-
Similar Content
-
By KopalniaWiedzy.pl
Badacze z Wielkiego Zderzacza Hadronów, pracujący przy eksperymencie LHCb poinformowali o zaobserwowaniu hipertrytona oraz antyhipertrytona. Ślady ponad 100 tych rzadkich hiperjąder znaleziono podczas analizy danych ze zderzeń protonów prowadzonych w latach 2016–2018. Rejestrowanie takich jąder to wisienka na torcie osiągnięć LHC, gdyż instrument nie został zaprojektowany do ich poszukiwania.
Hiperjądro to takie jądro atomowe, w którym jeden z nukleonów (protonów lub neutronów), został zastąpiony przez hiperon, czyli barion zawierający kwark dziwny, ale nie zawierający ani kwarku b, ani kwarku powabnego. Czas życia hipertrytona i jego antycząstki wynosi około 240 pikosekund (ps) czyli 240 bilionowych części sekundy. Jak krótki to czas, niech świadczy fakt, że w tym czasie światło jest w stanie przebyć około 7 centymetrów.
Zarejestrowany hipertryton jest zbudowany z protonu, neutronu i najlżejszego z hiperonów, hiperona Λ0 (lambda 0), a antyhipertryton zawiera ich antycząstki. Jako, że hipertryton i antyhipertryton zawierają hiperon, ich badaniem zainteresowana jest astrofizyka, gdyż tworzenie się hiperonów z kwarkiem dziwnym jest najbardziej korzystne energetycznie w wewnętrznych warstwach jądra gwiazd. Zatem poznanie sposobu powstawania hiperonów pozwoli na lepsze modelowanie jąder gwiazd.
Równie interesujące dla badaczy kosmosu jest jeden z produktów rozpadu hipertrytona i jego antycząstki. Jest nim hel-3 – i, oczywiście, antyhel-3 – pierwiastek obecny w kosmosie, który może zostać wykorzystany do badania ciemnej materii.
Z jednej strony jądra i antyjądra powstają w wyniku zderzeń materii międzygwiezdnej z promieniowaniem kosmicznym, z drugiej, mogą – przynajmniej teoretycznie – powstawać podczas anihilacji materii i antymaterii. Jeśli chcemy poznać dokładną liczbę jąder i antyjąder, które z kosmosu docierają do Ziemi, potrzebujemy precyzyjnych informacji na temat ich powstawania i anihilacji.
« powrót do artykułu -
By KopalniaWiedzy.pl
Na zakończonej przed dwoma dniami Recontres de Moriond, organizowanej od 1966 roku dorocznej konferencji, podczas której omawiane są najnowsze osiągnięcia fizyki, naukowcy CERN-u poinformowali o zaobserwowaniu jednoczesnego powstania czterech kwarków wysokich (kwarków t). To rzadkie wydarzenie zarejestrowały zespoły pracujący przy eksperymentach ATLAS i CMS, a może ono pozwolić na badanie zjawisk fizycznych wykraczających poza Model Standardowy.
Co niezwykle ważne, obserwacje dokonane zarówno przez ATLAS jak i CMS przekraczają statystyczny poziom ufności 5σ, przy którym można mówić o dokonaniu odkrycia. W przypadku ATLAS poziom ten wyniósł 6.1σ, a w przypadku CMS – 5.5σ.
Kwark wysoki to najbardziej masywna cząstka Modelu Standardowego, a to oznacza, że jest najsilniej powiązana z bozonem Higgsa. Dzięki temu kwarki t to najlepsze cząstki mogące posłużyć do badania fizyki poza Modelem Standardowym.
Najczęściej kwarki t obserwowane są w parach z odpowiadającym im antykwarkiem. Czasem powstają samodzielnie. Według Modelu Standardowego istnieje możliwość jednoczesnego powstania czterech kwarków wysokich czyli dwóch par składających się z kwarka i antykwarka. Jednak prawdopodobieństwo takiego zdarzenia jest 70 tysięcy razy mniejsze niż prawdopodobieństwo powstania pary kwark-antykwark. Zatem uchwycenie czterech kwarków t jest niezwykle trudne.
ATLAS już w roku 2020 i 2021 zarejestrował pewne sygnały sugerujące, że doszło do jednoczesnego powstania czterech kwarków t, a CMS wykrył taki sygnał w 2022 roku, jednak dotychczas poza pewnym wskazówkami, nigdy nie zdobyto pewności. Nie zarejestrowano takiego wydarzenia.
Nie dość, że to rzadkie wydarzenie, jest ono trudne do zarejestrowania. Fizycy, rozglądając się za konkretnymi cząstkami, szukają ich sygnatur, czyli produktów rozpadu. Kwark t rozpada się na bozon W i kwark niski (kwark b), a bozon W rozpada się następnie albo na naładowany lepton i neutrino, albo na parę kwark-antykwark. A to oznacza, że sygnatura wydarzenia, w ramach którego jednocześnie powstały cztery kwarki t może zawierać od 0 do 4 naładowanych leptonów i do 12 dżetów powstających w wyniku hadronizacji kwarków. Znalezienie takiej sygnatury jest więc trudne.
Na potrzeby badań naukowcy z ATLAS i CMS wykorzystali nowatorskie techniki maszynowego uczenia, dzięki którym algorytm wyłowił z olbrzymiej ilości danych te informacje, które mogły być sygnaturami powstania czterech kwarków t. Skoro się to udało, naukowcy mają nadzieję, że podczas obecnie trwającej kampanii badawczej – Run 3 – zarejestrowanych zostanie więcej tego typu zdarzeń. Run 3 potrwa, z przerwami, do końca 2025 roku. W grudniu 2025 Wielki Zderzacz Hadronów zostanie zamknięty, a przerwa potrwa aż do lutego 2029.
« powrót do artykułu -
By KopalniaWiedzy.pl
Fizycy potrzebują coraz potężniejszych narzędzi, by prowadzić swoje badania. Dlatego przed 2 laty Rada CERN przyjęła plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Zakłada on m.in. wybudowanie 100 kilometrowego akceleratora Future Circular Collider (FCC). Fizycy z CERN – Patrick Janot i Alain Blondel – argumentują, że w związku z olbrzymim zapotrzebowaniem akceleratorów na prąd, pod uwagę należy brać również ślad węglowy tych urządzeń.
Na świecie rozważanych jest kilka projektów budowy potężnych akceleratorów, jednak prawdopodobnie żaden kraj nie porwie się samodzielnie na realizację takiego przedsięwzięcia. Potrzebna jest współpraca międzynarodowa i przekonanie partnerów, że to właśnie ten a nie inny projekt wart jest realizacji.
Międzynarodowa społeczność fizyków zastanawia się obecnie nad budową trzech akceleratorów liniowych – International Linear Collider (ILC) w Japonii, Cool Copper Collider (C3) w USA oraz Compact Linear Collider w CERN – i dwóch kołowych – FCC i China Electron Positron Collider (CEPC) w Chinach. Naukowcy podają argumenty za konkretnymi rozwiązaniami, a Janot i Blondel postulują, by "w przyszłych projektach z dziedziny fizyki wysokich energii uwzględniać nie tylko koszt i wydajność akceleratora, ale również jego ślad węglowy na każdy uzyskany wynik naukowy", stwierdzają naukowcy.
Uczeni przeprowadzili analizę postulowanych akceleratorów i stwierdzili, że najbardziej „zielonym” z nich byłby FCC. Uzyskanie w nim jednego bozonu Higgsa wymagałoby zużycia 3 MWh. Drugim najlepszym byłby CEPC z wynikiem 4,1 MWh/bozon, natomiast najgorzej wypadł C3, który do wytworzenia jednego bozonu Higgsa zużyłby aż 18 MWh. Na tym jednak analiza się nie skończyła. Naukowcy przyjrzeli się też, jak dany kraj, w którym miałby znaleźć się akcelerator, uzyskuje energię. W tej konkurencji również wygrał FCC, w którym uzyskanie pojedynczego bozonu Higgsa wiązałoby się z wyemitowaniem 0,17 tony CO2. Z kolei ILC wyemituje 9,4 tony CO2 na każdy bozon. Niska emisja z FCC wiąże się z faktem, że we Francji niemal 80% energii elektrycznej pozyskiwane jest z elektrowni atomowych.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.