Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Czy "galaktyczny Internet" istnieje?
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Międzynarodowy zespół astronomów poinformował o odkryciu jednych z najgorętszych gwiazd we wszechświecie. Temperatura powierzchni każdej z 8 gwiazd wynosi ponad 100 000 stopni Celsjusza. Są więc one znacznie gorętsze niż Słońce.
Autorzy badań przeanalizowali dane pochodzące z Southern African Large Telescope (SALT). Ten największy na Półkuli Południowej teleskop optyczny posiada heksagonalne zwierciadło o wymiarach 10x11 metrów. Naukowcy przeprowadzili przegląd danych pod kątem bogatych w hel karłów i odkryli niezwykle gorące białe karły oraz gwiazdy, które się wkrótce nimi staną. Temperatura powierzchni najbardziej gorącego z nich wynosi aż 180 000 stopni Celsjusza. Dla porównania, temperatura powierzchni Słońca to „zaledwie” 5500 stopni Celsjusza.
Jedna ze zidentyfikowanych gwiazd znajduje się w centrum odkrytej właśnie mgławicy o średnicy 1 roku świetlnego. Dwie inne to gwiazdy zmienne. Wszystkie z gorących gwiazd znajdują sie na zaawansowanych etapach życia i zbliżają do końca etapu białch karłów. Ze względu na niezwykle wysoką temperaturę gwiazdy te są ponadstukrotnie jaśniejsze od Słońca, co jest niezwykłą cechą jak na białe karły.
Białe karły to niewielkie gwiazdy, rozmiarów Ziemi, ale o olbrzymiej masie, porównywalnej z masą Słońca. To najbardziej gęste z gwiazd wciaż zawierających normalną materię. Z kolei gwiazdy, które mają stać się białymi karłami są od nich kilkukrotnie większe, szybko się kurczą i w ciągu kilku tysięcy lat zmienią się w białe karły.
Gwiazdy o temperaturze powierzchni 100 000 stopni Celsjusza lub więcej są niezwykle rzadkie. Byliśmy bardzo zdziwieni, gdyż znaleźliśmy ich aż tak wiele. Nasze odkrycie pomoże w zrozumieniu ostatnich etapów ewolucji gwiazd, mówi Simon Jeffery z Armagh Observatory and Planetarium, który stał na czele grupy badawczej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Od czasu odkrycia oscylacji neutrin wiemy, że neutrina mają niezerową masę. Dotychczas nie udało się jej precyzyjnie określić. Tymczasem neutrina to najbardziej rozpowszechnione, a jednocześnie najtrudniejsze do zbadania, ze wszystkich znanych nam cząstek. Teraz międzynarodowy zespół naukowcy pracujący przy eksperymencie KATRIN przełamał ważną barierę. Po raz pierwszy wykazano, że masa neutrino jest mniejsza od 1 elektronowolta (eV).
KATRIN (Karlsruhe Tritium Neutrino Experiment) znajduje się w Karlsruhe Institute for Technology w Niemczech. Uruchomiony w 2018 roku projekt to owoc współpracy Czech, Niemiec, Rosji, USA i Wielkiej Brytanii. Pracuje przy nim około 130 naukowców. Na łamach Nature ogłoszono właśnie, że podczas drugiej kampanii badawczej masę neutrina określono na 0,7 eV, a poziom ufności pomiaru wynosi 90%. W połączeniu z danymi z pierwszej kampanii badawczej KATRIN pracujący przy eksperymencie naukowcy ogłosili, że górny limit masy neutrina wynosi 0,8 eV. Tym samym wiemy, że neutrino jest o co najmniej 500 000 razy lżejsze od elektronu.
Głównym elementem eksperymentu KATRIN jest największy na świecie spektrometr. Urządzenie ma 23 metry długości i 10 metrów szerokości. Wewnątrz panuje próżnia. Najpierw przeprowadzany jest rozpad beta trytu, w wyniku którego powstaje elektron i antyneutrino. Następnie elektron, bez zmiany jego energii, jest kierowany do spektrometru. Pomiary energii samego neutrina nie są możliwe, ale możemy precyzyjnie mierzyć energię elektronu. Jako, że możemy zmierzyć łączną energię elektronu i antyneutrina oraz energię samego elektronu, jesteśmy w stanie poznać energię czyli masę, antyneutrina.
Gdy przed 5 laty opisywaliśmy zakończenie prac nad KATRIN i niezwykłą podróż komory próżniowej do miejsca montażu, cytowaliśmy ekspertów, którzy twierdzili, że KATRIN może być ostatnią nadzieją współczesnej fizyki,by bez nowej rewolucyjnej technologii zmierzyć masę neutrina. To koniec drogi, mówił wówczas Peter Doe, fizyk w University of Washington.
Obecnie fizyk Björn Lehnert z Lawrence Berkeley National Laboratory, który pracuje przy KATRIN, mówi, że przez najbliższe 3 lata naukowcy będą prowadzili kolejne eksperymenty, by zebrać więcej danych, jednak ze względu na sposób pracy KATRIN nie spodziewa się zmniejszenia poziomu niepewności. Czynnikiem ograniczającym KATRIN jest chemia, ponieważ używamy molekuł trytu (T2). Molekuły to złożone obiekty, mają więcej stopni swobody niż atomy, więc każdy ich rozpad jest nieco inny i inny jest ostateczny rozkład elektronów. W pewnym momencie nie będziemy już mogli udoskonalać pomiaru masy neutrina, gdyż sam początkowy rozpad jest obarczony pewnym marginesem niepewności. Jedynym sposobem na udoskonalenie pomiarów stanie się wówczas wykorzystanie trytu atomowego. Będzie z niego korzystał planowany dopiero eksperyment Project 8. Jest on bardzo obiecujący, ale miną lata zanim zostanie uruchomiony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcom z University of Massachusetts w Amherst udało się rozwiązać jedną z podstawowych zagadek astronomii, na którą odpowiedzi szukano od lat. Dzięki ich pracy, opublikowanej na łamach Nature, wiemy, dlaczego niektóre z najstarszych i najbardziej masywnych galaktyk bardzo szybko przestały być aktywne i nie pojawiają się w nich już nowe gwiazdy.
Najbardziej masywne galaktyki we wszechświecie powstały niezwykle szybko, krótko po Wielkim Wybuchu sprzed niemal 14 miliardów lat. Jednak z jakiegoś powodu przestały działać. Już nie powstają w nich nowe gwiazdy, mówi profesor Kate Whitaker. To właśnie formowanie się nowych gwiazd jest jednym z procesów umożliwiających wzrost galaktyk. Od dawna wiemy, że wczesne masywne galaktyki stały się nieaktywne, ale dotychczas nie wiedzieliśmy dlaczego.
Zespół Whitaker połączył dane z teleskopu Hubble'a i ALMA. Pierwszy z nich obserwuje wszechświat w zakresie od ultrafioletu do bliskiej podczerwieni – w tym część zakresu widzialnego dla ludzkiego oka – drugi zaś pracuje w spektrum pomiędzy 0,32 do 3,6 mm, którego nasze oczy nie widzą.
Naukowcy poszukiwali za pomocą ALMA niewielkich ilości zimnego gazu, który stanowi główne źródło energii dla procesu tworzenia się nowych gwiazd. We wczesnym wszechświecie, a więc i w tych galaktykach, było bardzo dużo tego gazu. Skoro galaktyki te przestały szybko tworzyć nowe gwiazdy, to powinno im sporo takiego gazu pozostać", spekulowali uczeni. Jednak okazało się, że w badanych galaktykach pozostały jedynie śladowej ilości zimnego gazu znajdujące się w okolicach ich centrów. To zaś oznacza, że w ciągu kilku pierwszych miliardów lat galaktyki te albo zużyły cały gaz, albo go wyrzuciły. Niewykluczone też, że istnieje jakiś mechanizm, który blokuje uzupełnianie gazu przez galaktyki.
W następnym etapie badań naukowcy chcą sprawdzić, jak bardzo zagęszczony jest ten pozostały w starych galaktykach gaz i dlaczego znajduje się wyłącznie w pobliżu ich centrum.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.