyklucia jest bardzo istotne dla przeżycia krokodyli zaraz po narodzinach. Co prawda dźwięk wydawany z wnętrza jaja może zwabić drapieżniki, lecz z drugiej strony przywołuje także matkę, która zaraz po przyjściu na świat młodych otacza je opieką. Jednocześnie wzajemna komunikacja między młodymi gadami ułatwia im synchronizację momentu wyjścia z jaj, dzięki czemu matka może zająć się wszystkimi swoimi dziećmi bez obawy o przeoczenie momentu wyklucia dowolnego z nich. Na tym nie koniec, gdyż tego typu zachowania mogą mieć znacznie dłuższą historię, niż same krokodyle. Okazuje się bowiem, że przywoływanie rodziców przez potomstwo jest zauważalne także u niektórych gatunków ptaków. Mogłoby to sugerować, że obyczaj ten mógł być rozwinięty już u archozaurów - żyjących około 250 milionów lat temu wspólnych przodków ptaków i krokodyli. Szczegóły odkrycia badacze opublikowali w najnowszym numerze czasopisma Current Biology
  9. Wszystkie postaci słynnej armii terakotowej pokryto rozbitymi jajami. Nie jest to bynajmniej zemsta konkurencyjnego artysty, ale zabieg pozwalający na lepsze związanie farby. Niemieccy i włoscy chemicy przeanalizowali próbki pobrane z kilku figur. Okazało się, że jajeczna farba była nakładana na warstwę lakieru. Farba jajeczna jest zazwyczaj bardzo trwała i nie rozpuszcza się w wodzie. To powoduje, że jest bardziej odporna na oddziaływania wilgoci – opowiada Catharina Blaensdorf z Politechniki w Monachium. Dzięki białkom jaja farba lepiej przylegała do lakieru, co z kolei pozwalało na nałożenie grubszej jej warstwy (Journal of Cultural Heritage). Próbki farby pochodziły z twarzy żołnierzy, figur łabędzi i klęczących łuczników, łuski podniesiono także z ziemi. Za pomocą odpowiednich odczynników doprowadzono do rozkładu barwnika, a następnie mieszaninę wprowadzono do maszyny analizującej skład chemiczny. Wśród zastosowanych pigmentów znalazły się: biel ołowiowa, cerusyt, kwarc, cynober, malachit, sadza, sole miedzi, azuryt i chiński fiolet (ang. Chinese purple). Figury były solidnie wykonane, a farby jaskrawe, by cesarska armia wygrała walkę z czasem. Mauzoleum aż jeżyło się od licznych zabezpieczeń. W środku znajdowały się wybuchające pułapki, na złodziei czekały też gotowe do strzału kusze. Na figurach znaleziono podpisy osiemdziesięciu rzeźbiarzy. Niektórzy byli rzemieślnikami na usługach władcy, inni należeli do grona szanowanych artystów miejscowych. Odkrycie pozostałości jaj w farbie jest bardzo ważne. Okazuje się bowiem, że Chińczycy postępowali podobnie jak artyści ze starożytnego Rzymu lub Grecji, którzy w tym samym czasie tworzyli malowidła na murach czy kamieniu. Ponadto nowa wiedza pozwoli lepiej zrekonstruować zniszczone figury.
  10. Izraelscy lekarze pobrali od chorych na raka dziewczynek komórki jajowe. Następnie doprowadzili do ich dojrzewania i zamrozili. Niektóre pacjentki miały tylko 5 lat. Dzięki temu po leczeniu chemio- i radioterapią będą one mogły w przyszłości zostać matkami. Wyleczalność dziecięcych nowotworów waha się w granicach od 70 do 90%. Niestety, agresywna chemioterapia skutkuje często niepłodnością. Wielu ekspertów uważa, że komórki jajowe z pęcherzyków Graafa dziewczynek, które nie weszły jeszcze w wiek pokwitania, są zbyt niedojrzałe, by można je było ekstrahować. Naukowcom z Hadassah University Hospital w Jerozolimie udało się jednak uzyskać jaja od chorych dziewczynek w wieku od 5 do 10 lat. Następnie prowadzili oni hodowlę komórkową. Ariel Revel zaprezentuje szczegółowe wyniki eksperymentów swojego zespołu na dorocznym spotkaniu Europejskiego Stowarzyszenia Medycyny Reprodukcyjnej i Embriologii w Lyonie. Revel podkreśla, że nie odmrożono jeszcze żadnej komórki jajowej, nie wiadomo więc, czy uda się je zapłodnić. Wg niego, przebieg badań jest jak do tej pory wyjątkowo zachęcający.
  11. Na łamach pisma Nature naukowcy opisali przypadek półjednojajowych bliźniąt. Pod względem podobieństwa genetycznego znajdują się one gdzieś pomiędzy identycznymi bliźniętami monozygotycznymi (jednojajowymi) i różniącymi się od siebie jak zwykłe rodzeństwo bliźniętami dwuzygotycznymi (dwujajowymi) — tłumaczy szefowa badań, Vivienne Souter. Jedyne znane na świecie bliźnięta półjednojajowe niemal na pewno narodziły wskutek zapłodnienia jednej komórki jajowej przez dwa plemniki. Jedno z rodzeństwa jest obojnakiem, drugie chłopcem, którego narządy płciowe rozwinęły się prawidłowo. Dzieci przyszły na świat w Stanach Zjednoczonych. Z oczywistych względów nie ujawniono, gdzie mieszkają ani jak się nazywają. Niestety, niemal nie mają szans na przeżycie. Pani Souter opisuje dwa możliwe scenariusze wydarzeń:Jajo zaczęło się dzielić, ale nie doszło do odseparowania tworzących się w wyniku tego procesu części. Każda z nich została zapłodniona przez inny plemnik, geny się wymieszały i dopiero wtedy zygoty się od siebie odłączyły.Bardziej prawdopodobne jest jednak, że dwa plemniki dostały się do jednej komórki jajowej, tworząc płód z potrójnym (69), a nie podwójnym zestawem chromosomów (46). Wymieszanie genów zachodziło wewnątrz podwójnie zapłodnionego jaja. Następnie odbył się podział i odrzucenie niepotrzebnych chromosomów. Bliźnięta półjednojajowe mają identyczny zestaw chromosomów matczynych i tylko w połowie identyczny zestaw chromosomów ojca. Przypadki podwójnego zapłodnienia u ludzi opisywano już wcześniej, ale potomstwo nie przeżywało. Souter zastanawia się, czy obecnie stosowane klasyfikacje bliźniąt nie są znacznym uproszczeniem.
  12. Samce gatunków zwierząt praktykujących promiskuityzm (spółkowanie z kilkoma partnerami), które współżyją z samicą jako drugie lub ostatnie, są ojcami największej liczby młodych. Dzieje się tak w przypadku większości owadów. Do gatunków, w których drugi samiec zyskuje najwięcej, należą strąkowcowate, muszki owocowe, pasożytnicze osy oraz motyle, a wśród ssaków naczelne i wiewiórki ziemne. Czemu ostatni jest zwycięzcą? Można to częściowo wyjaśnić współzawodnictwem spermy. Drugi samiec produkuje większe ilości spermy lub jego plemniki zwalczają plemniki poprzednika w drogach rodnych samicy. Wiele zwierząt dysponuje też różnymi metodami usuwania spermy rywala. Niektóre ważki mają na przykład na penisach specjalne wąsy, które jak szczotka wymiatają spermę poprzedniego partnera. Biolodzy ewolucyjni z University of Exter, David Hosken oraz David Hodgson, przedstawili jeszcze jedno wyjaśnienie. Przewertowali literaturę tematu w poszukiwaniu dowodów na to, że ejakulat pierwszych samców może zwiększać szanse następnego samca na zapłodnienie. Drogi rozrodcze samicy są środowiskiem wrogim dla plemników. Znajdują się tu komórki układu odpornościowego, w dodatku pochwa ma kwaśny odczyn. Dlatego wiele gatunków produkuje olbrzymią liczbę plemników, a tylko niewielki ich odsetek dociera w pobliże jaja. U ssaków w ejakulacie występuje kilkaset milionów plemników, a w okolice gamety męskiej dociera ok. 0,0001%. Sperma ma szereg właściwości, które pomagają sforsować wrogie warunki panujące w pochwie. Obrazowo rzecz ujmując, ejakulat pierwszego samca przeciera szlak. Ginie wiele plemników. Sperma drugiego partnera trafia na o wiele lepsze warunki. Samiec ten zużywa mniej energii, a w dodatku wytwarza więcej spermy. To pozwala mu zdeklasować rywala w wyścigu zmierzającym do zapłodnienia jaja. To rodzaj pasożytowania jednego samca na drugim — mówi Hosken. Kilka badań na owadach wykazało, że jeśli zwiększa się czas oddzielający seks uprawiany z każdym z partnerów, zmniejszają się korzyści osiągane przez drugiego z kolei. Fakt ten stanowi wsparcie dla forsowanego przez biologów wyjaśnienia zjawiska "gdzie dwóch spółkuje, tam drugi korzysta". Teraz Hosken chce przetestować swoją hipotezę na świerszczach, które przytwierdzają "pakieciki" ze spermą na odwłoku samicy. Czasem przytwierdzania można zaś z łatwością manipulować. Zainteresowanych eksperymentami odsyłamy do aktualnego wydania Journal of Theoretical Biology.
×
×
  • Dodaj nową pozycję...