Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Microsoft pokazał Windows Azure
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Astronomowie zobrazowali największą znaną chmurę energetycznych cząstek otaczającą gromadę galaktyk. Chmura ma średnicę niemal 20 milionów lat świetlnych, a jej istnienie każe zadać sobie pytanie o mechanizmy, które stoją za nadawanie energii cząstkom. Obowiązujące teorie mówią, że cząstki są napędzane przez pobliskie galaktyki. Tymczasem badania nad niezwykłą chmurą sugerują, że cały region zostaje naenergetyzowany przez gigantyczne fale uderzeniowe i turbulencje gazu otaczającego galaktyki.
Po raz pierwszy odkryta w 2011 roku gromada PLCK G287.0+32.9 znajduje się w odległości 5 miliardów lat świetlnych od Ziemi. Wcześniej zauważono tam dwa jasne obszary utworzone przez fale uderzeniowe, które podświetliły krawędzie gromady. Wówczas jednak nie zauważono słabej emisji w paśmie radiowym, która wypełnia przestrzeń pomiędzy rozbłyskami. Nowe obrazy uzyskane za pomocą radioteleskopów pokazały, że cała gromada otoczona jest chmurą cząstek.
Spodziewaliśmy się, że zobaczymy dwa reliktowe jasne miejsca na krawędziach gromady. Zgadzało by się to z poprzednimi obserwacjami. Tymczasem okazał się, że cała gromada otoczona jest emisją w paśmie radiowym. Nigdy wcześniej nie obserwowano tak wielkiej chmury wysokoenergetycznych cząstek, mówi doktor Kamlesh Rajpurohit z Center for Astrophysics Harvard & Smithsonian. Dotychczasowy rekordzista, Abell 2255, ma średnicę 16,3 miliona lat świetlnych.
Wewnątrz chmury cząstek zidentyfikowano halo radiowe o średnicy 11,4 miliona lat świetlnych. To pierwsze tak wielkie halo w paśmie 2,4 GHz. Badania dostarczyły silnych dowodów na istnienie elektronów pochodzących z promieniowania kosmicznego oraz pól magnetycznych rozciągających się aż na krawędzie gromady. Nie jest jednak jasne, jak elektrony są przyspieszane na tak dużych przestrzeniach.
Bardzo duże halo radiowe obserwuje się zwykle w niższych częstotliwościach, gdyż elektrony generujące teki sygnał tracą energię, są stare i ochłodziły się z czasem. Tutaj zaś widzimy gigantyczne halo emisji radiowej wypełniające całą gromadę. To sugeruje, że coś przyspiesza lub ponownie przyspiesza elektrony, ale nie jest to nic, o czym wiemy, że stoi za takim procesem. Sądzimy, że odpowiedzialne mogą być gigantyczne fale uderzeniowe lub turbulencje, ale potrzebujemy więcej modeli teoretycznych, by znaleźć odpowiedź, dodaje Rajpurohit.
Źródło: Radial Profiles of Radio Halos in Massive Galaxy Clusters: Diffuse Giants Over 2 Mpc, https://ui.adsabs.harvard.edu/abs/2025arXiv250505415R/abstract
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dyrektor wykonawczy IBM-a Arvind Krishna poinformował, że jego firma przestanie rekrutować ludzi na stanowiska, na których w najbliższych latach mogą być oni zastąpieni przez sztuczną inteligencję. W wywiadzie dla Bloomberga menedżer stwierdził, że rekrutacja na stanowiska biurowe, na przykład w dziale HR, może zostać znacznie spowolniona lub całkowicie wstrzymana. Obecnie na tego typu stanowiskach – gdzie nie ma kontaktu z klientem – IBM zatrudnia 26 000 osób.
Zdaniem Krishny, w ciągu najbliższych 5 lat sztuczna inteligencja może zastąpić 30% z nich. To oznacza, że w samym tylko IBM-ie maszyny zastąpią 7800 osób. Stąd też pomysł na spowolnienie lub wstrzymanie rekrutacji, dzięki czemu uniknie się zwalniania ludzi.
Krishna mówi, że takie zadania, jak pisanie listów referencyjnych czy przesuwanie pracowników pomiędzy poszczególnymi wydziałami, prawdopodobnie zostaną całkowicie zautomatyzowane. Inne zaś, takie jak analizy produktywności czy struktury zatrudnienia, ludzie będą wykonywali jeszcze przez kolejną dekadę.
Błękitny Gigant zatrudnia obecnie około 260 000 osób i wciąż zwiększa zatrudnienie. Potrzebuje pracowników przede wszystkim do rozwoju oprogramowania oraz osób pracujących z klientem. Na początku bieżącego roku firma ogłosiła, że planuje zwolnienia, które w sumie obejmą 5000 osób, ale jednocześnie w I kwartale zatrudniła 7000 osób.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Microsoft zatrudnił byłego projektanta układów scalonych Apple'a, , który wcześniej pracował też w firmach Arm i Intel, trafił do grupy kierowanej przez Raniego Borkara, zajmującej się rozwojem chmury Azure. Zatrudnienie Filippo wskazuje, że Microsoft chce przyspieszyć prace nad własnymi układami scalonymi dla serwerów tworzących oferowaną przez firmę chmurę. Koncern idzie zatem w ślady swoich największych rywali – Google'a i Amazona.
Obecnie procesory do serwerów dla Azure są dostarczane przez Intela i AMD. Zatrudnienie Filippo już odbiło się na akcjach tych firm. Papiery Intela straciły 2% wartości, a AMD potaniały o 1,1%.
Filippo rozpoczął pracę w Apple'u w 2019 roku. Wcześniej przez 10 lat był głównym projektantem układów w firmie ARM. A jeszcze wcześniej przez 5 lat pracował dla Intela. To niezwykle doświadczony inżynier. Właśnie jemu przypisuje się wzmocnienie pozycji układów ARM na rynku telefonów i innych urządzeń.
Od niemal 2 lat wiadomo, że Microsoft pracuje nad własnymi procesorami dla serwerów i, być może, urządzeń Surface.
Giganci IT coraz częściej starają się projektować własne układy scalone dla swoich urządzeń, a związane z pandemią problemy z podzespołami tylko przyspieszyły ten trend.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Prace międzynarodowej grupy badawczej, na czele której stali specjaliści ze Skołkowskiego Instytutu Nauki i Technologii (Skoltech) w Moskwie oraz IBM-a zaowocowały powstaniem energooszczędnego superszybkiego przełącznika optycznego. Urządzenie nie wymaga chłodzenia, a jednocześnie jest ponad 100-krotnie szybsze od najszybszych współczesnych tranzystorów.
Tym, co czyni to urządzenie tak bardzo energooszczędnym jest fakt, że do przełączenia stanu potrzebuje zaledwie kilku fotonów, mówi główny autor badań Anton Zasiedatieliew. W laboratorium udało się nam go przełączać za pomocą pojedynczego fotonu. I to w temperaturze pokojowej. Jednak minie sporo czasu, zanim taka technologia będzie mogła trafić do procesorów optycznych, dodaje profesor Pawlos Lagudakis.
Możliwość przełączania za pomocą pojedynczego fotonu oznacza, że układ jest niezwykle energooszczędny i zostało niewiele miejsca na jego dalsze udoskonalenie. Oczywiście musimy przy tym pamiętać, że obecnie działa to jedynie w wyspecjalizowanym laboratorium. Jednak tak właśnie zaczyna się wielu historia technologii, które w końcu trafiają do codziennego użytku. Większość współczesnych tranzystorów elektrycznych potrzebuje dziesiątki razy więcej energii, by się przełączyć, a te, którym wystarczy pojedynczy elektron, działają znacznie wolniej niż zademonstrowany właśnie przełącznik optyczny.
Jednak szybkość i energooszczędność to nie jedyne zalety nowej technologii. Równie ważny jest fakt, że przełącznik działa w temperaturze pokojowej i nie wymaga chłodzenia. Tymczasem systemy chłodzenia potrzebne współczesnym komputerom nie tylko wpływają na koszty samego sprzętu, ale też znacząco zwiększają zużycie energii koniecznej do ich zasilania.
Urządzenie składa się z dwóch laserów. Bardzo słaby promień lasera kontrolnego jest używany do przełączania stanu drugiego jaśniejszego z laserów. Do przełączenia wystarczy kilka fotonów, stąd wynika wysoka efektywność całości. Przełączanie odbywa się wewnątrz mikrownęki. To 35-nanometrowej grubości organiczny polimer półprzewodzący zamknięty pomiędzy dwiema nieorganicznymi warstwami o wysokim współczynniku odbicia. Mikrownęka zbudowana jest w taki sposób, by jak najdłużej więzić nadchodzące światło, prowadząc w ten sposób do jego sprzężenia z materiałem wnęki.
Oddziaływanie światła z materią to podstawa działania nowego urządzenia. Gdy fotony sprzęgają się z parami dziura-elektron – tworzącymi kwazicząstkę o nazwie ekscyton – pojawiają się kwazicząstki ekscyton-polaryton. Gdy silniejszy z laserów oświetla przełącznik powstają tysiące identycznych krótko żyjących kwazicząstek tworzących kondensat Bosego-Einsteina, w którym kodowany jest stan urządzenia „0” lub „1”.
Najpierw za pomocą silniejszego lasera we wnęce tworzone są kwazicząstki o energiach większych niż energia podstawowa. Przełącznik znajduje się w stanie „0” Do przełączenia potrzebny jest laser słabszy, za pomocą którego tworzona jest grupa kwazicząstek o energii podstawowej. Ich pojawienie się wywołuje lawinowy proces przełączania się pozostałych kwazicząstek do stanu podstawowego. W ten sposób uzyskujemy stan „1”. Czas przełączania liczony jest w femtosekundach, dzięki czemu przełącznik jest ponad 100-krotnie szybszy od współczesnych tranzystorów.
Naukowcy użyli kilku sztuczek, by utrzymać zapotrzebowanie na energię na jak najniższym poziomie przy jednoczesnym zmaksymalizowaniu pracy urządzenia. W efektywnym przełączaniu pomagają wibracje molekuł półprzewodzącego polimeru. Konieczne było precyzyjne dopasowanie częstotliwości pracy laserów, stanu kondensatu i energii wibracji molekuł polimeru.
Przed nami jeszcze sporo pracy. Musimy zmniejszyć całkowite zapotrzebowania urządzenia na energię. Obecnie jest ono zdominowane przez silniejszy z laserów, który utrzymuje przełącznik w gotowości. Prawdopodobnie trzeba będzie wykorzystać tutaj perowskitowego superkryształu, z którym wcześniej eksperymentowaliśmy. Są one doskonałymi kandydatami to zbudowania naszego przełącznika, gdyż zapewniają bardzo silną interakcję światła z materią, stwierdzają autorzy badań.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W laboratorium IBM-a w Zurichu zaprezentowano rekordowo pojemny napęd taśmowy. Pojedynczy kartridż pozwala na przechowanie aż... 580 terabajtów danych. To aż 29-krotnie więcej niż oferowany obecnie przez IBM-a kartridż o pojemności 20 TB. Błękitny Gigant jest tutaj rynkowym liderem. Najnowszy standard przemysłowy LTO-Ultrium (Linear Tape-Open, version 9) mówi o kartridżach o pojemności 18 TB.
Mark Lantz, menedżer CloudFPGA odpowiedzialny w IBM Zurich za technologie taśmowe mówi, że w ostatnich latach taśmy magnetyczne przeżywają swój renesans. Ma to związek z jednej strony z wykładniczym wzrostem ilości wytwarzanych danych, które trzeba gdzieś archiwizować oraz z jednoczesnym spowolnieniem przyrostu gęstości zapisu na dyskach twardych. Jak zauważa Lantz, w ciągu ostatnich kilkunastu lat składane roczne tempo wzrostu gęstości zapisu na HDD spadło do poniżej 8%. Jednocześnie świat produkuje coraz więcej danych. Roczny wzrost wytwarzania informacji wynosi aż 61%. Eksperci mówią, że do roku 2025 wytworzymy 175 zetabajtów danych.
Jako, że gęstość zapisu HDD niemal stanęła w miejscu, dramatycznie wzrosła cena każdego gigabajta dysnku twardego. Już w tej chwili 1 bit HDD jest czterokrotnie droższy niż 1 bit taśmy magnetycznej. Ta wielka nierównowaga pojawiła się w bardzo niekorzystnym momencie, gdy ilość wytwarzanych danych zaczęła gwałtownie rosnąć. Centra bazodanowe mają coraz większy problem. Na szczęście zdecydowana większość danych to informacje, które są rzadko potrzebne. To zaś oznacza, że w ich przypadku szybkość odczytu danych nie jest rzeczą zbyt istotną. Mogą być więc przechowywane na taśmach magnetycznych.
Taśmy mają wiele zalet w porównaniu z dyskami twardymi. Są bardziej odporne na ataki cyberprzestępców, do działania potrzebują mniej energii, są trwałe i znacznie tańsze w przeliczeniu na gigabajt. Zalety te spowodowały, że – jak ocenia IBM – już 345 000 eksabajtów danych przechowywanych jest właśnie na taśmach.
Najnowszy napęd taśmowy to wynik 15-letniej współpracy IBM-a i Fujifilm. Od roku 2006 firmy pobiły sześć kolejnych rekordów dotyczących napędów taśmowych. Ostatnie osiągnięcie było możliwe dzięki udoskonaleniu samej taśmy, głowicy odczytującej oraz serwomechanizmu odpowiadającego za precyzję pozycjonowania głowicy. Firma Fujifilm odeszła tutaj od przemysłowego standardu jakim jest ferryt baru i pokryła taśmę mniejszymi cząstkami ferrytu strontu. Inżynierowie IBM-a, mając do dyspozycji nową taśmę, opracowali nową technologię głowicy odczytująco-zapisującej, która współpracuje z tak gładką taśmą.
O tym jak wielkie postępy zostały dokonane w ciągu kilkunastoletniej współpracy Fujifilm i IBM-a najlepiej świadczą liczby. W roku 2006 obie firmy zaprezentowały taśmę pozwalającą na zapisanie 6,67 miliarda bitów na calu kwadratowym. Najnowsza taśma pozwala na zapis 317 miliardów bitów na cal. Kartridż z roku 2006 miał pojemność 8 TB, obecnie jest to 580 TB. Szerokość ścieżki zapisu wynosiła przed 14 laty 1,5 mikrometra (1500 nanometrów), teraz to zaledwie 56,2 nanometra. Liniowa gęstość zapisu w roku 2006 sięgała 400 000 bitów na cal taśmy. Na najnowszej taśmie na każdym calu można zapisać 702 000 bitów. Zmniejszyła się też – z 6,1 mikrometra do 4,3 mikrometra – grubość taśmy, wzrosła za to jej długość. W pojedynczym kartridżu mieści się obecnie 1255 metrów taśmy, a przed 14 laty było to 890 metrów.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.