Nie chcą neutralności internetu
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
CERN podjął pierwsze praktyczne działania, których celem jest zbudowania następcy Wielkiego Zderzacza Hadronów (LHC). Future Circular Collider (FCC) ma mieć 91 kilometrów długości, a plany zakładają, że jego tunel będzie miał 5 metrów średnicy. Urządzenie będzie więc ponaddtrzykrotnie dłuższe od LHC. Akcelerator, który ma powstać w granicach Francji i Szwajcarii, będzie tak olbrzymi, by osiągnąć energię zderzeń sięgającą 100 TeV (teraelektronowoltów). Energia zderzeń w LHC wynosi 14 TeV.
Specjaliści z CERN przeprowadzili już analizy teoretyczne, a obecnie rozpoczynają etap działań polowych. Miejsca, w których mają przebiegać FCC zostaną teraz poddane ocenie środowiskowej, a następnie przeprowadzone zostaną szczegółowe badania sejsmiczne i geotechniczne. Trzeba w nich będzie uwzględnić również osiem naziemnych ośrodków naukowych i technicznych obsługujących olbrzymią instalację.
Po ukończeniu wspomnianych badań, a mogą one zająć kilka lat, 23 kraje członkowskie CERN podejmą ostateczną decyzję dotyczącą ewentualnej budowy FCC. Poznamy ją prawdopodobnie za 5–6 lat. W FCC mają być początkowo zderzane elektrony i pozytony, a następnie również hadrony.
Zadaniem FCC ma być m.in. znalezienie dowodu na istnienie ciemnej materii, szukanie odpowiedzi na pytanie o przyczyny przewagi ilości materii nad antymaterią czy określenie masy neutrino.
Fizycy przewidują, że możliwości badawcze Wielkiego Zderzacza Hadronów wyczerpią się około połowy lat 40. Problem z akceleratorami polega na tym, że niezależnie od tego, jak wiele danych dzięki nim zgromadzisz, natrafiasz na ciągle powtarzające się błędy. W latach 2040–2045 osiągniemy w LHC maksymalną możliwą precyzję. To będzie czas sięgnięcia po potężniejsze i jaśniejsze źródło, które lepiej pokaże nam kształt fizyki, jaką chcemy zbadać, mówi Patrick Janot z CERN.
W 2019 roku szacowano, że koszt budowy FCC przekroczy 21 miliardów euro. Inwestycja w tak kosztowne urządzenie spotkała się z krytyką licznych specjalistów, którzy argumentują, że przez to może zabraknąć funduszy na inne, bardziej praktyczne, badania z dziedziny fizyki. Jednak zwolennicy FCC bronią projektu zauważając, iż wiele teoretycznych badań przekłada się na życie codzienne. Gdy stworzono działo elektronowe, powstało ono na potrzeby akceleratorów. Nikt nie przypuszczał, że dzięki temu powstanie telewizja. A gdy tworzona była ogólna teoria względności, nikomu nie przyszło do głowy, że będzie ona wykorzystywana w systemie GPS, zauważa Janot. Wśród innych korzyści zwolennicy budowy FCC wymieniają fakt, że zachęci on do trwającej dziesięciolecia współpracy naukowej. Zresztą już obecnie z urządzeń CERN korzysta ponad 600 instytucji naukowych i uczelni z całego świata.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Szerokie rozpowszechnienie się internetu i technologii komunikacyjnych przyciąga ludzi do centrów miast. Zachodzi więc zjawisko odwrotne, niż przewidywano u zarania internetu i ery informacyjnej, informują naukowcy z Uniwersytetu w Bristolu.
Pomimo tego, że internet pozwala nam na niezwykle łatwy dostęp do wszelkich informacji i umożliwia łatwe i szybkie nawiązanie kontaktu z osobami z drugiego końca świata, jego rozwój nie doprowadził do odpływu ludności z miast. Wręcz przeciwnie, specjaliści zauważyli odwrotne zjawisko. Coraz większe rozpowszechnienie się technologii informacyjnych prowadzi zwiększenia koncentracji ludzi w miastach.
Nie od dzisiaj wiemy, że np. przedsiębiorstwa działające na uzupełniających się polach, mają tendencje do grupowania się na tym samym obszarze, gdyż zmniejsza to koszty działalności. Technologie informacyjne miały to zmienić.
Doktor Emmanouil Tranos z Univeristy of Bristol i Yannis M. Ioannides z Tufts Univeristy przeanalizowali skutki zachodzących w czasie zmian dostępności i prędkości łączy internetowych oraz użytkowania internetu na obszary miejskie w USA i Wielkiej Brytanii. Geografowie, planiści i ekonomiści miejscy, którzy na początku epoki internetu rozważali jego wpływ na miasta, dochodzili czasem do dziwacznych wniosków. Niektórzy wróżyli rozwój „tele-wiosek”, krajów bez granic, a nawet mówiono o końcu miasta.
Dzisiaj, 25 lat po komercjalizacji internetu, wiemy, że przewidywania te wyolbrzymiały wpływ internetu i technologii informacyjnych w zakresie kontaktów i zmniejszenia kosztów związanych z odległością. Wciąż rosnąca urbanizacja pokazuje coś wręcz przeciwnego. Widzimy, że istnieje komplementarność pomiędzy internetem a aglomeracjami. Nowoczesne technologie informacyjne nie wypchnęły ludzi z miast, a ich do nich przyciągają.
Artykuł Ubiquitous digital technologies and spatial structure; an update został opublikowany na łamach PLOS One.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Iskra
Dokładnie 50 lat temu, późnym wieczorem 29 października 1969 roku na Uniwersytecie Kalifornijskim w Los Angeles (UCLA) dwóch naukowców prowadziło pozornie nieznaczący eksperyment. Jego konsekwencje ujawniły się dopiero wiele lat później, a skutki pracy profesora Leonarda Kleinrocka i jego studenta Charleya Kline'a odczuwamy do dzisiaj.
Kleinrock i Kline mieli do rozwiązania poważny problem. Chcieli zmusić dwa oddalone od siebie komputery, by wymieniły informacje. To, co dzisiaj wydaje się oczywistością, przed 50 laty było praktycznie nierozwiązanym problemem technicznym. Nierozwiązanym aż do późnego wieczora 29 października 1969 roku.
Jeden ze wspomnianych komputerów znajdował się w UCLA, a drugi w oddalonym o 600 kilometrów Stanford Research Institute (SRI) w Menlo Park. Próby nawiązania łączności trwały wiele godzin. Kline próbował zalogować się do komputera w SRI, zdążył w linii poleceń wpisać jedynie „lo”, gdy jego maszyna uległa awarii. Wymagała ponownego zrestartowania i ustanowienia połączenia. W końcu około godziny 22:30 po wielu nieudanych próbach udało się nawiązać łączność i oba komputery mogły ze sobą „porozmawiać”. Wydaje się jednak, że pierwszą wiadomością wysłaną za pomocą sieci ARPANETu było „lo”.
Trudne początki
Początków ARPANETU możemy szukać w... Związku Radzieckim, a konkretnie w wielkim osiągnięciu, jakim było wystrzelenie Sputnika, pierwszego sztucznego satelity Ziemi. To był dla Amerykanów policzek. Rosjanie pokazali, że pod względem technologicznym nie odstają od Amerykanów. Cztery lata zajęło im nadgonienie nas w technologii bomby atomowej, dziewięć miesięcy gonili nas w dziedzinie bomby wodorowej. Teraz my próbujemy dogonić ich w technice satelitarnej, stwierdził w 1957 roku George Reedy, współpracownik senatora, późniejszego prezydenta, Lyndona Johnsona.
Po wystrzeleniu Sputnika prezydent Eisenhower powołał do życia Advanced Research Project Agency (ARPA), której zadaniem była koordynacja wojskowych projektów badawczo-rozwojowych. ARPA zajmowała się m.in. badaniami związanymi z przestrzenią kosmiczną. Jednak niedługo później powstała NASA, która miała skupiać się na cywilnych badaniach kosmosu, a programy wojskowe rozdysponowano pomiędzy różne wydziały Pentagonu. ARPA zaś, ku zadowoleniu środowisk naukowych, została przekształcona w agencję zajmującą się wysoce ryzykownymi, bardzo przyszłościowymi badaniami o dużym teoretycznym potencjale. Jednym z takich pól badawczych był czysto teoretyczny sektor nauk komputerowych.
Kilka lat później, w 1962 roku, dyrektorem Biura Technik Przetwarzania Informacji (IPTO) w ARPA został błyskotliwy naukowiec Joseph Licklider. Już w 1960 roku w artykule „Man-Computer Symbiosis” uczony stwierdzał, że w przyszłości ludzkie mózgi i maszyny obliczeniowe będą bardzo ściśle ze sobą powiązane. Już wtedy zdawał on sobie sprawę, że komputery staną się ważną częścią ludzkiego życia.
W tych czasach komputery były olbrzymimi, niezwykle drogimi urządzeniami, na które mogły pozwolić sobie jedynie najbogatsze instytucje. Gdy Licklider zaczął pracować dla ARPA szybko zauważył, że aby poradzić sobie z olbrzymimi kosztami związanymi z działaniem centrów zajmujących się badaniami nad komputerami, ARPA musi kupić wyspecjalizowane systemy do podziału czasu. Tego typu systemy pozwalały mniejszym komputerom na jednoczesne łączenie się z wielkim mainframe'em i lepsze wykorzystanie czasu jego procesora. Dzięki nim wielki komputer wykonywać różne zadania zlecane przez wielu operatorów. Zanim takie systemy powstały komputery były siłą rzeczy przypisane do jednego operatora i w czasie, gdy np. wpisywał on ciąg poleceń, moc obliczeniowa maszyny nie była wykorzystywana, co było oczywistym marnowaniem jej zasobów i pieniędzy wydanych na zbudowanie i utrzymanie mainframe’a.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dokładnie przed 50 laty, 29 października 1969 roku, dwaj naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles, wykorzystali nowo powstałą, rewolucyjną sieć ARPANET, do przesłania pierwszej wiadomości. Po wielu nieudanych próbach około godziny 22:30 udało się zalogować do komputera w oddalonym o 600 kilometrów Stanford Research Institute.
Wieloletnia podróż, która rozpoczęła się od... wysłania Sputnika przez Związek Radziecki i trwa do dzisiaj w postaci współczesnego internetu, to fascynująca historia genialnych pomysłów, uporu, porażek i ciężkiej pracy wielu utalentowanych ludzi. Ludzi, wśród których niepoślednią rolę odegrał nasz rodak Paul Baran.
To, co rozpoczęło się od zimnowojennej rywalizacji atomowych mocarstw, jest obecnie narzędziem, z którego na co dzień korzysta ponad połowa ludzkości. W ciągu pół wieku przeszliśmy od olbrzymich mainframe'ów obsługiwanych z dedykowanych konsol przez niewielką grupę specjalistów, po łączące się z globalną siecią zegarki, lodówki i telewizory, które potrafi obsłużyć dziecko.
Zapraszamy do zapoznania się z fascynującą historią internetu, jednego z największych wynalazków ludzkości.
« powrót do artykułu -
przez KopalniaWiedzy.pl
CERN opublikował wstępny raport projektowy (Conceptual Design Report), w którym zarysowano plany nowego akceleratora zderzeniowego. Future Circular Collider (FCC) miałby być niemal 4-krotnie dłuższy niż Wielki Zderzacz Hadronów (LHC) i sześciokrotnie bardziej potężny. Urządzenie, w zależności od jego konfiguracji, miałoby kosztować od 9 do 21 miliardów euro.
Publikacja raportu odbyła się w ramach programu European Strategy Update for Particle Pysics. Przez dwa kolejne lata specjaliści będą zastanawiali się nad priorytetami w fizyce cząstek, a podjęte decyzje wpłyną na to, co w tej dziedzinie będzie się działo w Europie w drugiej połowie bieżącego stulecia. To olbrzymi krok, tak jakbyśmy planowali załogową misję nie na Marsa, a na Uran, mówi Gian Francesco Giudice, który stoi na czele wydziału fizyki teoretycznej CERN i jest przedstawicielem tej organizacji w Physics Preparatory Group.
Od czasu odkrycia bozonu Higgsa w 2012 roku LHC nie odkrył żadnej nowej cząstki. To pokazuje, że potrzebne jest urządzenie, które będzie pracowało z większymi energiami. Halina Abramowicz, fizyk z Tel Aviv University, która kieruje europejskim procesem opracowywania strategii rozwoju fizyki cząstek, nazwała propozycję CERN „bardzo ekscytującą”. Dodała, że projekt FCC będzie szczegółowo rozważany razem z innymi propozycjami. Następnie Rada CERN podejmie ostateczną decyzję, czy należy sfinansować FCC.
Jednak nie wszyscy uważają, że nowy zderzacz jest potrzebny. Nie ma żadnych podstaw, by sądzić, że przy energiach, jakie mógłby osiągnąć ten zderzacz, można będzie dokonać jakichś znaczących odkryć. Wszyscy to wiedzą, ale nich nie chce o tym mówić, stwierdza Sabine Hossenfelder, fizyk teoretyk z Frankfurckiego Instytutu Zaawansowanych Badań. Jej zdaniem pieniądze, które miałyby zostać wydane w FCC można z większym pożytkiem wydać na inne urządzenia, na przykład na umieszczenie na niewidocznej stronie Księżyca dużego radioteleskopu czy też zbudowanie na orbicie wykrywacza fal grawitacyjnych. Takie inwestycje z większym prawdopodobieństwem przyniosą znaczące odkrycia naukowe.
Jednak Michael Benedikt, fizyk, który stał na czele grupy opracowującej raport nt. FCC mówi, że warto wybudować nowy zderzacz niezależnie od spodziewanych korzyści naukowych, gdyż tego typu wielkie projekty łączą instytucje naukowe ponad granicami. Hossenfelder zauważa, że podobnie łączą je inne duże projekty naukowe.
Prace nad FCC rozpoczęły się w 2014 roku i zaangażowało się w nie ponad 1300 osób i instytucji. Rozważanych jest kilka konfiguracji, a większość z nich zakłada, że FCC powstanie obok LCH, a jego tunele będą miało 100 kilometrów długości. Sama budowa tunelu i powiązanej z nim infrastruktury naziemnej pochłoną około 5 miliardów euro. Kolejne 4 miliardy będzie kosztował akcelerator, w którym będą zderzanie elektrony z pozytonami. urządzenie miałoby pracować z energię do 365 gigaelektronowoltów. To mniejsza energia niż w LHC, jednak zderzenia lżejszych cząstek, jak elektron z pozytonem, dają znacznie bardziej szczegółowe dane niż zderzanie protonów, jakie zachodzi w LHC, zatem w FCC można by bardziej szczegółowo zbadać np. bozon Higgsa. FCC miałby zostać uruchomiony około roku 2040.
Warto tutaj na chwilę się zatrzymać i przypomnieć opisywany przez nas projekt International Linear Collider. Przed ponad pięciu laty świat obiegła wiadomość o złożeniu szczegółowego raportu technicznego 31-kilometrowego liniowego zderzacza elektronów i pozytonów. Raport taki oznaczał, że można rozpocząć budowę ILC. Urządzenie to, dzięki swojej odmiennej od LHC architekturze, ma pracować – podobnie jak FCC – z elektronami i pozytonami i ma dostarczać bardziej szczegółowych danych niż LHC. W projekcie ILC biorą udział rządy wielu krajów, a najbardziej zainteresowana jego budową była Japonia, skłonna wyłożyć nawet 50% jego kosztów. Jednak budowa ILC dotychczas nie ruszyła. Brak kolejnych odkryć w LHC spowodował, że szanse na budowę ILC znacznie zmalały. Rząd Japonii ma 7 marca zdecydować, czy chce u siebie ILC.
Inny scenariusz budowy FCC zakłada wydatkowanie 15 miliardów euro i wybudowanie w 100-kilometrowym tunelu zderzacza hadronów (kolizje proton–proton) pracującego z energią dochodzącą do 100 TeV, czyli wielokrotnie wyższą niż 16 TeV uzyskiwane w LHC. Jednak bardziej prawdopodobnym scenariuszem jest zbudowanie najpierw zderzacza elektronów i pozytonów, a pod koniec lat 50. bieżżcego wieku rozbudowanie go do zderzacza hadronów. Scenariusz taki jest bardziej prawdopodobny z tego względu, że skonstruowanie 100-teraelektronowoltowego zderzacza hadronów wymaga znacznie więcej badań. Gdybyśmy dysponowali 100-kilometrowym tunelem, to już moglibyśmy rozpocząć budowę zderzacza elektronów i pozytonów, gdyż dysponujemy odpowiednią technologią. Stworzenie magnesów dla 100-teraelektronowego zderzacza wymaga jeszcze wielu prac badawczo-rozwojowych, mówi Guidice.
Trzeba w tym miejscu wspomnieć, że podobny projekt prowadzą też Chiny. Państwo Środka również chce zbudować wielki zderzacz. O ile jednak w FCC miałyby zostać wykorzystane magnesy ze stopu Nb3Tn, to Chińczycy pracują nad bardziej zaawansowanymi, ale mniej sprawdzonymi, nadprzewodnikami bazującymi na żelazie. Ich zaletą jest fakt, że mogą pracować w wyższych temperaturach. Jeśli pracowałyby przy 20 kelwinach, to można osiągnąć olbrzymie oszczędności, mówi Wang Yifang, dyrektor chińskiego Instytutu Fizyki Wysokich Energii. Także i Chińczycy uważają, że najpierw powinien powstać zderzacz elektronów i pozytonów, a następnie należy go rozbudować do zderzacza hadronów.
Jako, że oba urządzenia miałyby bardzo podobne możliwości, powstaje pytanie, czy na świecie są potrzebne dwa takie same wielkie zderzacze.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.