Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Badania DNA mieszkańców Pompejów pokazały, jak błędne założenia wobec nich poczyniono
dodany przez
KopalniaWiedzy.pl, w Humanistyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Jeszcze do niedawna naukowcy potrafili określi miejsce pochodzenia jedynie 6% meteorytów znalezionych na Ziemi. Teraz naukowcy z francuskiego Narodowego Centrum Badań Naukowych (CNRS), Europejskiego Obserwatorium Południowego i czeskiego Uniwersytetu Karola wykazali, że 70% wszystkich znalezionych na naszej planecie meteorytów pochodzi z trzech młodych rodzin asteroid.
Rodziny te to wyniki trzech zderzeń, do których doszło w głównym pasie asteroid 5,8, 7,5 oraz 40 milionów lat temu. Badacze określili też źródło innych meteorytów, dzięki czemu możemy teraz zidentyfikować miejsce pochodzenia ponad 90% skał, które z kosmosu spadły na Ziemię. Wyniki badań zostały opublikowane w trzech artykułach. Jeden ukazał się łamach Astronomy and Astrophysics, a dwa kolejne na łamach Nature.
Wspomniane rodziny asteroid to – od najmłodszej do najstarszej – Karin, Koronis i Massalia. Wyróżnia się Massalia, która jest źródłem 37% meteorytów. Dotychczas na Ziemi odnaleziono podczas 700 000 okruchów z kosmosu. Jedynie 6% z nich zidentyfikowano jako achondryty pochodzące z Księżyca, Marsa lub Westy, jednego z największych asteroid głównego pasa. Źródło pozostałych 94%, z których większość do chondryty, pozostawało nieznane.
Jak to jednak możliwe, że źródłem większości znalezionych meteorytów są młode rodziny asteroid? Autorzy badań wyjaśniają, że rodziny takie charakteryzują się dużą liczbą niewielkich fragmentów powstałych w wyniku niedawnych kolizji. Ta obfitość zwiększa prawdopodobieństwo kolejnych zderzeń, co w połączeniu z duża mobilnością tych szczątków, powoduje, że mogą zostać wyrzucone z głównego pasa asteroid, a część z nich poleci w kierunku Ziemi. Starsze rodziny asteroid nie są tak liczne. Przez wiele milionów lat mniejsze fragmenty, ale na tyle duże, że mogłyby spaść na Ziemię, zniknęły w wyniku kolejnych zderzeń i ucieczki z pasa asteroid.
Określenie pochodzenia większości meteorytów było możliwe dzięki teleskopowym badaniom składu większości rodzin asteroid w głównym pasie oraz zaawansowanymi symulacjami komputerowymi, podczas których badano dynamikę tych rodzin.
Autorzy badań określili też pochodzenie wielkich asteroid, takich jak Ryugu czy Bennu. Okazało się, że pochodzą one od tego samego przodka co rodzina asteroid Polana.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Członkowie Ekspedycji 399 „Building Blocks of Life, Atlantis Massif” wydobyli rekordowo długi, 1286-metrowy rdzeń z płaszcza Ziemi. Odwiert został wykonany za pomocą statku JOIDES Resolution na Grzbiecie Śródatlantyckim. Na tym najdłuższym grzbiecie śródoceaniczym na Ziemi skały z płaszcza znajdują się blisko powierzchni. Mimo więc trudności w wykonywaniu odwiertów pod powierzchnią oceanu, pierwsze próby podjęto już w latach 60. XX wieku.
Wykonanie tak głębokiego odwiertu w płaszczu i pozyskanie materiału to niezwykle ważny krok w rozwoju nauk o Ziemi. Już wyniki pierwszych badań pokazały, że wysiłek się opłacił. Uzyskane wyniki różnią się od tego, czego się spodziewaliśmy. W skałach jest znacznie mniej piroksenów, za to występuje w nich bardzo duże stężenie magnezu. Oba te zjawiska to wynik znacznie bardziej intensywnych niż przewidywano procesów topnienia, przyznaje główny autor badań, profesor Johan Lissenbarg z Uniwersytetu w Cardiff. Dalsze badania tych zjawisk mogą mieć olbrzymi wpływ na nasze rozumienie tworzenia się magmy oraz jej roli w wulkanizmie. Naukowcy znaleźli też kanały, którymi magma przemieszcza się ku powierzchni planety.
Naukowcy mają też wstępne wyniki badań nad interakcją pomiędzy oliwinami a wodą morską. W wyniku tej interakcji dochodzi do serii reakcji chemicznych, w wyniku których powstaje wodór oraz inne molekuły potrzebne w procesach życiowych. Być może więc lepiej zrozumiemy początki życia na naszej planecie.
Analiza skał z płaszcza dostarczy informacji na temat warunków chemicznych i fizycznych, jakie panowały na Ziemi w odległej przeszłości. Warunków, w jakich powstawało i rozwijało się życie.
Wydobyty rdzeń będzie przedmiotem badań przez kolejne dziesięciolecia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
„Ołtarz” Stonehenge nie pochodzi z tego samego źródła, co inne kamienie, uważają naukowcy z Aberystwyth University, wywracając tym samym do góry nogami teorię dotyczącą obszaru, z którego pochodzi materiał na słynny zabytek. „Czas poszerzyć nasze horyzonty geograficzne i stratygraficzne?”, pytają w artykule opublikowanym na łamach Journal of Archaeological Science.
Głaz 80, zwany „Ołtarzem” to największy ze znajdujących się w Stonehenge tzw. błękitnych kamieni. Na ich istnienie zwrócili uwagę już pierwsi archeolodzy pracujący przy Stonehenge. Kamienie te, tworzące wewnętrzny krąg, to skały magmowe. Są one mniejsze niż głazy tworzące krąg zewnętrzny, a ich potoczna nazwa związana jest z faktem, że gdy są mokre, mają niebieskawy kolor.
Głazy tworzące krąg zewnętrzny Stonehenge to piaskowiec, sarsen, pochodzący z lokalnego źródła oddalonego od budowli o ponad 20 kilometrów. Natomiast błękitne kamienie przywieziono z zachodniej Walii, z miejsca oddalonego o 225 kilometrów od Stonehenge. Większość z nich pochodzi z okolic Mynydd Preseli. Obecnie uważa się, że „Ołtarz” to głaz z pobliskiej formacji Old Red Sandstone (ORS). Jednak autorzy najnowszych badań twierdzą, że to nieprawda.
Jedną z najważniejszych cech Ołtarza jest niezwykle wysoka zawartość baru (wszystkie, z wyjątkiem jednaj, ze 106 pobranych próbek wskazują na zawartość baru powyżej 1025 części na milion). Tymczasem spośród 58 próbek ORS tylko 4 wykazują zawartość baru powyżej 1000 części na milion, co przypomina dolną granicę z Ołtarza. Jednak, biorąc pod uwagę odmienność mineralogiczną oraz dane pochodzące z naszych badań przeprowadzonych za pomocą spektroskopii ramanowskiej i SEM-EDS (skaningowy mikroskop elektronowy ze spektroskopią dyspersji promieniowania rentgenowskiego), należy wykluczyć, by te próbki były źródłem Ołtarza. Wydaje się bardzo prawdopodobne, że Ołtarz nie pochodzi z ORS. Czas poszerzyć nasze horyzonty, zarówno pod kątem geograficznym jak i stratygraficznym oraz wziąć pod uwagę młodsze konsynentalne piaskowce, czytamy w artykule.
Naukowcy zwracają uwagę, że wczesne uznanie Ołtarza za błękitny kamień wpłynęło na myślenie o nim i poszukiwanie jego źródła. Proponują, by przestać klasyfikować Ołtarz w ten sposób, uznać, że nie pochodzi on z okolic Mynydd Preseli i gdzie indziej szukać jego źródła.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niedźwiedzie polarne są zagrożone przez zmniejszający się zasięg lodu morskiego w Arktyce, na którym spędzają większość życia. Naukowcy chcieliby badać i nadzorować ten gatunek, by go ocalić. Uczeni z University of Idaho znaleźli unikatową nieinwazyjną metodę identyfikowania niedźwiedzi polarnych. Zamiast stresować je śledząc za pomocą śmigłowców, strzelać środkami usypiającymi i zakładać urządzenia namierzające, amerykańscy uczeni pozyskują DNA niedźwiedzi z... odciśniętych na śniegu śladów łap.
Na łamach Frontiers in Conservation Science profesor Lisett Waits i badaczka Jennifer Adams z Idaho, we współpracy ze specjalistami z North Slope Borough Department of Wildlife oraz Alaska Department of Fish and Game opisali, w jaki sposób można pozyskać ze śniegu komórki naskórka niedźwiedzi.
Naukowcy najpierw zeskrobywali cienką warstwę śniegu ze świeżych śladów, a następnie w laboratorium zbierali komórki i analizowali ich DNA. W ten sposób zbierali unikatowe informacje o każdym z osobników. We wstępnej fazie badan pobrali 15 próbek. W 2 z nich nie znaleziono DNA niedźwiedzia, w 11 zaś stwierdzono jego obecność. Na razie technika ta znajduje się w fazie eksperymentalnej i wymaga dopracowania, jednak już w tej chwili widać, że jest nieinwazyjnym i efektywnym kosztowo sposobem badania dzikich niedźwiedzi polarnych.
O ile nam wiadomo, to pierwszy przypadek identyfikowania niedźwiedzi polarnych czy jakichkolwiek innych zwierząt na podstawie pozostawionego w środowisku DNA zebranego ze śniegu, cieszy się Adams.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wytrzymałe i lekkie materiały są niezwykle pożądane w przemyśle i życiu codziennym. Mogą one udoskonalić wiele maszyn i przedmiotów, od samochodów przez implanty medyczne po kamizelki kuloodporne. Niestety wytrzymałość i niska masa zwykle nie idą w parze. Poszukujący rozwiązania tego problemu naukowcy z University of Connecticut, Columbia University i Brookhaven National Laboratory wykorzystali DNA i szkło. Dla tej gęstości jest to najbardziej wytrzymały znany materiał, mówi Seok-Woo Lee z UConn.
Żelazo może wytrzymać nacisk do 7 ton na centymetr kwadratowy, jest jednak bardzo gęste i ciężkie. Znamy metale, jak tytan, które są lżejsze i bardziej wytrzymałe. Potrafimy też tworzyć stopy metali o jeszcze mniejszej masie i jeszcze większej wytrzymałości. Ma to bardzo praktyczne zastosowania. Na przykład najlepszym sposobem na zwiększenie zasięgu samochodu elektrycznego nie jest dokładanie akumulatorów, a zmniejszenie masy pojazdu. Problem w tym, że tradycyjne techniki metalurgiczne osiągnęły w ostatnich latach kres swoich możliwości, naukowcy szukają więc innych niż metale wytrzymałych i lekkich materiałów.
Szkło, wbrew temu co sądzimy, jest wytrzymałym materiałem. Kostka szkła o objętości 1 cm3 może wytrzymać nacisk nawet 10 ton. Pod jednym warunkiem – szkło nie może posiadać wad strukturalnych. Zwykle pęka ono właśnie dlatego, że już istnieją w nim niewielkie pęknięcia, zarysowania czy brakuje atomów w jego strukturze. Wytworzenie dużych kawałków szkła pozbawionego wad jest niezwykle trudne. Naukowcy potrafią jednak tworzyć niewielkie takie kawałki. Wiedzą na przykład, że kawałek szkła o grubości mniejszej niż 1 mikrometr jest niemal zawsze bez wad. A jako że szkło jest znacznie mniej gęste niż metale czy ceramika, szklane struktury zbudowane kawałków szkła o nanometrowej wielkości powiny być lekkie i wytrzymałe.
Dlatego też Amerykanie wykorzystali DNA, które posłużyło za szkielet, i pokryli je niezwykle cienką warstwą szkła o grubości kilkuset atomów. Szkło pokryło jedynie nici DNA, pozostawiając sporo pustych przestrzeni. Szkielet z DNA dodatkowo wzmocnił niewielką, pozbawioną wad, szklaną strukturę. A jako że spora jej część to puste przestrzenie, dodatkowo zmniejszono masę całości. W ten sposób uzyskano materiał, który ma 4-krotnie większą wytrzymałość od stali, ale jest 5-krotnie mniej gęsty. To pierwszy tak lekki i tak wytrzymały materiał.
Możliwość projektowania i tworzenia trójwymiarowych nanomateriałów przy użyciu DNA otwiera niezwykłe możliwości przed inżynierią. Jednak potrzeba wielu badań, zanim możliwości te wykorzystamy w konkretnych technologiach, stwierdza Oleg Gang z Columbia University.
Teraz naukowcy prowadzą eksperymenty z zastąpieniem szkła ceramiką opartą na węglikach. Planują przetestować różne struktury DNA i różne materiały, by znaleźć takie o najlepszych właściwościach.
Jestem wielkim fanem Iron Mana. Zawsze zastanawiałem się, jak stworzyć lepszą zbroję dla niego. Musi być one bardzo lekka, by mógł szybciej latać i bardzo wytrzymała, by chroniła go przed atakami wrogów. Nasz nowy materiał jest pięciokrotnie lżejszy i czterokrotnie bardziej wytrzymały od stali. Nasze szklane nanostruktury byłyby lepsze dla Iron Mana niż jakikolwiek inny materiał, stwierdził Lee.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.