Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'fala' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 15 wyników

  1. Naukowcy poinformowali o zarejestrowaniu najwyższej fali morskiej na południowej półkuli. Podczas silnego sztormu na Oceanie Południowym w pobliżu należącej do Nowej Zelandii Wyspy Campbella boja zarejestrowała falę o wysokości 23,8 metra. Oceanograf Tom Durrant mówi, że poprzedni rekord należał do zarejestrowanej w 2012 roku fali o wysokości 22,03 metra. O ile nam wiadomo, to najwyższa fala zarejestrowana na półkuli południowej, mówi Durrant i dodaje, że Ocean Południowy jest tym miejscem, na którym powstają obiegające całą planetę martwe fale. Surferzy w Kalifornii będą mogli za około tydzień skorzystać z energii właśnie zanotowanej fali, stwierdza uczony. Zdaniem Durranta podczas wspomnianego sztormu mogły powstawać fale o wysokości przekraczającej 25 metrów, jednak boja badawcza ich nie zarejestrowała. Wspomniana boja została zainstalowana w marcu. Jej zadaniem jest rejestrowanie ekstremalnych zjawisk na Oceanie Południowym. Aby na jak najdłużej zachować energię w akumulatorach pracuje ona jedynie przez 20 minut co trzy godziny. Bardzo prawdopodobne, że najwyższe fale powstawały, gdy boja nie pracowała, wyjaśnia Durrant. Najwyższa zarejestrowana fala w historii miała wysokość 30,5 metra. Pojawiła się ona w 1958 roku w Zatoce Lituya na Alasce po tsunami wywołanym trzęsieniem ziemi. « powrót do artykułu
  2. Na California Institute of Technology powstała pierwsza dioda akustyczna - urządzenie, które dopuszcza rozprzestrzenianie się fali dźwiękowej tylko w jednym kierunku i pozwala przy tym kontrolować jej częstotliwość. Pomysł diody zapożyczono z elektroniki. Umożliwia ona fali - w tym wypadku fali dźwiękowej - na przepłynięcie w jedną stronę, blokując ruch w odwrotnym kierunku. Badaliśmy fizyczny mechanizm, który stanowi różnicę pomiędzy stanem pozwalającym na transmisję i stanem go blokującym. Dzięki eksperymentom i symulacjom zaprezentowaliśmy, po raz pierwszy w historii, jednokierunkową transmisję fali dźwiękowej w słyszalnych częstotliwościach - informuje profesor astronautyki i fizyki stosowanej Chiara Daraio, główna autorka artykułu nt. badań. Jednokierunkowa transmisja dźwięku może być bardzo ważna w architekturze - stwierdził Georgios Theochartis, współpracownik Daraio. Pozwoli ona np. słyszeć dźwięk z pokoju A w pokoju B, ale już taki sam dźwięk z pokoju B nie będzie słyszalny w pokoju A. System opiera się na wykorzystaniu elastycznych sferycznych kryształów, które przenoszą wibracje wywoływane dźwiękiem. Można je łatwo dostosowywać do różnych wymagań i skalować. Niewykluczone, że w przyszłości pomysł znajdzie też inne zastosowanie niż tylko ochrona przez niepożądanym hałasem. System Daraio jest bardzo czuły na zmiany ciśnienia czy na ruch, dzięki czemu można go wykorzystać w czujnikach dźwiękowych. Może pracować na różnych częstotliwościach i pozwala też na zmianę częstotliwości fali dźwiękowej. Możemy na przykład wygłuszyć niepożądane dźwięki z pracującej maszyny, przesyłając falę dźwiękową do przetwornika, który zmieni ją w energię elektryczną - dodaje Daraio. Uczona sądzi, że poza wygłuszaniem pomieszczeń jej system można będzie wykorzystać m.in. do budowy biomedycznych urządzeń korzystających z ultradźwięków.
  3. Profesor Ian Young, rektor Australia National University stanął na czele zespołu, który przeprowadził najbardziej kompleksowe badania dotyczące prędkości wiatrów wiejących nad oceanem oraz wysokości powstających fal. Innymi członkami grupy badawczej byli profesor Alex Babanin i doktor Stefan Zieger ze Swinburne University. Szczegółowe analizy danych satelitarnych wykazały, że zarówno największe prędkości wiatrów jak i wysokość najwyższych fal dramatycznie wzrosły w ciągu ostatnich 23 lat. U południowych wybrzeży Australii średnia wysokość 1% najwyższych fal zwiększyła się w tym czasie z 5 do 6 metrów - mówi Young. Największe przyrosty widać wśród najgwałtowniejszych zjawisk, ale rośnie też siła zjawisk lokujących się w środku skali - dodaje. Australijczycy obliczyli, że w skali globalnej prędkość najszybszych wiatrów wzrosła o 10 procent, a wysokość najwyższych fal zwiększyła się o 7% w rejonach równikowych i o 14% w innych regionach. Uzyskane przez nas wyniki mają znaczenie zarówno dla nadmorskich budowli jak i dla żeglugi. Mogą mieć też głęboki wpływ na transfery energii pomiędzy oceanami a atmosferą, a jej przepływ to jedna z wielkich niewiadomych zmian klimatycznych - dodaje Young.
  4. Naukowcom z australijskiego Swinburne University oraz Uniwersytetu Nauki i Technologii z Szanghaju udało się odwrócić optyczny efekt Dopplera. W przyszłości odkrycie takie może posłużyć przy produkcji "czapki-niewidki". Efekt Dopplera to zmiana częstotliwości fali w sytuacji, gdy jej źródło i odbiorca poruszają się względem siebie. Obserwujemy go na codzień, gdy np. mija nas pociąg. Gdy zbliża się, wydawany przezeń dźwięk staje się wyższy, gdyż zwiększa się częstotliwość fali. Gdy się oddala, dźwięk staje się coraz niższy. Podobnie sytuacja ma się ze światłem. Gdy jego źródło i obserwator przybliżają się do siebie, częstotliwość fali rośnie i przesuwa się od czerwieni ku spektrum niebieskiemu. Gdy się oddalają - częstotliwość maleje i przesuwa się od niebieskiego ku czerwieni. W najnowszym numerze Nature Photonics Baohua Jia, Xiangping Li i Min Gu z Australii oraz ich koledzy z Szanghaju opisują odwrotny efekt, który naturalnie nie występuje. Uczonym udało się doprowadzić do sytuacji, gdy w miarę zbliżania się źródła światła i obserwatora częstotliwość fali maleje i przesuwa się ono od niebieskiego ku czerwieni, a gdy obserwator i źródło światła oddalają się - fala przesuwa się od czerwieni ku niebieskiemu. Jako pierwsi na świecie odwróciliśmy efekt Doplera dla fali świetlnej - mówi profesor Min Gu. Podczas eksperymentów uczeni wykorzystali stworzony przez siebie sztuczny kryształ fotoniczny, zbudowany z krzemu. Oświetlili go następnie laserem i wykazali, że zbliżając oraz oddalając detektor uzyskali odwrotność efektu Dopplera. W naszym superpryzmacie rozproszenie światła jest dwukrotnie większe niż w standardowym pryzmacie Newtona. To oznacza, że indeks refrakcyjny naszego pryzmatu - cecha, która określa jak szybko światło przezeń wędruje - zmienia się na ujemny - stwierdza Gu. W naturze wszystkie materiały mają indeks refrakcji większy od jeden, a zatem można za ich pomocą uzyskać standardowy efekt Dopplera. Profesor Gu dodaje, że prace jego i jego kolegów pokazują, iż od skonstruowania "czapki-niewidki" dzieli nas mniej czasu niż przypuszczano. Badania singapursko-australijskiego zespołu być może przydadzą się tam, gdzie obecnie wykorzystuje się standardowy efekt Dopplera - w astronomii, technice radarowej czy obrazowaniu medycznym.
  5. Analizując unikatowe wzorce fal tworzonych przez złożone reakcje biochemiczne, można zidentyfikować chore narządy. Profesor Zhengdong Cheng z Texas A&M University zaprojektował model generowania takich fal. W jego systemie występują dwa typy grudek żywicy, które reprezentują komórki. Grudki z katalizatorem (aktywne) odpowiadają zdrowym komórkom, a grudki go pozbawione (nieaktywne) – komórkom chorym lub martwym. Wcześniejsze studia koncentrowały się na efektach działania aktywnych grudek, tymczasem technika Chenga określa głównie wpływ znacznego wzrostu populacji grudek nieaktywnych w systemie, co odpowiada wzrostowi liczby martwych lub uszkodzonych komórek w narządzie. Okazało się, że w takich przypadkach wzorce fal zmieniają się z ukierunkowanych na cel (płaskich) w spiralne. Wg profesora, odpowiada to obserwowanemu w zapisie EKG przejściu od normalnego rytmu zatokowego do migotania komór – jednego z najczęstszych mechanizmów śmierci u chorych z zawałem. Rozpoznanie wzorców fal i ich znaczenia pozwoli lepiej (i ewentualnie w bardziej odpowiednim momencie) określić strukturę organu: czy jest on zdrowy, a jeśli nie, to o jakim etapie choroby powinno się mówić. Normalnie niepobudliwa tkanka włóknista stanowi mały procent prawidłowej tkanki serca. W wyniku starzenia, po zawale lub w przypadku kardiomiopatii, odsetek tkanki włóknistej dramatycznie wzrasta do 30-40%. W scenariuszu takim jak ten, biorąc pod uwagę nasze odkrycia, podczas badania nieodwracalnego uszkodzenia możemy się spodziewać większej liczby falek spiralnych.
  6. Uczonym z Narodowego Instytutu Standardów i Technologii (NIST) udało się, jako pierwszym w historii, zaprezentować metodę konwersji pojedynczego fotonu wyemitowanego z kwantowej kropki w paśmie 1300 nm (bliska podczerwień) w foton charakterystyczny dla emisji fali o długości 710 nm (światło bliskie widzialnemu). Możliwość zmiany koloru pojedynczego fotonu może być ważnym krokiem na drodze do stworzenia hybrydowych kwantowych systemów obliczeniowych i komunikacyjnych. W przetwarzaniu kwantowej informacji bardzo ważna jest możliwość jej transportu w formie zakodowanej w fotonie oraz przechowywania. Specjaliści dążą do tego, by pojedyncze urządzenie było w stanie przechowywać i kodować kwantową informację. Problem jednak w tym, że dostępne obecnie systemy pamięci kwantowych są w stanie przechowywać fotony ze światła bliskiego światłu widzialnemu, a tymczasem najlepsze wyniki daje transport fotonów z podczerwieni, gdyż takie fale doświadczają najmniejszych strat w światłowodach. To pokazuje, jak ważny jest wynalazek NIST. Pozwala on bowiem na skonstruowanie pojedynczego urządzenia, które będzie pracowało z różnymi fotonami. Specjaliści z NIST dokonali tego łącząc źródło fotonu z wykrywaczem zdolnym do zmiany częstotliwości z niższej (długa fala) na wyższą (krótka fala). Ważnym osiągnięciem jest wykorzystanie tutaj kropki kwantowej, gdyż pozwala ona na emisję pojedynczego fotonu o określonej długości fali (kolorze). Wcześniej naukowcy nie potrafili uzyskać aż tak dużej kontroli nad fotonami. Dodatkową zaletą tej technologii jest konwersja fotonu z podczerwieni do światła niemal widzialnego. Pozwala to bowiem aż 25-krotnie zwiększyć wykrywalność fotonów, gdyż obecnie dostępne detektory dla światła bliskiego widzialnemu są znacznie doskonalsze niż te dla podczerwieni.
  7. Boris Yakobson, fizyk z Rice University, i jego studenci opracowali teoretyczny model pokazujący, że fale dźwiękowe wędrujące w grafenie mogą wspomagać chłodzenie układów elektronicznych. Z dokonanych obliczeń wynika, że grafen może transportować energię cieplną w postaci fali. Można do jej transportu wykorzystać falę dźwiękową, która w grafenie wędruje szybko i daleko, a umożliwiałaby sprawne usuwanie nadmiaru ciepła. Oczywiście, jak zauważa Yakobson, skala jest tak mała, iż człowiek nie słyszałby żadnych dźwięków. Współautor opracowania, Enrique Munoz, stwierdza, że dzięki szczególnym właściwościom fononów - dźwiękowych odpowiedników fotonów - grafen może aż 10-krotnie bardziej wydajnie przewodzić ciepło niż miedź czy złoto. Naukowcy zauważają, że nie wystarczy po prostu przesłać fali dźwiękowej przez grafen. Trzeba dokładnie określić w jaki sposób ciepło w nim wędruje i tam, gdzie ma ono opuścić układ chłodzący, konieczne jest zastosowanie ośrodka gazowego lub ciekłego, w którym się rozproszy. W przeciwnym razie fala się odbije. Dlatego też swój teoretycznie opracowany system porównują do ciepłowodów
  8. Kamień uderzający w lustro wody może wywołać powstanie naddźwiękowego strumienia powietrza - udowadniają naukowcy z holenderskiego Uniwersytetu w Twente. To niespodziewane odkrycie rozszerza naszą wiedzę na temat aerodynamiki i może pomóc m.in. w stworzeniu bardziej efektywnych pojazdów. Badaniem niezwykłego zjawiska zajmował się Stephan Gekle, magistrant pracujący na holenderskiej uczelni. Młody badacz obserwował fale powstające na powierzchni wody po uderzeniu płaskiego dysku, a więc w sytuacji podobnej do zabawy w "puszczanie kaczek" z brzegu jeziora. Jak się okazało, powietrze poruszone przez krążek wybija w powierzchni wody podłużną szczelinę. Po chwili zostaje ona ściśnięta przez otaczającą ciecz i przyjmuje kształt klepsydry. Po zaledwie kilku milisekundach zwężenie w środkowej części fali zaciska się jeszcze bardziej, zwiększając ciśnienie powietrza zamkniętego pomiędzy powierzchnią wody a wciąż opadającym "kamieniem". Zaraz po tym, jak szyjka "klepsydry" zamyka się całkowicie, ciśnienie powietrza przekracza krytyczną wartość i powoduje nagłe wystrzelenie strugi gazu. Na podstawie serii pomiarów ustalono, że strumień ten, mający szerokość ok. 1 mm, osiąga prędkość dźwięku. Obserwacja ta zaskoczyła nawet samego autora studium, gdyż jedyne dostępne dotąd (i do tego czysto teoretyczne) dane zakładały, że naddźwiękowe strugi powietrza mogłyby mieć co najwyżej szerokość mierzoną w mikrometrach. To ekscytujące i zaskakujące, że dzieje się to tak naprawdę przy makroskopowych rozmiarach szyjki, podkreśla badacz. Źródło: Stephan Gekle Dokonane odkrycie może mieć istotne znaczenie dla m.in. badań z zakresu aerodynamiki i hydrodynamiki. Dokładne zrozumienie zjawisk rządzących przepływem cieczy oraz gazów może ułatwić uporządkowanie ich przepływu wokół różnych obiektów, zmniejszając tym samym ilość energii potrzebnej do utrzymania ich w ruchu. Efektem takich działań może być m.in. zmniejszenie zużycia paliwa przez nasze samochody lub poprawę sprawności elektrowni wiatrowych.
  9. W prestiżowym piśmie Preceedings of the National Academy of Sciences ukazał się artykuł, w którym dwóch matematyków - Blake Temple z Uniwersytetu Kalifornijskiego w Davies i Joel Smoller z University of Michigan - dowodzi, że ciemna energia nie istnieje. Jeśli mają rację, ich teoria może całkowicie zmienić postrzeganie budowy wszechświata. Temple i Smoller postulują, że wszechświat nie rozszerza się coraz szybciej napędzany przez tajemniczą ciemną energię. Ich zdaniem rozszerzające się fale wędrujące przez czasoprzestrzeń powodują, że wydaje się nam, iż odległe galaktyki coraz szybciej uciekają. Istnienie tych fal, zainicjowanych przez Wielki Wybuch, wyjaśnia, dlaczego obiekty wydają się znajdować dalej, niż wynika to z Modelu Standardowego. Matematycy przedstawili serię wyliczeń, w których pokazują, jak teoria o fali pasuje do ogólnej teorii względności i jak powoduje ona względne przyspieszenie. Na tym etapie myślimy, że to bardzo ciekawa teoria. Naszym zdaniem nie ma żadnego przyspieszenia. Galaktyki są tam, gdzie być powinny, ale w wyniku działania fali widzimy je w nieco innej pozycji niż przypuszczaliśmy, że się znajdują - mówi Temple. Swoją teorię porównuje do wrzucenia kamienia do wody. Miejsce upadku kamienia to Wielki Wybuch. Od niego rozchodzą się koncentrycznie fale. Gdy formują się galaktyki, to znajdują się one w nieco innym miejscu, niż gdyby fali nie było. A więc znajdują się nie tam, gdzie możemy się ich spodziewać. Trzeba jednak wziąć pod uwagę fakt, że z Ziemi wydaje się, iż obiekty uciekają równomiernie we wszystkich kierunkach. Teoria fali zmusza nas więc do przyjęcia jednego z dwóch założeń: albo Droga Mleczna znajduje się w pobliżu centrum wszechświata, niedaleko miejsca, gdzie doszło do Wielkiego Wybuchu, albo też że znajdujemy się znajdujemy się w centrum jakiejś mniejszej fali, a on wpływa na nasze postrzeganie innych obiektów. Z całym dowodem można zapoznać się na stronie domowej Blake'a Temple'a [PDF].
  10. Gigantyczna fala tsunami, która nawiedziła w 2004 roku południowo-wschodnią Azję, to niepowtarzalna okazja do badania przyrody. Jak donoszą badacze ze stowarzyszenia Wildlife Conservation Society (WCS), rafy koralowe w tym rejonie odtwarzają się z niezwykle dużą szybkością. Naukowcy z WCS przeprowadzili szczegółową analizę sześćdziesięciu miejsc położonych wzdłuż liczącego 800 kilometrów wybrzeża indonezyjskiej prowincji Aceh. Jak się okazuje, w rejonie tym pojawiło się ostatnio wyjątkowo dużo młodych osobników różnych gatunków koralowców. Najprawdopodobniej duży udział w odbudowie ekosystemu odegrali także rybacy, którzy zostali zmuszeni lub przekonani do przerwania połowów. Wcześniej stosowali w swojej pracy metody tak drastyczne, jak np. wrzucanie do wody dynamitu, a nawet... cyjanku. W czwartą rocznicę tsunami, mamy tu wspaniałą historię o odpornosci i odbudowie ekosystemu, opisuje sytuację dr Stuart Campbell, jeden z koordynatorów badań. Dodaje: nasz naukowy monitoring wykazuje gwałtowny wzrost młodych koralowców w rejonach, w których tsunami dokonało zniszczeń, a także powrót nowych pokoleń koralowców niszczonych uprzednio przez destruktywne rybołówstwo. Odkrycia te dostarczają nam nowych informacji na temat procesów odbudowy koralowców, które mogą nam pomóc dbać o rafy koralowe w obliczu zmian klimatycznych. Zniszczenia dokonane na terenie raf zostały, na szczęście, dostrzeżone przez samą społeczność prowincji Aceh. Zamieszkujący te rejony ludzie nie tylko znacząco ograniczyli stosowanie niszczycielskich metod połowów, lecz nawet rozpoczęli na własną rękę przenoszenie koralowców na tereny zniszczone podczas kataklizmu. Przygotowywano także specjalne "rusztowania", które miały ułatwiać ponowną kolonizację przez te interesujące zwierzęta. Kondycja raf koralowych jest niezwykle istotna dla Indonezyjczyków. Szacuje się, że naturalne zasoby tego wyjątkowego rejonu przynoszą mieszkańcom przychody w wysokości 2 miliardów dolarów rocznie i dostarczają miejsc pracy oraz pożywienia dla około 120 milionów osób. Nie powinno to dziwić: obszar ten, wchodzący w skład słynnego "Koralowego Trójkąta", zamieszkiwany jest przez 75% wszystkich znanych gatunków koralowców. Jak się okazuje, ta "podwodna dżungla" jest nie tylko niezwykle różnorodna biologicznie, lecz posiada także zadziwiające zdolności do regeneracji.
  11. Ochrona wybrzeży przed falami to poważne wyzwanie dla specjalistów na całym świecie. Matematycy z University of Liverpool wraz z fizykami z Centre National de la Recherche Scientifique (CNRS) i Aix-Marseille Universite, odkryli, że wybrzeża można chronić dzięki... metamateriałom. Obecnie ochrona przed falami polega na budowaniu struktur, które są w stanie je rozbić. Jednak budowle te są bezsilne, w przypadku fal, które przeleją się nad nimi lub też będą na tyle potężne by je zniszczyć. Ponadto rozbijanie fal nie zapobiega ich dotarciu na wybrzeże i wyrządzeniu szkód. Opracowana przez uczonych struktura ma cylindryczny kształt i składa się ze słupów, które kierują wodę wzdłuż koncentrycznie ułożonych korytarzy, prowadząc je do wewnątrz budowli. Całość przypomina wirówkę. W takiej "wirówce" fale nie są rozbijane, ale kierowane w inne miejsce, tam, gdzie nie wyrządzą szkód. Co więcej sama struktura jest dla fali niewidoczna. Nie stanowi dla niej przeszkody, więc nie grozi jej zniszczenie. Naukowcy chcą teraz wypróbować swój laboratoryjny model w świecie rzeczywistym. Jeśli próby się powiodą, "niewidzialne" dla fal struktury pomogą chronić platformy wiertnicze w czasie sztormów czy wybrzeża przed tsunami.
  12. W jaki sposób umysł radzi sobie z określaniem czasu zbyt krótkiego, by go zarejestrować? Naukowcy twierdzą, że odkryli mózgowy stoper, a zatem i klucz do wielu zaburzeń z dysleksją włącznie. Mózg ciągle ocenia interwały czasowe tak niewielkie, że musi to czynić na poziomie nieświadomym. Badaczy stale nurtowało pytanie: jak mu się to udaje... Gdy np. kogoś słuchamy, stale "obliczamy", kiedy kończy się jedno słowo, a zaczyna drugie. Podczas chodzenia natomiast nasza koordynacja bazuje na zdolności do ciągłego czasowania ruchu stóp. Niektórym badaczom nie podobał się pomysł, że w mózgu znajduje się wewnętrzny zegar, zbudowany z regularnie pulsujących komórek, który odmierza króciutkie interwały czasowe. Dean Buonomano z Uniwersytetu Kalifornijskiego w Los Angeles wyjaśnia, że gdyby naprawdę tak było, dysponowalibyśmy wysoce obiektywnym narzędziem pomiarowym. Kiedy jednak ktoś prosi nas o porównanie "mgnień oka" różnej długości, mamy z tym problem. Nie wiemy, ile to jest milisekunda. W swoim eksperymencie Buonomano i zespół wykazali, jak łatwo wpłynąć na ludzkie postrzeganie bardzo krótkich czasów. Zadaniem wolontariuszy była ocena czasu upływającego między dwoma dźwiękami. Zmieniała się ona w zależności od momentu wystąpienia poprzedzającego bodźca rozpraszającego. W trzech użytych zestawach bodziec ten prezentowano na 50, 150 lub 200 milisekund przed właściwą parą dźwięków. Według Buonomano, mózg nie dawałby się tak łatwo wprowadzić w błąd, gdyby mógł odnieść czasowanie tonów do wskazań wewnętrznego zegara. Zamiast tego sądzi, że opiera się on raczej na wskazówkach zewnętrznych. Ocenia czas potrzebny do przepływu sygnału przez nerwy z jednej swojej części do drugiej. Naukowiec porównuje to do wrzucania po sobie do jeziora dwóch kamyków i oceny upływającego czasu na postawie momentu, kiedy wytworzona podczas upadku fala osiągnie określony z góry punkt. Jeśli jednak w międzyczasie do wody wpadnie jeszcze jeden przedmiot, zakłóci to rozchodzenie się fal. Pojedynczy dźwięk generuje w mózgu serię impulsów. Buonomano uważa, że pierwszy dźwięk w 3-częściowej sekwencji zakłóca rozchodzenie się sygnałów wytworzonych przez następującą po nim właściwą parę. Nieświadome odmierzanie milisekund jest bardzo ważne dla wielu czynności, m.in. rozumienia języka. Jeśli proces ten nie przebiega prawidłowo, pojawiają się rozmaite zaburzenia, np. dysleksja, która dotyczy zarówno mowy, jak i pisania. Catalin Buhusi z Medical University of South Carolina w Charleston sądzi, że człowiek dysponuje wewnętrznym zegarem. Używa go jednak do oceny dłuższych okresów, np. minut czy godzin. Badacz wskazuje przy tym na grupy neuronów (np. w prążkowiu), które stale się aktywują, generując mniej więcej 5 impulsów na sekundę. Nasz mózg wyewoluował w taki sposób, by radzić sobie z czasem ujmowanym w różnych skalach.
  13. Fińska firma WaveRoller opracowała nowy sposób na produkcję energii elektrycznej z fal morskich, bez konieczności umieszczania na powierzchni wody żadnych urządzeń. Pomysł Finów polega na umocowaniu na dnie płyt wykonanych z włókna szklanego i stali. Woda przesuwa płyty w przód i w tył. One napędzają tłoki, a te z kolei wytwarzają ciśnienie poruszające turbinę elektryczną. Znajdujące się pod wodą płyty nie psują wyglądu okolicy oraz nie przeszkadzają w żegludze. Płyty mają wysokość 4 metrów i optymalnie powinny być zanurzone na głębokości 10-12 metrów. WaveRoller zainstalowało już dwa prototypowe urządzenia swojego pomysłu, a latem rozpoczną się testy, mające sprawdzić opłacalność technologii. Jeśli wypadną one pomyślnie, to w ciągu 5-7 lat mogą powstać liczne przybrzeżne elektrownie produkujące megawaty mocy. Najnowszy z zainstalowanych prototypów ma wielkość 4x4 metry i będzie produkował od 10 do 13 kilowatów mocy. Podobne urządzenia stosowane na skalę komercyjną będą prawdopodobnie składały się z trzech połączonych płyt i wyprodukują około 45 kilowatów. Do produkcji megawata będą więc potrzebne 22 trzypłytowe zestawy. Największym wyzwaniem będzie konserwacja i naprawa urządzeń.
  14. Turbulencje są zmorą zarówno inżynierów, jak i osób podróżujących czy pilotujących samoloty. Zespół Dimitrisa Lagoudasa z Texas A&M University skonstruował rodzaj powłoki, która pod wpływem chaotycznych ruchów powietrza przyjmuje odpowiednio pofalowany kształt. Podobny trik, tyle że w wodzie, stosują delfiny (Smart materials and structures). Tego rodzaju powłoka zmniejszyłaby turbulencje nie tylko w samolotach, ale także w łodziach podwodnych. Odpowiednie pofalowanie wytłumia ruch cząsteczek gazu lub cieczy. Wbrew pozorom odnalezienie odpowiedniej formy wcale nie jest proste. Powierzchnia skrzydła lub burty musi przyjąć kształt idealny, to znaczy wymuszany przez napierające na nią siły. Dodatkowo żądana forma zmienia się wraz z prędkością. A jak robią to delfiny? By zredukować "rzucanie" w czasie pływania, marszczą skórę. Dzięki temu woda przestaje przywierać do ich ciała. Wzorując się na naturze, Amerykanie najpierw przeprowadzili odpowiednie wyliczenia, potem postanowili przetestować prototyp powłoki. Pod aktywnie reagującą "skórą" znajdują się specjalne piezoceramiczne nóżki. Wydłużają się one pod wpływem działania pola elektrycznego. Kontrolując jego parametry, ekipa Lagoudasa może uzyskać konfigurację powłoki, która odpowiada długości oraz amplitudzie fali działającej na powierzchnię materiału i w ten sposób wyeliminować wstrząsy. Powstające wybrzuszenie może mieć do 30 mikrometrów wysokości. Othon Rediniotis, jeden z członków zespołu, podkreśla, że drgania powłoki zmniejszono aż o połowę. Wg Lagoudasa, wynalazek jego zespołu sprawdzi się najlepiej w łodziach podwodnych. Wykorzystanie go w samolotach będzie wymagało wyeliminowania wielu przeszkód. Samolot porusza się z większą prędkością, dlatego powstające fale muszą mieć większą częstotliwość. Na razie "skórę" przetestowano jedynie w warunkach laboratoryjnych. Przed zaimplementowaniem w prawdziwej flocie, morskiej czy powietrznej, musi być całkowicie niezawodna.
  15. Do tej pory uważano, że człowiek współczesny opuścił Afrykę jakieś 50 tysięcy lat temu. Teraz okazuje się, że to nie pierwsza fala migracji. Kolejne 50 tys. lat wcześniej z Czarnego Lądu wyemigrowała mniejsza grupa, będąca najprawdopodobniej podgatunkiem Homo sapiens sapiens (Journal of Human Evolution). Większość obecnie żyjących ludzi to potomkowie drugiej fali podróżników, ale bardzo prawdopodobne, że niektóre populacje, zamieszkujące Izrael, Jordanię, Liban, Syrię, Australię, Nową Zelandię oraz Indonezję, noszą geny wspomnianych wyżej pionierów zmian. Profesor Michael Schillaci z Wydziału Nauk Społecznych Uniwersytetu w Toronto udowadnia też, że pierwsi emigranci wykazują pewne podobieństwo genetyczne do neandertalczyków, którzy opuścili Afrykę dużo wcześniej, osiedlając się ostatecznie w Europie oraz zachodniej i centralnej Azji. Wg niego, to efekt krzyżowania się z neandertalczykami albo posiadania wspólnego przodka. W ramach swoich badań profesor określał stopień podobieństwa genetycznego, dokonując pomiarów mózgoczaszki. Wykorzystał do tego celu kości 28 współczesnych i prehistorycznych populacji. Okazało się, że najstarsze skamieliny z Bliskiego Wschodu były genetycznie podobne do najstarszych znalezisk z Australii, Nowej Zelandii i Indonezji. Dzisiejsi ludzie są zaś najbardziej podobni do Europejczyków, którzy po opuszczeniu Afryki zasiedlali Stary Kontynent w okresie od 40 do 10 tys. lat temu. Najbardziej prawdopodobne wyjaśnienie jest takie, że ekspansja z Afryki, która dała początek pierwszym Australijczykom, miała miejsce przed dobrze nam znanym exodusem sprzed ok. 50 tysięcy lat, w wyniku którego doszło do kolonizacji Europy. Schillaci uważa, że pierwsza fala migracji została zamaskowana genetycznie przez późniejszą. Teorię, że mamy do czynienia z dwoma podgatunkami człowieka współczesnego, potwierdzają znaleziska z etiopskiej wioski Herto. Archeolodzy natrafili tam na ślad skamielin istot o budowie mocniejszej od znanych Homo sapiens. Ich wiek to 154-160 tys. lat. Erik Trinkaus, profesor antropologii fizycznej z Washington University w St. Louis, podkreśla, że badania powinno się powtórzyć na większej liczbie próbek, z większą liczbą różnych pomiarów oraz bez takich luk czasowych, jak u Schillaciego. Kanadyjczyk pominął bowiem jedną z najwcześniejszych skamielin z południowo-wschodniej Azji, przez co nie ma odpowiednich skamielin z sprzed 100-30 tys. lat z Lewantu i Australii, co pozwoliłoby stwierdzić, co działo się tam w międzyczasie.
×
×
  • Dodaj nową pozycję...