Powstało najdoskonalsze zdjęcie atomów. To limit obrazowania?
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Uczeni z Instytutu Nauk Multidyscyplinarnych im. Maxa Plancka – Melina Schuh, Christopher Thomas i Tabea Lilian Marx – są pierwszymi, którzy zobrazowali cały proces owulacji w czasie rzeczywistym. Obrazowanie, wykonane u myszy, pozwala na badanie jajeczkowania w wysokiej rozdzielczości przestrzennej oraz czasowej i przyczyni się do poszerzenia wiedzy w dziedzinie badań nad płodnością.
Większość kobiet przechodzi owulację około 400 razy w życiu. W czasie fazy płodnej dojrzewanie rozpoczyna 15–30 jajeczek. Jednak tylko największe i najlepiej rozwinięte z nich biorą udział w owulacji, gdy są uwalniane do jajowodów.
Owulacja regulowana jest przez złożone interakcje hormonów, a sam ten proces słabo rozumiemy. Jajniki znajdują się głęboko w organizmie kobiety, trudno uzyskać do nich dostęp badawczy. Ponadto owulacja zachodzi w wąskim okienku czasowym, nie sposób przewidzieć, kiedy jajniki uwolnią kolejne jajeczko. Nic więc dziwnego, że dopiero teraz udało się po raz pierwszy zobrazować ten proces.
Możemy wyróżnić w nim trzy fazy. Pęcherzyk Graffa rozszerza się, kurczy i w końcu uwalnia jajeczko, mówi Melina Schuh, dyrektor Wydziału Mejozy w Instytucie Maxa Plancka. Faza pierwsza, rozszerzanie pęcherzyka, jest napędzana przez uwolnienie kwasu hialuronowego. Naukowcy śledzili pod mikroskopem jak w fazie tej zmienia się rozmiar i kształt pęcherzyka. W czasie owulacji do pęcherzyka napływa płyn, co powoduje jego znaczący wzrost, dodaje Christopher Thomas, współautor badań. Kwas hialuronowy jest niezbędny dla owulacji. Gdy naukowcy zablokowali jego wytwarzanie, pęcherzyk rozszerzał się w mniejszym stopniu i do owulacji nie doszło.
Podczas drugiej fazy, kurczenia się pęcherzyka, komórki mięśni gładkich zewnętrznej warstwy pęcherzyka powodują jego kurczenie się. Gdy naukowcy zablokowali komórkom możliwość kurczenia się, pęcherzyk nie zmniejszył swojej objętości i do owulacji nie doszło. Gdy pęcherzyk pęka, co ma miejsce w trzeciej fazie, jajeczko zostaje uwolnione. Najpierw pęcherzyk wybrzusza się na zewnątrz, następnie pęka, uwalniając płyn pęcherzykowy, komórki ziarniste i, na końcu, jajeczko, mówi Marx.
Po owulacji pęcherzyk przekształca się w ciałko żółte, które wytwarza progesteron przygotowujący macicę do implantacji embrionu. Jeśli jajeczko nie zostanie zapłodnione lub zapłodnione nie zagnieździ się w macicy, ciałko żółte zanika w ciągu 14 dni i rozpoczyna się kolejny cykl.
Nasze badania wykazały, że owulacja to solidny proces. Co prawda do jej rozpoczęcia potrzebny jest sygnał z zewnątrz, jednak cała reszta przebiega już niezależnie od pozostałej części jajnika, gdyż wszystkie niezbędne zasoby i informacje są zawarte w samym pęcherzyku. Dzięki naszej metodzie obrazowania my i inne zespoły naukowe będziemy mogli w przyszłości jeszcze dokładniej zbadać ten mechanizm i zyskać nową wiedzę, która przyda się w badaniach nad płodnością u ludzi, cieszy się Schuh.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niewielki wargatek sanitarnik to niezwykła ryba. Żywi się pasożytami skóry innych ryb, które przypływają do „stacji sanitarnych” wargatków na czyszczenie. Wcześniejsze badania wykazały, że wargatki potrafią zapamiętać ponad 100 „klientów”. W 2018 roku uczeni odkryli, że potrafią rozpoznać się w lustrze, co jest jednym z przejawów samoświadomości. Z kolei w ubiegłym roku dowiedzieliśmy się, że wargatki rozpoznają się też na fotografii po tym, jak obejrzały się w lustrze. Teraz japońscy uczeni donoszą, że wargatki potrafią wykorzystać lustro podczas... walki o terytorium.
Wspomniane na wstępie „stacje sanitarne” obsługiwane są przez parę dorosłych i grupę młodych lub grupę samic, którym przewodzi samiec. Jeśli samiec znika, jego rolę przejmuje jedna z samic. Część dorosłych wargatków żyje jednak samotnie i są terytorialne. Bronią swojego terenu przed intruzami. I właśnie ten aspekt ich życia postanowili wykorzystać naukowcy z Japonii. Chcieli sprawdzić, na ile dobrą reprezentację ciała mają wargatki.
Podczas pierwszej fazy eksperymentu naukowcy, których pracami kierował Taiga Kobayashi, pokazywali rybom trzymanym w akwarium zdjęcia innych wargatków. Ryby na zdjęciach były o 10% mniejsze i o 10% większe od osobnika w akwarium. W tym przypadku, bez względu na wielkość ryby, wargatki próbowały atakować intruza.
Następnie przy akwarium ustawiono lustro. Wówczas wargatki zmieniły swoje zachowanie. Atakowały mniejszych intruzów podpływania do lustra, ale gdy ryba na zdjęciu była większa, wargatki kilkukrotnie podpływały do lustra, by dobrze ocenić własne rozmiary i nie atakowały wyraźnie większych przeciwników.
Nasze odkrycie wskazuje, że ryby zmniejszyły swój poziom agresji nie dlatego, że przyzwyczaiły się do prezentowanego im po raz drugi zdjęcia, ale dlatego, że dzięki ustawieniu lustra były w stanie dostrzec 10-procentową różnicę w wielkości, stwierdzają badacze.
Oczywiście musimy pamiętać, że w naturze lustra nie występują. A to oznacza, że wargatki nauczyły się używać narzędzia dostarczonego przez człowieka.
Na zdjęciach, dostarczonych przez Taigę Kobayashiego, możemy zobaczyć wargatki w naturalnym środowisku oraz podczas eksperymentu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
NASA pokazała pierwsze zdjęcia i ujawniła wyniki wstępnej analizy próbek asteroidy Bennu, które trafiły niedawno za sprawą misji OSIRIS-REx. Badania pokazały, że Bennu zawiera bardzo dużo węgla i wody, co sugeruje, że w próbkach mogą znajdować się składniki, dzięki którym na Ziemi istnieje życie. Próbki dostarczone przez OSIRIS-REx to największa ilość fragmentów asteroidy bogatego w węgiel, jaka kiedykolwiek została przywieziona na Ziemię. Pozwolą one nam oraz przyszłym pokoleniom prowadzić prace nad początkiem życia na naszej planecie, stwierdził dyrektor NASA Bill Nelson.
Celem misji OSIRIS-REx było przywiezienie na Ziemię 60 gramów materiału. Misja padła jednak ofiarą własnego sukcesu, próbek pobrano więcej i już w przestrzeni kosmicznej pojawiły się problemy. Przez większą niż przewidywano ilość próbek, proces rozładowywania się opóźnił. W ciągu pierwszych dwóch tygodni naukowcy dokonali szybkiej analizy za pomocą skaningowego mikroskopu elektronowego, badań w podczerwieni, rozpraszania promieni rentgenowskich i analizy chemicznej pierwiastków. Wykorzystali też tomografię komputerową do stworzenia trójwymiarowych modeli komputerowych próbek. Już te wczesne badania pokazały wysoką zawartość węgla i wody.
Bardziej szczegółowe analizy potrwają kolejne dwa lata. Co najmniej 70% próbek Bennu będzie przechowywanych w Johnson Space Center na potrzeby przyszłych badań. Będą one udostępniane też uczonym z zagranicy. Już teraz wiadomo, że ich analizą zainteresowanych jest ponad 200 obcokrajowców.
Asteroida Bennu ma około 4,5 miliarda lat. Jedna z hipotez dotyczących początków życia na Ziemi mówi, że to właśnie tego typu i podobne obiekty przyniosły na naszą planetę składniki, potrzebne do jego powstania. Dlatego naukowcy mają nadzieję, że badając próbki pobrane bezpośrednio z asteroid pozwolą nam zajrzeć w przeszłość i dowiedzieć się, w jaki sposób powstało życie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Webba wykonał pierwsze zdjęcia planety pozasłonecznej. Na fotografiach widzimy gazowego olbrzyma HIP65426b. To planeta o masie od 5 do 10 razy większej od Jowisza, która powstała zaledwie 15–20 milionów lat temu. Znajduje się w odległości 385 lat świetlnych od Ziemi.
Na czele zespołu badawczego, który wykonał zdjęcia, stał profesor Sasha Hinkley z University of Exeter. To bardzo ważny moment nie tylko dla Webba, ale dla astronomii. Dzięki Webbowi, obserwując za jego pomocą skład chemiczny planet, możemy bowiem opisywać zjawiska fizyczne na nich zachodzące, stwierdza uczony. Planeta została odkryta w 2017 roku za pomocą urządzenia SPHERE na Very Large Telescope. Dysponowaliśmy jedynie jej obrazami wykonanymi w krótkich falach podczerwieni, które pokazywały dość wąski zakres emisji z planety.
Większość planet pozasłonecznych wykrywamy metodami pośrednimi, np. rejestrując regularne spadki jasności ich gwiazd, świadczące o tym, że na tle gwiazdy przeszła planeta. Wykonanie bezpośredniego obrazowania planety jest znacznie trudniejszym wyzwaniem, gdyż gwiazdy są wielokrotnie jaśniejsze od planet, więc ich blask przesłania nam krążące wokół nich planety. W przypadku HIP65426b różnica jasności między planetą a jej gwiazdą wynosiła od kilku do ponad 10 tysięcy.
Nowe zdjęcia wykonano w kilku różnych zakresach podczerwieni: 3,00 mikrometrów (to zdjęcie wykonało urządzenie NIRCam), 4,44 mm (NIRCam), 11,4o mm (MIRI) oraz 15,50 (MIRI). Fotografii takich nie można wykonać z Ziemi, gdyż przeszkadza światło podczerwone emitowane przez naszą atmosferę.
Bezpośrednie obrazowanie planety było możliwe dzięki temu, że znajduje się ona 100-krotnie dalej od swojej gwiazdy macierzystej niż Ziemia od Słońca. Do pozwoliło Webbowi odróżnić ją od gwiazdy. Instrumenty NIRCam i MIRI są wyposażone w koronografy. To zestaw niewielkich masek, które blokują światło gwiazd, pozwalając dojrzeć obiekty, które w innym przypadku byłyby niewidoczne przez blask gwiazdy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Trójce naukowców z Francji i Niemiec udało się aż 38-krotnie zmniejszyć limit dyfrakcyjny. Osiągnęli to pozwalając falom dowolnie odbijać się i rozpraszać w zamkniętej przestrzeni. Dzięki temu udało się określić położenie niewielkiego sześcianu z dokładnością 1/76 długości fali promieniowania mikrofalowego wykorzystanego podczas eksperymentów.
Limit dyfrakcyjny ogranicza dokładność obrazowania czy lokalizacji obiektu i jest związany z dyfrakcją, czyli ugięciem fal wokół materiału. Limit ten, najmniejsza wyczuwalna różnica dla danej długości fali, wynosi 1/2 tej długości. Oznacza to, że w sposób konwencjonalny nie jesteśmy w stanie odróżnić od siebie np. dwóch przedmiotów, jeśli różnią się elementem, którego wielkość jest mniejsza niż 1/2 długości fali za pomocą obiekty te obrazujemy. Stworzono więc różne metody na pokonanie limitu dyfrakcyjnego. Często jednak ich zastosowanie jest trudne bądź niepraktyczne.
Michael del Hougne z Uniwersytetu w Wurzburgu, Sylvain Gigan z Laboratoire Kastler Brossel oraz Philipp del Hougne z Uniwersytetu w Rennes wykorzystali doświadczenia z techniką tzw. kodowanej apertury. W technice tej wykorzystuje się powierzchnię rozpraszającą, taką jak np. wnękę o nieregularnym kształcie umieszczoną pomiędzy oświetlanym obiektem a wykrywaczem. Powierzchnia jest modyfikowana za pomocą maski, która blokuje pewne fale, uniemożliwiając im dotarcie do wykrywacza. Za pomocą wielu pomiarów uzyskiwany jest matematyczny model obserwowanego obiektu.
Badacze wykorzystali tę koncepcję do opracowania techniki jeszcze lepiej oddającej szczegóły poniżej długości fali. Umieścili badany obiekt, wykrywacz i źródło światła wewnątrz wnęki, od której powierzchni odbijały się fale. Metoda ta wykorzystuje fakt, że fale wielokrotnie napotkają na badany obiekt, zanim dotrą do wykrywacza. Wewnątrz wnęki znajdują się też programowalne metapowierzchnie, zmieniające strukturę, na której rozpraszają się fale.
Uczeni testowali swoją technikę umieszczając metalowy sześcian o boku 4,5 cm wewnątrz wnęki o szerokości 1 metra. Do badania obiektu wykorzystali mikrofale o długości 12 cm oraz wykrywacz, z którego sygnały były przetwarzane przez sieć neuronową. Gdy przesunęli sześcian w inne miejsce, byli w stanie określić jego pozycję z dokładnością do 0,16 cm. To ok. 1/76 długości fali użytej do badania, zatem znacznie poniżej limitu dyfrakcyjnego. Dokładność pomiaru zwiększała się, gdy fale mogły odbijać się dłużej.
Technika wymaga jeszcze dopracowania, ale jej twórcy uważają, że przyda się ona do nieinwazyjnego lokalizowania niewielkich obiektów w dużych pomieszczeniach za pomocą fal radiowych lub dźwiękowych.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.