Jump to content
Forum Kopalni Wiedzy

Recommended Posts

My odbieramy otoczenie w jednostkach odległości, natomiast nietoperze – w jednostkach czasu. Dla nietoperza owad znajduje się nie w odległości 1,5 metra, ale 9 milisekund. Badania przeprowadzone przez naukowców z Uniwersytetu w Tel Awiwie dowodzą, że nietoperze od urodzenia znają prędkość dźwięku.

Żeby to udowodnić naukowcy hodowali dopiero co urodzone nietoperze w środowisku wzbogaconym o hel, w którym prędkość dźwięku jest wyższa od prędkości dźwięku w powietrzu. W ten sposób odkryli, że zwierzęta wyobrażają sobie dystans w jednostkach czasu, nie odległości.

W życiu codziennym nietoperze używają sonaru – emitują dźwięki i analizują ich odbicia. Dla nich istotny jest czas, w jaki emitowany dźwięk do nich powraca. To zaś zależy od czynników środowiskowych, jak np. temperatura czy skład powietrza. Na przykład w pełni gorącego lata prędkość dźwięku może być o 10% większa, niż w zimie.

Zespół z Izraela, pracujący pod kierunkiem profesora Yossiego Yovela i doktoranta Derna Emichaj wzbogacił powietrze helem, dzięki czemu prędkość dźwięku była wyższa. Okazało się, że ani dorosłe nietoperze, ani młode, które były wychowywane w takiej atmosferze, nie lądowały w miejscu, w którym zamierzały. Zawsze lądowały zbyt blisko. To zaś pokazuje, że uważały, iż ich cel jest bliżej. Innymi słowy, nie dostosowywały swojego zachowania do wyższej prędkości dźwięku.

Jako,że dotyczyły to zarówno dorosłych nietoperzy, które wychowywały się w normalnych warunkach atmosferycznych, jak i młodych wychowywanych w atmosferze wzbogaconej helem, naukowcy stwierdzili, że poczucie prędkości dźwięku jest u nietoperzy wrodzone. Dzieje się tak dlatego, że nietoperze muszą nauczyć się latać wkrótce po urodzeniu. Uważamy więc, że w drodze ewolucji pojawiła się u nich wrodzona wiedza o prędkości dźwięku, co pozwala na oszczędzenie czasu na początku rozwoju zwierząt, mówi profesor Yoel.

Inne interesujące spostrzeżenie jest takie, że nie potrafią zmienić tego poczucia prędkości dźwięku w zmieniających się warunkach, co wskazuje że przestrzeń odbierają wyłącznie jako funkcję czasu, nie odległości.

Udało się nam odpowiedzieć na podstawowe pytanie – odkryliśmy, że nietoperze nie mierzą odległości, a czas. Może się to wydawać jedynie różnicą semantyczną, ale sądzę, że przestrzeń odbierają one w całkowicie inny sposób niż ludzie i inne ssaki. Przynajmniej wtedy, gdy polegają na sonarze, dodaje Yovel.


« powrót do artykułu

Share this post


Link to post
Share on other sites
Posted (edited)
10 hours ago, KopalniaWiedzy.pl said:

naukowcy hodowali dopiero co urodzone nietoperze w środowisku wzbogaconym o hel

Haha, naukowcy z wyższej szkoły trollingu :)

 

10 hours ago, KopalniaWiedzy.pl said:

Jako,że dotyczyły to zarówno dorosłych nietoperzy, które wychowywały się w normalnych warunkach atmosferycznych, jak i młodych wychowywanych w atmosferze wzbogaconej helem, naukowcy stwierdzili, że poczucie prędkości dźwięku jest u nietoperzy wrodzone.

Mają wklepaną stałą. Trzeba przeszukać kod źródłowy (DNA) pod kątem wartości 343000 ms/s :) Swoją drogą ciekawe czy dałoby się to zmodyfikować w określony sposób manipulując przy DNA, chociaż nie wiem czy to jest etyczne.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
10 godzin temu, KopalniaWiedzy.pl napisał:

Na przykład w pełni gorącego lata prędkość dźwięku może być o 10% większa, niż w zimie.

I dlatego hibernują. Nie dość, że nie ma co jeść, to jeszcze zawsze się spóźniają 10%. A poważnie, to chyba powinny umieć to jakoś choć częściowo skalibrować. Zmiany ciśnienia i wilgotności występują też w lecie.

Share this post


Link to post
Share on other sites
Posted (edited)

Z artykułu wynika, że nie kalibrują. Może to jak powiedzieć, że daltonista powinien móc skalibrować detekcję kolorów :) Kiedyś się zastanawiałem jak zwierzęta posługujące się echolokację postrzegają świat. Echolokacja zdaje się wyewoluowała kilka razy niezależnie od siebie. Ciekawe zagadnienie.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
Posted (edited)

Jest taki film Notes on Blindness. Pozwala trochę zajrzeć za tę kurtynę. Tak czy inaczej mózg tworzy model otaczającego świata niezależnie od danych wejściowych.

Edited by Krzychoo

Share this post


Link to post
Share on other sites
1 godzinę temu, cyjanobakteria napisał:

Z artykułu wynika, że nie kalibrują.

Hel nieczęsto występuje w środowisku naturalnym, no może trochę w Odolanowie, więc mogą nie być w stanie skompensować

10 °C 337,8 m/s
15 °C 340,3 m/s
20 °C 343,8 m/s
30 °C 349,6 m/s
 

Tutaj jest coś dziwnego: https://www.pnas.org/content/suppl/2021/04/30/2024352118.DCSupplemental

mowa kompensowaniu utraty siły nośnej w helowanym powietrzu. IMHO niedoskonałości pilotażu mogą pochodzić z obu źródeł: sztywności środowiska i zmienionej siły nośnej.

Share this post


Link to post
Share on other sites
Posted (edited)

Ciekawe. Kiedyś obiło mi się o uszy, że ktoś stosował echolokację, ale nigdy nie doczytałem dokładnie. Jestem pod wrażeniem zręczności i nigdy bym nie pomyślał, że tak można jeździć na rowerze szczególnie w ruchu ulicznym ;) Podejrzewam, że można to by usprawnić przez zastosowanie technologii: może dźwięki wyższych częstotliwości, które nie byłyby słyszalne oraz dobry mikrofon kierunkowy w połączeniu z zestawem słuchawkowym? Ewentualnie LIDAR, przetwarzanie i w warstwie prezentacji przejść na dźwięk albo inny zmysł dostępny dla użytkownika (nawet dotyk).

Najlepsze video w tym temacie, jakie do tej pory widziałem.

 

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Co tam nietoperze, głupie ziarenko ma w DNA zapisane plany czujników takich jak zegar, miernik natężenia światła, miernik wilgotności itd. i po skiełkowaniu potrafi ich używać i liczyć potrzebne dane (oczywiście w jednostkach SI)

Share this post


Link to post
Share on other sites
Posted (edited)

Zerknąłem w necie i istnieją już podobne rozwiązania. Przypomniało mi się też, że kiedyś widziałem w necie coś na wzór Google Glass z wbudowanym AI, które rozpoznawało tekst i czytało głośno to co wykryło. Inteligentne okulary obsługiwały polecenia głosowe i czytały tekst w czasie rzeczywistym dla osób z wadami wzroku. Pewnie wymagało to połączenia z chmurą, bo nie chce mi się wierzyć, że takie możliwości upchnęli do okularów, ale może się mylę. Technologia idzie do przodu i już całkiem solidnie pomaga ludziom.

 

 

 

2 hours ago, tempik said:

głupie ziarenko ma w DNA zapisane plany czujników takich jak zegar, miernik natężenia światła, miernik wilgotności

Tego typu mechanizmy mogą być obsługiwane przez prostsze procesy. Musi to być zakodowane w DNA oczywiście, ale pod wpływem wilgoci wiele rzeczy na przykład pęcznieje i staje się mało wytrzymałe. Ciekawe zagadnienie, bo globalne ocieplenie powoduje wzrost CO2. Większość denialistów bierze to za dobrą monetę i twierdzi, że rośliny będą lepiej rosły. Naukowcy są z kolei ostrożni, bo ilość azotu i innych składników odżywczych nie wzrośnie, a wyższa temperatura będzie oznaczać szybszą utratę wilgoci przez aparaty szparkowe. Więc nadmiar CO2 może paradoksalnie upośledzić wzrost roślin, które będą musiały się ograniczać w wychwytywaniu CO2, z konieczności zatrzymania wody.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
13 godzin temu, cyjanobakteria napisał:

Tego typu mechanizmy mogą być obsługiwane przez prostsze procesy.

mierzenie czasu to też prosty proces bez którego życie by nie istniało i nie ma znaczenia czy mierzy się czas odbicia sygnału, prędkość własnych kroków, czy jakieś tam procesy fizjologiczne niezależnie w każdej komórce ciała.

a co do nietoperzy to ich echolokacja nie jest idealna jak co niektórym się wydaje. Lecący w dzień nietoperz rozbije się na szybie bo bardziej ufa wzrokowi. W nocy również oczu nie zamyka, echolokacją się tylko posiłkuje

Share this post


Link to post
Share on other sites
2 hours ago, tempik said:

a co do nietoperzy to ich echolokacja nie jest idealna jak co niektórym się wydaje. Lecący w dzień nietoperz rozbije się na szybie bo bardziej ufa wzrokowi. W nocy również oczu nie zamyka, echolokacją się tylko posiłkuje

Nietoperze nie znają konceptu szyby i ludzkie wynalazki krzyżują im plany. Ćmy też radziły sobie przez dziesiątki milionów lat i nawigowały w parciu o źródła światła, a teraz potrafią się wpakować prosto w płomień świecy. Dzieje się tak, że do tej pory wszystkie punkty świetlne były w optycznej nieskończoności, jak Słońce, Księżyc czy planety gwiazdy. Ćmy mogły ich używać do lotu w linii prostej. Ludzkie źródła światła jednak nie są w optycznej nieskończoności i ćmy, które nawigują w ten sam sposób skończą w płomieniach w locie po spirali logarytmicznej :)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Płetwale błękitne to największe zwierzęta na Ziemi, ale jednocześnie jedne z najtrudniejszych do zauważenia. Są też niezwykle rzadkie. Szacuje się, że okres polowań na wieloryby przetrwało mniej niż 0,15% populacji płetwali błękitnych. Tym bardziej cieszy fakt, że prawdopodobnie na Oceanie Indyjskim żyje duża nieznana dotychczas grupa karłowatych płetwali błękitnych.
      Płetwale błękitne dzielą się na trzy podgatunki. Dwa z nich osiągają długość 28–30 metrów. Natomiast płetwal błękitny karłowaty dorasta do 24 metrów długości. Naukowcy z australijskiego Uniwersytetu Nowej Południowej Walii (UNSW) najprawdopodobniej zidentyfikowali nieznaną dotychczas populację. A dokonali tego dzięki... systemowi do wykrywania prób jądrowych.
      Organizacja CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization), która dba o przestrzeganie międzynarodowego zakazu prób z bronią jądrową, używa od 2002 roku sieci zaawandowanych hydrofonów, które mają wykrywać dźwięki potencjalnych prób jądrowych. Nagrania z hydrofonów, które wyłapują wiele innych dźwięków, są dostępne dla naukowców i wykorzystywane w badaniach środowiska morskiego.
      Naukowcy z UNSW, którzy analizowali takie nagrania, zauważyli silny nietypowy sygnał pochodzący od wieloryba. Gdy bliżej mu się przyjrzeli okazało się, że sygnał ten to odgłos grupy płetwali błękitnych karłowatych, ale nie należy on do żaden z grup, które wcześniej zaobserwowano na tym obszarze. Na samym środku Oceanu Indyjskiego znaleźliśmy nieznaną dotychczas populację płetwali błękitnych karłowatych. Nie wiemy, ile zwierząt jest w tej grupie, ale musi ich być bardzo dużo, biorąc pod uwagę liczbę zarejestrowanych odgłosów, mówi profesor Tracey Rogers.
      Płetwale błękitne na półkuli południowej jest bardzo trudno badań. Żyją one z daleka od wybrzeży i nie wyskakują na powierzchnię, nie robią takich spektakularnych pokazów jak humbaki. Bez tych nagrań nie mielibyśmy pojęcia o tej populacji, dodaje profesor Rogers.
      Bioakustyk, doktor Emmanuelle Leroy, która pierwsza zauważyła sygnał od płetwali, mówi, że najpierw spostrzegła horyzontalne linie na spektrogramie. Linie te na konkretnych częstotliwościach pokazują, że mamy do czynienia z silnym sygnałem, dużą emisją energii, stwierdza. Uczona, chcąc sprawdzić, czy to nie jakiś przypadkowy sygnał, przejrzała wraz z zespołem całość danych zebranych przez CTBTO w ciągu 18 lat. Okazało się, że sygnał się powtarza.
      Każdego roku rejestrowane były tysiące takich sygnałów. Tworzą one główny element krajobrazu dźwiękowego oceanu. Nie mogły pochodzić od pary waleni, musiały pochodzić od całej populacji, cieszy się uczona.
      Specjaliści oceniają, że odgłosy wydawane przez płetwale błękitne mogą rozchodzić się w wodzie na odległość 200–500 kilometrów. Mają one odmienną strukturę niż śpiew innych waleni. Humbaki są jak wykonawcy jazzu. Cały czas zmieniają swój śpiew. Płetwale błękitne to tradycjonaliści. Wydają proste ustrukturyzowane dźwięki, wyjaśnia profesor Rogers. Jednak mimo tej prostoty, dźwięki różnią się miedzy sobą. Różne populacje płetwali błękitnych karłowatych zamieszkujących Ocean Indyjski wydają różne odgłosy.
      Wciąż nie wiemy, czy rodzą się z takimi różnicami czy się ich uczą, mówi Rogers. To fascynujące, że na Oceanie Indyjskim mamy populacje, które cały czas wchodzą w kontakt pomiędzy sobą, a wciąż zachowują różnice w wydawanych odgłosach. Ich śpiew jest jak odcisk palca, który pozwala nam śledzić te populacje, gdy przemierzają tysiące kilometrów, dodaje uczona.
      Nowa populacja zyskała nazwę „Chagos” od archipelagu, w pobliżu którego po raz pierwszy zarejestrowano jej odgłosy. Analiza danych wykazała, że przemieszcza się ona od wybrzeży Sri Lanki po północne wybrzeża Australii Zachodniej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Tkające sieci pająki posiadają bardzo wyczulone nogi, dzięki którym odbierają drgania sieci, w której szamoce się ofiara. Teraz naukowcy przełożyli te drgania na dźwięki, które możemy usłyszeć i wyobrazić sobie to, co czuje pająk.
      Pajęcza sieć może być postrzegana jak przedłużenie ciała pająka, który na niej żyje. Jest tez czujnikiem, mówi Markus Buehler z Massachusetts Institute of Technology (MIT), który prezentował swoje badania podczas wirtualnego spotkania Amerykańskiego Towarzystwa Chemicznego. Gdy wykorzystamy rzeczywistość wirtualną i zanurzymy się w pajęczej sieci możemy usłyszeć i zrozumieć to, co dotychczas mogliśmy tylko obserwować.
      Poszczególne nici w pajęczej sieci mają różną długość i są poddane różnym naprężeniom. Dlatego też emitują różne dźwięki. Zespół Buehlera wykorzystał laser do stworzenia trójwymiarowej mapy ruchu sieci pająka z gatunku Cyrtophora citricola. Zbadali częstotliwość drgań i elastyczność każdej z nici i przypisali im odpowiednie dźwięki w zakresie słyszalnym dla człowieka. Dzięki temu możemy usłyszeć, jak brzmi pajęcza sieć.
      Oczywiście naukowcy musieli dokonać pewnych założeń. Na przykład dźwięki wydawane są przez syntezator imitujący harfę. Nici położone bliżej słuchacza są głośniejsze, niż to położone dalej. Sami zresztą posłuchajcie.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Pod wodą nie słychać ludzkiego krzyku. Ale odgłosy wydawane przez foki szare – już owszem. Jakie zjawiska akustyczne decydują o tym, że foki wydobywać mogą dźwięki i na wodzie, i pod jej powierzchnią? Sprawdził to w swoich badaniach dr Łukasz Nowak. Ciało foki działa jak głośnik – streszcza naukowiec.
      Z fokami szarymi jest trochę jak ze starym małżeństwem. One rozmawiają ze sobą bardzo rzadko. A konkretne – kiedy przychodzi okres godowy. U fok taki okres występuje tylko na początku roku, tuż po tym, kiedy urodzą się młode foki i samice są gotowe, by ponownie zajść w ciążę. Wtedy komunikacja między samcami, samicami i młodymi jest bardzo ożywiona – opowiada dr Nowak. W swoich badaniach naukowiec skupiał się jednak nie na tym, co te odgłosy oznaczają, ale jak one powstają. Wszystkie swoje nagrania udostępnił w otwartych zbiorach danych.
      A to, jak foki wydają dźwięki jest o tyle ciekawe dla akustyków, że zwierzęta żyją trochę w wodzie, a trochę na lądzie. I w przeciwieństwie do człowieka potrafią nie tylko wydawać odgłosy, które świetnie rozchodzą się w powietrzu, ale i odgłosy, które słychać pod wodą – mimo skrajnie dużych różnic między tymi środowiskami. Kolejną interesującą sprawą jest to, że foki szare rozmiarami są porównywalne z człowiekiem, a częstotliwości wydawanych przez nie odgłosów są dobrze odbierane przez ludzkie ucho.
      To, jak wydają dźwięki foki, może to stanowić dla nas inspirację, jak budować systemy do podwodnej komunikacji – komentuje akustyk dr Łukasz Nowak z University of Twente (Holandia).
      Badacz przestudiował odgłosy wydawane przez foki szare w fokarium w stacji morskiej UG na Helu. Wydzielił trzy różniące się akustyką grupy dźwięków i przedstawił hipotezy, jak dźwięki te mogą być generowane. Jego badania ukazały się w czasopiśmie Bioacustics.
      W bazie udostępnionej przez naukowca można obejrzeć filmiki z nagraniami foczych rozmów, a także posłuchać nagrań audio - zarówno odgłosów podwodnych, jak i wydawanych na powierzchni.
      Foki musiały się dostosować do komunikacji akustycznej, do porozumiewania się i nad, i pod wodą – zwraca uwagę naukowiec. Tłumaczy, że powietrze i woda stanowią zaś dwa bardzo różne ośrodki pod względem właściwości akustycznych. My, ludzie, zazwyczaj, jeśli chcemy coś powiedzieć, wprawiamy w drgania kolumnę powietrza wydychaną z płuc. Z kolei jamę nosowo-gardłową wykorzystujemy jako filtr, który możemy przestrajać. Nasze układy głosowe stworzone są tak, by emitować dźwięk głównie przez usta - tam skąd uchodzi z nas powietrze. W emisji dźwięku zaś nie mają znaczenia same drgania np. klatki piersiowej – opowiada dr Nowak.
      W przypadku wody taka metoda tworzenia dźwięków nie będzie efektywna, bo dźwięk z powietrza generalnie do wody nie przechodzi. W wodzie przenoszą się lepiej dźwięki strukturalne - powstające w drgających ciałach stałych (to np. stuknięcie ręką w drzwi) niż aerodynamiczne – te wywołane wibracją powietrza (np. ludzki głos). Dlatego człowiek mówiący pod wodą praktycznie nie będzie w wodzie słyszalny – zwraca uwagę akustyk.
      Dlatego foki, aby przekazywać sobie sygnały dźwiękowe pod wodą, muszą zmienić drgania powietrza na drgania swojego ciała. Tkanki mają właściwości mechaniczne całkiem podobne do właściwości wody. I z nich całkiem dobrze drgania - a więc i dźwięki - do wody się przenoszą. Ciało foki działa więc jak wielki głośnik podwodny – wyjaśnia rozmówca PAP.
      Dodaje, że czasem części podwodnych odgłosów fok towarzyszy wydobywanie się bąbelków (a to znaczy, że odgłos powstaje przy wydechu). A części – nie. Naukowiec po strukturze tych ostatnich dźwięków domyśla się, że zwierzęta muszą wtedy przepompowywać powietrze to w jedną, to w drugą stronę. Dźwięk ten jednak wprawia w wibracje ciało foki, a ciało przekazuje te drgania do wody.
      Inaczej jest jednak, kiedy foka przebywa na powierzchni – wtedy duża część dźwięku wypromieniowana jest przez nozdrza.
      Foki szare żyją między wodą a lądem. Komunikują się w zakresie częstotliwości akustycznych, które słyszymy gołym uchem. Właściwości ich układów głosowych – w odróżnieniu np. od delfinów, które posługują się ultradźwiękami – są zbliżone do ludzkich. Dlatego foki były dla mnie inspiracją przy opracowywaniu systemów komunikacji głosowej dla nurków – mówi dr Nowak.
      Jego zespół już kilka lat temu opracował taki system komunikacji podwodnej. Obserwując, jak foki wydają dźwięk pomyślałem o układach technicznych, które tłumaczyłyby drgania powietrza na drgania struktur wokół i potem przenoszą dźwięk do wody. Wraz z zespołem zbudowaliśmy działające prototypy urządzeń do komunikacji między nurkami – wspomina. Nurkowie mówili do opracowanego przez Polaków urządzenia, a dźwięk wydobywający się z tego wynalazku rozchodził się w wodzie. Każdy pod wodą mógł go więc usłyszeć bez użycia żadnego dodatkowego sprzętu.
      Urządzenie działało, można było dzięki niemu rozmawiać pod wodą. Podjęliśmy się komercjalizacji, ale rozbiliśmy się o etap wdrożeniowy. Projekt umarł – opowiada akustyk.
      Dodaje, że choć wtedy zgromadził ogromne ilości danych dotyczących odgłosów fok i miał przypuszczenia, jak one ze sobą się komunikują, to dopiero teraz, w czasie pandemii, miał czas, aby opracować dane i przekuć w publikacje naukową. Dopiero teraz jednak prezentujemy uporządkowaną klasyfikację odgłosów fok i przedstawiamy hipotezy dotyczące generacji tych dźwięków – tłumaczy.
      Dr Nowak opowiada, że do badania odgłosów fok szarych zachęcił go prof. Krzysztof Skóra, który był wtedy szefem Stacji Morskiej UG. Badania przerwała jednak śmierć profesora. Dziś stacja Morska nosi imię tego biologa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa naukowców pracujących pod kierunkiem specjalistów z Amerykańskiego Muzeum Historii Naturalnej oraz Bat Conservation International odkryła nowy gatunek nietoperza. Pomarańczowo-czarne zwierzę zamieszkuje jedno z pasm górskich w Zachodniej Afryce. Odkrycie pokazuje, jak ważne dla różnorodności nietoperzy są subsaharyjskie pasma górskie.
      W epoce wymierania takie odkrycie daje iskierkę nadziei, zauważa profesor Winifred Frick, główna naukowiec Bat Conservation International. To spektakularne stworzenie. Ma jasnopomarańczowe futro i właśnie ta cecha sprawiła, że od razu wiedzieliśmy, iż gatunek nigdy wcześniej nie został opisany. Bardzo rzadko udaje się odkryć nowy gatunek ssaka. Marzyłam o tym od dzieciństwa.
      W 2018 roku Frick wraz z kolegami z Bat Conservation International i kameruńskiego Uniwersytetu w Maroua pracowała w masywie Nimba w Gwinei. Prowadzili tam badania w naturalnych jaskiniach oraz sztolniach wydrążonych w latach 70. i 80., które obecnie zostały skolonizowane przez nietoperze. We współpracy z lokalną firmą Société des Mines de Fer de Guinée (SMFG) naukowcy próbowali zbadać, jakie gatunki nietoperzy i w jakich porach roku zamieszkują sztolnie. Szczególnie interesował ich krytycznie zagrożony gatunek Hipposideros lamottei, który żyje wyłącznie w badanym masywie. Większość znanej populacji zamieszkuje sztolnie, które są w różnym stanie i z czasem ulegają zawaleniu.
      Podczas poszukiwania Hipposideros lamottei naukowcy zauważyli coś niezwykłego – nietoperza, który nie wyglądał jak poszukiwany gatunek, ani nie przypominał żadnego innego znanego im gatunku. Jeszcze tego samego dnia uczeni skontaktowali się ze specjalistką od nietoperzy kurator Nancy Simmons z Amerykańskiego Muzeum Historii Naturalnej i szefową muzealnego Wydziału Ssaków.
      Gdy tylko zobaczyłam tego nietoperza od razu zgodziłam się z nimi, że to nowy gatunek. Wspólnie rozpoczęliśmy długi proces dokumentowania i zbierania dowodów wskazujących, ze to naprawdę nieznanych dotychczas gatunek, mówi Simmons, współautorka najnowszych badań.
      Przez kolejne dwa lata gromadzono dane morfologiczne, morfometryczne, echolokacyjne i genetyczne, a nowy gatunek porównywano z okazami przechowywanymi w American Museum of Natural History, Smithsonian National Museum of Natural History oraz British Museum. Nowy gatunek nazwano Myotis nimbaensis. Nazwa, jak łatwo zauważyć, pochodzi od masywu Nimba.
      Niewykluczone, że Myotis nimbaensis jest – obok Hipposideros lamottei – drugim gatunkiem nietoperzy występującym tylko w tym masywie, mówi Jon Flanders dyrektor ds. zagrożonych gatunków w Bat Conservation International.
      Prowadzone badania są częścią projektu, którego celem jest uchronienie nietoperzy z Nimba. W jego ramach Bat Conservation International i SMFG budują nowe sztolnie, zabezpieczone tak, by przetrwały przez stulecia. To działania nakierowane głównie na ochronę Hipposideros lamottei, ale z pewnością pomogą też Myotis nimbaensis. Nie można wykluczyć, że ten gatunek również jest zagrożony.
      Nowy gatunek szczegółowo opisano na łamach American Museum Novitates.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od pewnego czasu Ziemia obraca się szybciej niż zwykle, a 19 lipca ubiegłego roku był najkrótszą dobą od czas rozpoczęcia pomiarów. Trwała ona o 1,4602 milisekundy krócej niż zwykle. W bieżącym roku możemy spodziewać się zaś kolejnych rekordów. Specjaliści przypuszczają, że przeciętna tegoroczna doba będzie o ponad 0,5 milisekundy krótsza niż drzewiej bywało.
      Poprzednio najkrótsza doba została zmierzona w 2005 roku. Jednak w roku 2019 rekord ten został pobity aż 20 razy.
      To tym, że długość doby się zmienia ludzkość dowiedziała się w latach 60. ubiegłego wieku, gdy powstały zegary atomowe, a ich pomiary porównano z pozycją gwiazd. W  ciągu ostatnich dekad długość doby ulega ciągłemu wydłużeniu. Różnica jest spora. Od lat 70. operatorzy zegarów atomowych musieli dodać aż 27 sekund przestępnych, by dostosować zegary do ruchu obrotowego naszej planety. Ostatni raz sekundę przestępną dodawano noc sylwestrową 2016 roku, kiedy to zegary na całym świecie zostały na sekundę zatrzymane.
      Tymczasem od pewnego czasu specjaliści obserwują, że Ziemia przyspieszyła. Niewykluczone, że w niedługim czasie – po raz pierwszy w historii – trzeba będzie odjąć sekundę przestępną od zegarów. Nie mamy wątpliwości, że Ziemia obraca się wokół własnej osi szybciej, niż w jakimkolwiek momencie ostatnich 50 lat, mówi Peter Whibberley, naukowiec z grupy odpowiedzialnej za  pomiary czasu w brytyjskim Narodowym Laboratorium Fizycznym."Nie można wykluczyć, że jeśli ruch obrotowy Ziemi będzie przyspieszał, konieczne będzie dodanie ujemnej sekundy przestępnej. Jest jednak zbyt wcześnie, by o tym mówić.
      Prowadzone są międzynarodowe rozmowy dotyczące przyszłości sekund przestępnych. Jest też możliwe, że konieczność dodania ujemnej sekundy przestępnej spowoduje, że zostanie podjęta decyzja o całkowitej rezygnacji z sekund przestępnych, dodaje.
      W ostatnią niedzielę (3 stycznia), długość doby słonecznej wyniosła 23 godziny 59 minut i 59,9998927 sekundy. W poniedziałek doba jeszcze bardziej się skróciła. Eksperci przypuszczają, że w całym bieżącym roku skumulowana różnica pomiędzy dobą a zegarami atomowymi wyniesie około 19 milisekund.
      Różnice te są tak niewielkie, że dla przeciętnego człowieka stałyby się zauważalne po kilkuset latach. Jednak współczesne systemy komunikacji satelitarnej i nawigacji są uzależnione od dokładnego dopasowania pomiarów czasu do pozycji Słońca, Księżyca i gwiazd. Za tę zgodność odpowiadają naukowcy z International Earth Rotation Service w Paryżu. Monitorują tempo obrotowe planety i z sześciomiesięcznym wyprzedzeniem informują wszystkie kraje, kiedy trzeba będzie zastosować sekundę przestępną.
      Jednak manipulowanie czasem może nieść ze sobą poważne konsekwencje. Gdy w 2012 roku na świecie dodano sekundę przestępną, doszło do awarii Mozilli, Reddita, Foursquare'a, Yelpa, LinkedIna i StumbleUpon. Pojawiły się problemy z systemem operacyjnym Linux oraz z programami napisanymi w Javie.
      Niektóre kraje chcą całkowicie przejść na pomiary czasu za pomocą zegarów atomowych i zrezygnować ze stosowania sekund przestępnych. Inne kraje, w tym Wielka Brytania, sprzeciwiają się temu, gdyż taki ruch spowodowałby całkowite zerwanie ze związkiem pomiędzy pomiarami czasu z ruchem Słońca na nieboskłonie. W 2023 roku Światowa Konferencja Radiokomunikacyjna ma zdecydować o losie sekundy przestępnej.
      Tempo ruchu obrotowego Ziemi ulega ciągłym zmianom. Jest to spowodowane złożonymi zależnościami pomiędzy ruchem płynnego jądra Ziemi, ruchem oceanów i atmosfery oraz ruchem ciał niebieskich, takich jak Księżyc. Na ruch obrotowy wpływa też globalne ocieplenie, gdyż topnienie śniegu i lodu na wyżej położonych obszarach przyczynia się do przyspieszenia ruchu obrotowego.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...