Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Światy z podpowierzchniowymi oceanami oferują życiu bardziej stabilne i bezpieczniejsze warunki niż Ziemia

Rekomendowane odpowiedzi

Jednym z najważniejszych odkryć dokonanych w ciągu ostatnich 25 lat było stwierdzenie, że w Układzie Słonecznym istnieją światy, gdzie pod powierzchnią skał i lodu kryje się ocean. Takimi obiektami są księżyce wielkich planet jak Europa, Tytan czy Enceladus. Teraz S. Alan Stern z Southwest Research Institute przedstawił hipotezę mówiącą, że takie światy z wewnętrznym ciekłym oceanem (IWOW) są powszechne we wszechświecie i znacząco zwiększają one liczbę miejsc, w których może istnieć życie. Dzięki nim może ono bowiem występować poza wąską ekosferą.

Od dawna wiadomo, że planety takie jak Ziemia, z oceanami na powierzchni, muszą znajdować się w ekosferze swoich gwiazd, czyli w takiej odległości od nich, że gdzie temperatura pozwala na istnienie wody w stanie ciekłym. Jednak IWOW mogą istnieć poza ekosferą. Co więcej, obecne tam życie może być znacznie lepiej chronione niż życie na Ziemi. W światach taki jak nasz życie narażone jest na wiele zagrożeń, od uderzeń asteroidów przez niebezpieczne rozbłyski słoneczne po eksplozje pobliskich supernowych.

Stern, który zaprezentował swoją hipotez podczas 52. dorocznej Lunar and Planetary Science Conference, zauważa, że światy z wewnętrznym ciekłym oceanem” zapewniają istniejącemu tam życiu lepszą stabilność środowiskową i są mniej narażone na zagrożenia ze strony własnej atmosfery, gwiazdy, układu planetarnego czy galaktyki niż światy takie jak Ziemia, z oceanem na zewnątrz. IWOW są bowiem chronione przez grubą, liczącą nawet dziesiątki kilometrów, warstwę lodu i skał.

Uczony zauważa ponadto, że warstwa ta chroni potencjalnie obecne tam życie przed wykryciem jakąkolwiek dostępną nam techniką. Jeśli więc w takich światach istnieje życie i jeśli może w nich rozwinąć się inteligentne życie to – jak zauważa Stern – istnienie IWOW pozwala na poradzenie sobie z paradoksem Fermiego. Jego twórca, Enrico Fermi, zwrócił uwagę, że z jednej strony wszystko wskazuje na to, że wszechświat powinien być pełen życia, w tym życia inteligentnego, a my dotychczas nie mamy dowodu na jego istnienie. Ta sama warstwa, która tworzy w takich światach stabilne i bezpieczne środowisko jednocześnie uniemożliwia wykrycie tego życia, mówi Stern.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie sądzę aby miało to cokolwiek wspólnego z paradoksem Fermiego. Fermi nie brał pod uwagę światów z wewnętrznym oceanem, to znaczy, że wszystko wskazuje na to, że wszechświat powinien być pełen życia na wcześniej branych pod uwagę planetach. Wrzucenie życia do wewnętrznych oceanów nie rozwiązuje zagadki, bo wciąż nie wyjaśnia czemu nie obserwujemy życia powstałego na planetach bliższych do naszej, których również jest masa.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Troszkę to brzmi bez sensu. Inteligentne życie na poziomie przynajmniej naszym, czyli obserwującym kosmos, dawno już wydostało się poza swoją "hydrosferę" i  będzie wysyłać poza swoją skorupę lodową nie tylko sygnały świadome, ale też inne sygnały, potrzebne chociażby do sterowania satelitami czy komunikacji ze statkami kosmicznymi. To powoduje, że z pewnością moglibyśmy je wykryć, gdyby było blisko.

Poza tym istnieje jeszcze jedna sprawa. Ewolucję napędzają kataklizmy. Gdy ich nie ma stabilność powoduje brak rozwoju. To życie może trwać na poziomie ameby przez miliardy lat. A przy okazji ciekawa jest obserwacja dlaczegóż to przez 3 mld lat na Ziemi nie zmieniało się prawie nic, a potem nagle BUM - gady, ssaki, ptaki, ludzie ... w ułamku geologicznej sekundy. Dlaczego na Ziemi w 1 miliardzie nie rozwinęło się tak gwałtownie to życie? Dlaczego pozostawało na poziomie archeobakteri? A może nie pozostawało?

Edytowane przez Ergo Sum
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Inteligentne życie na wodnych światach pod grubym lodem jest mało prawdopodobne moim zdaniem.

Po pierwsze, samo życie będzie miało do dyspozycji niewielki procent energii, jaką dysponujemy na Ziemi. Fizyki i chemii nie przeskoczysz. Jedna z hipotez abiogenezy rozważa kominy geotermalne, ale to tylko mikroorganizmy.

Po drugie, inteligencja jest kosztowna i często niepotrzebna. Rekiny, które jako gatunek istnieją chyba 500 mln lat, maja mozgi mają praktycznie mikroskopijne. Ośmiornice są z kolei bardzo inteligentne, świetnie sobie radzą, potrafią odkręcać słoiki i niektóre tworzą coś na wzór osad, ale nic z tym więcej nie zdziałały niestety, a miały kilkaset milionów lat więcej.

Po trzecie, żeby wystartować z cywilizacją potrzeba dostępu do energii. Pod wodą praktycznie nie ma możliwości na odkrycia ognia a o użyteczny tlen ciężko. Jest to teoretycznie możliwe w jakiejś podwodnej jaskini, gdzie nagromadził się łatwopalny gaz, a odkrywca suszył płetwy energicznie pocierając i doszło do zapłonu, ale takie eksperymenty trzeba w pierwszej kolejności przeżyć ;)

Po czwarte, wysyłanie czegokolwiek w kosmos jest problematyczne, chociaż starty rakiet z wody są możliwe. Równanie rakietowe nie rozpieszcza i żeby cokolwiek wysłać sensownego, trzeba wystrzelić rakiety wielkości wieżowców na Ziemi. Na księżycach jest o wiele łatwiej. Masa startowa space shuttle to ponad 2000 ton, ale użyteczny ładunek niecałe 30 ton na LEO (+ duży orbiter).

Edytowane przez cyjanobakteria
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

W przypadku Europy istnienie wewnętrznego oceanu oparte jest na przesłankach jakie dostarczyły głównie sonda Galileo oraz teleskop orbitalny Hubble:

https://europa.nasa.gov/europa/ocean/

Quote

Istnieje kilka mocnych dowodów, które sugerują, że na Europie istnieje ocean podpowierzchniowy:

- Magnetometr na pokładzie sondy Galileo wykrył oznaki indukowanego pola magnetycznego w pobliżu powierzchni Europy - wyraźny dowód na obecność przewodzącej substancji w odległości mniejszej niż około 30 kilometrów  pod powierzchnią. To mocny dowód na obecność pewnej ilości słonej cieczy. Jednak sonda Galileo nie została zaprojektowana specjalnie do testowania hipotezy o podpowierzchniowym oceanie na Europie. Aby wiedzieć na pewno, czy Europa ma ocean, sonda musiałaby dokładnie zmierzyć fluktuacje pływowe powierzchni Europy, gdy okrąża ona Jowisza. Wymagałoby to od statku kosmicznego wejścia na orbitę wokół tego księżyca lub wielokrotnych przelotów w pobliżu przy zachowaniu odpowiedniej geometrii.

- Cechy powierzchni Europy (w tym pasma, grzbiety, tzw. „teren chaosu” i wielopierścieniowe struktury uderzeniowe) sugerują, że na stosunkowo płytkich głębokościach znajduje się ciepły, ruchomy lód podobny do lodowca, który czasami dociera do powierzchni. Obecność oceanu sprawiłaby, że zamarznięta powierzchnia Europy bardziej uginałaby się w wyniku codziennych pływów prowadząc do pękania i ogrzewania lodu, co wyjaśniałoby dziwną geologię powierzchni. Na przykład dziwaczne zakrzywione pęknięcia Europy (zwane cykloidami) prawdopodobnie zawdzięczają swoje pochodzenie pęknięciom spowodowanym zginaniem lodowej skorupy Europy w bardzo szybkiej skali czasu podczas rotacji trwającej 3,55 dni. Tworzenie w ten sposób dużych szczelin wymaga znacznych przypływów możliwych w ciekłym  środowisku wodnym. Wielopierścieniowe struktury uderzeniowe Europy sugerują również, że największe blizny przebiły się przez lodową skorupę do oceanu.

- Sądząc po strukturze pęknięć księżyca w dużej skali, powierzchnia Europy mogła wpaść w poślizg w stosunku do jej wnętrza (procesy zwane „obrotem niesynchronicznym” i „wędrówka polarna”). Ocean podpowierzchniowy znacznie ułatwiłby to ślizganie się, umożliwiając lodowej skorupie poślizg na płynnym oceanie. Taki poślizg byłby znacznie trudniejszy, gdyby skorupa lodowa była w bezpośrednim kontakcie ze skałą.

Inną kwestią jest grubość lodowej pokrywy Europy.

Quote

Teoria i obserwacje wskazują, że lodowa skorupa Europy ma około 15 do 25 km grubości i pokrywa ocean o głębokości około 60-150 km. Potwierdzeniem tej hipotezy są obserwacje zagłębień, kopuł i plam na powierzchni Europy. Rozmiar i rozmieszczenie tych struktur wskazuje, że są one spowodowane ubijaniem wewnątrz skorupy lodowej, a teoria wyjaśnia, że takie ubijanie o charakterze konwekcyjnym może wystąpić tylko wtedy, gdy powłoka ma grubość większą niż około 15 km. Pomiary wysokości kopuł na Europie (do kilometra) również sugerują, że skorupa lodowa musi być dość gruba aby kopuły mogły być tak wysokie. Niektórzy naukowcy argumentowali, że skorupa lodowa może być cieńsza i mieć zaledwie kilka kilometrów grubości. Wykorzystanie sygnałów radiowych sondy Galileo gdy przelatywała w pobliżu lodowego księżyca, dostarczyło wglądu w sposób ułożenia materiału w Europie. Wyniki te sugerują, że zewnętrzna warstwa wody i / lub lodu ma grubość od 80 do 170 km. Reszta wnętrza prawdopodobnie składa się ze skalistego płaszcza i metalowego rdzenia.

Prawdopodobnie dodatkowych cennych danych dostarczą sondy europejska JUICE oraz amerykańska Europa Clipper, które mają znaleźć się w pobliżu Europy pod koniec bieżącej dekady:

https://sci.esa.int/web/juice

https://www.jpl.nasa.gov/missions/europa-clipper

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Życie wymaga gradientów, cykli, zmian, nisz.
Nie energii, tylko źródła niskiej entropii.
Pod tym względem szanse na rozwinięcie się życia wewnątrz lodowych asteroid są mikroskopijne. Jedyne na co można realistycznie liczyć to jakieś kominy geotermalne napędzane siłami pływowymi dostarczające ograniczonych ilości energii chemicznej.
Rureczniki nie podbiły świata.
 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zdaje się, że kominy hydrotermalne mogą być na księżycach Europie i Enceladusie. Jeszcze pozostaje kwestia litotrofów, czyli organizmów które żyją w skałach i potrafią pozyskiwać energię z ograniczonych źródeł mineralnych. Są w stanie przetrwać w ekstremalnych środowiskach i jest prawdopodobne, że mogły by przetrwać w przestrzeni kosmicznej po uderzeniu meteorytu i wyrzuceniu w przestrzeń. Ciekawie by było, gdyby okazało się po przechwyceniu obiektu spoza układu jak jak Oumuamua, że są tam jakieś prymitywne formy życia zahibernowane w wiecznej zmarzlinie na miliony lat albo mikro skamieliny. Jest to oczywiście sfera dzikich spekulacji, a szanse na taki scenariusz są skrajnie mało prawdopodobne :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W 2024 roku średnia temperatura oceanów była najwyższa w historii pomiarów. Niezwykle ciepła woda występowała nie tylko na powierzchni, ale również na głębokości do 2000 metrów, donosi międzynarodowy zespół naukowy, na którego czele stał profesor Cheng Lijing z Instytutu Fizyki Atmosfery Chińskiej Akademii Nauk. W badaniach wzięło udział 54 naukowców z 7 krajów, którzy zastanawiali się również, jak cieplejszy ocean wpłynie w przyszłości na życie ludzi.
      Ocean jest kluczowym elementem klimatu. Przechowuje aż 90% nadmiarowego ciepła uwięzionego na Ziemi i pokrywa 70% powierzchni planety. Dlatego też w olbrzymiej mierze decyduje o wzorcach pogodowych i decyduje o klimacie oraz tempie jego zmian. Jeśli chcemy wiedzieć, co dzieje się z klimatem, odpowiedzi musimy szukać w oceanie, mówi współautor badań, profesor John Abraham z University of St. Thomas.
      Trzy międzynarodowe zespoły naukowe połączyły siły pod kierunkiem profesora Lijinga i stwierdziły, że rok 2024 był rekordowy pod względem temperatury oceanu. Pomiędzy rokiem 2023 a 2024 zawartość ciepła w górnej warstwie 2000 metrów wód oceanicznych wzrosła o 16 zettadżuli (16x1021 dżuli). To około 140 razy więcej energii niż produkcja elektryczna całej ludzkości w 2023 roku. W ciągu ostatnich pięciu lat, pomimo cykli La Niña i El Niño, zawartość ciepła w oceanie rosła w tempie 15–20 zettadżuli rocznie, dodaje profesor Michael Mann z University of Pennsylvania. Regionami o rekordowo wysokiej zawartości ciepła były Ocean Indyjski, tropikalne regiony Atlantyku, Morze Śródziemne, północne regiony Atlantyku, północne regiony Pacyfiku oraz Ocean Południowy.
      Rekordowo ciepła była też powierzchnia oceanu, miejsce styku wody z atmosferą. Temperatura powierzchni jest niezwykle istotna, gdyż to ona decyduje, jak szybko ciepło i wilgoć trafiają z oceanu do atmosfery, co ma gigantyczny wpływ na pogodę.
      Ocean wpływa na klimat głównie poprzez zmiany koncentracji pary wodnej w atmosferze, co prowadzi do pojawiania się katastrofalnych ekstremów w cyklu obiegu wody. Para wodna jest też silnym gazem cieplarnianym, a postępujące ocieplenie prowadzi do pustynnienia, zwiększenia ryzyka susz i pożarów. Jednocześnie jednak para wodna napędza wszelkiego rodzaju burze, co podnosi ryzyko powodzi. Dotyczy to również huraganów i tajfunów, wyjaśnia doktor Kevin Trenberth z amerykańskiego Narodowego Centrum Badań Atmosfery. W roku 2024 średni temperatura powierzchni wód oceanu była o 0,05–0,07 stopnia Celsjusza wyższa niż w roku 2023.
      W ubiegłym roku aż 104 kraje poinformowały o zarejestrowaniu na swoim terenie rekordowo wysokich temperatur. Zwiększyła się częstotliwość występowania ekstremalnych zjawisk pogodowych, takich jak susze, powodzie, fale upałów czy pożary. Doświadczyli ich mieszkańcy Afryki, Europy i Azji. Zjawiska takie wiążą się z olbrzymimi stratami. W samych tylko Stanach Zjednoczonych katastrofy naturalne spowodowane zmianami klimatu spowodowały od 1980 roku straty szacowane na 3 biliony dolarów.
      Naukowcy są bardzo zainteresowani tym, co dzieje się w oceanie, gdyż ilość uwięzionej w nim energii cieplnej to najlepszy wskaźnik zmian klimatu. Ocean to strażnik planety. To on pochłania znaczną część nadmiarowej energii gromadzącej się w ziemskim systemie klimatycznym w wyniku emisji antropogenicznych, dodaje doktor Karina von Schuckmann z Mercator Ocean International. Musimy pamiętać, że pojemność cieplna oceanu nie jest nieograniczona.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Arktyce coraz częściej dochodzi do topnienia wieloletniego lodu, przez co zanika lód spiętrzony. To zaś zła wiadomość dla arktycznego życia, od niedźwiedzi polarnych po mikroorganizmy. Naukowcy z Instytutu Badań Polarnych i Morskich im. Alfreda Wegenera przeanalizowali dane z trzech dekad badań lotniczych Arktyki i nie mają dobrych wieści. Zanik wieloletniego lodu to poważny problem.
      Gdy pływający lód jest spychany na siebie w wyniku oddziaływania wiatrów i prądów morskich, na styku kry tworzą się spiętrzenia. Są one poważnym problemem dla żeglugi, ale niezwykle ważnym elementem arktycznego ekosystemu. Dane satelitarne z ostatnich dekad pokazują, że w Arktyce zanika lód pływający, a ten, który pozostaje, jest cieńszy i przemieszcza się szybciej. Dotychczas jednak nie było wiadomo, jak wpływa to na formowanie się spiętrzeń. Dopiero od kilku lat spiętrzenia takie możemy bowiem badać za pomocą satelitów.
      Spiętrzenia, powstające co jakiś czas na styku połączonych przez wiatr i prądy fragmentów lodu, mogą sięgać 2 metrów wysokości. Bardziej imponujące jest to, co dzieje się pod wodą. Tam mogą tworzyć się zwały lodu sięgające 30 metrów w dół i uniemożliwiające żeglugę. Jednak miejsca styku połaci lodu pływającego wpływają nie tylko na energię i masę samego lodu, ale na znacznie szersze procesy. Gdy w spiętrzony nad powierzchnią wody lód uderza wiatr, kry mogą wędrować po całej Arktyce.
      Takie spiętrzenia są wykorzystywane przez niedźwiedzie polarne do ochrony przed mroźnym wiatrem, co jest szczególnie ważne dla samic podczas porodów i dla niedźwiedzich noworodków. Spiętrzony lód jest domem dla różnych mikroorganizmów, a tworzące się pod wodą zwały lodu odgrywają ważną rolę w mieszaniu wody, co zwiększa dostępność składników odżywczych.
      Dotychczas nie było wiadomo, jak topnienie arktycznego lodu pływającego wpływa na spiętrzenia. Coraz więcej lodu topi się w Arktyce latem, więc jest coraz mniej lodu starszego niż 1 rok. Taki młody, cienki lód, łatwiej ulega deformacji i szybciej tworzy spiętrzenia. Można by się więc spodziewać, że częstotliwość występowania spiętrzeń będzie rosła, mówi główny autor najnowszych badań, doktor Thomas Krumpen. Tymczasem analiza danych z prowadzonych przez 30 lat zwiadów lotniczych wykazała, że na północ od Grenlandii i w Cieśninie Fram liczba spiętrzeń zmniejsza się w tempie 12,2% na dekadę, a ich wysokość spada w tempie 5% na dekadę. Z kolei na Morzu Lincolna, znanym ze spiętrzania się szczególnie starego lodu, sytuacja jest jeszcze bardziej dramatyczna. Tam częstotliwość spada o 14,9% na dekadę, a wysokość o 10,4%.
      Zmniejszenie się częstotliwości spiętrzeń spowodowane jest dramatycznym tempem topnienia starego lodu. Lód, który przetrwał kilkanaście sezonów letnich ma szczególnie duża liczbę spiętrzeń, gdyż był poddawany działaniu wiatru i prądów morskich przez długi czas. Utrata tego starego lodu jest tak wielka, że częstotliwość występowania spiętrzeń zmniejsza się, mimo tego, że cienki lód łatwiej ulega deformacji, wyjaśnia Krumpen.
      Do największego zaniku spiętrzeń dochodzi tam, gdzie średni wiek pływającego lodu spada najbardziej. Profesor Christian Haas, specjalizujący się w fizyce lodu, mówi, że olbrzymie zmiany zachodzą na Morzu Beauforta i w Centralnej Arktyce. Obecnie oba regiony są latem całkowicie wolne od lodu pływającego, a jeszcze stosunkowo niedawno dominował tam lód, który miał co najmniej 5 lat.
      Obecnie naukowcy nie wiedzą dokładnie, jakie wpływ na regiony polarne będzie miało zanikanie spiętrzeń. Zaobserwowali natomiast, że tempo przemieszczania się lodu pływającego Arktyki rośnie. Zanikanie spiętrzeń powinno zaś powodować, że lód będzie wolniej się przemieszczał, gdyż zmniejsza się powierzchnia stawiająca opór wiatrowi. Skoro zaś tempo przemieszczania się lodu rośnie, to istnieje jakiś mechanizm, który go przyspiesza. Mogą być nim silniejsze prądy oceanicze lub gładsza powierzchnia tej części lodu, która jest zanurzona w wodzie.
      Na najbliższe lato uczeni planują ekspedycję na pokładzie statku badawczego Polarstern. Będą chcieli zbadać różnice biologiczne i biogeochemiczne pomiędzy spiętrzeniami o różnym wieku i pochodzeniu. Jednocześnie zintensyfikują zwiady lotnicze, by lepiej poznać interakcje pomiędzy lodem pływającym, ekosystemem i klimatem.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się oszacować globalną ilość siarki emitowanej przez oceany. Badania przeprowadzone przez międzynarodowy zespół naukowy z Anglii, Hiszpanii, Indii, Argentyny, Chin, Francji i USA wykazały, że emitując siarkę, wytwarzaną przez organizmy żywe, oceany schładzają klimat bardziej, niż dotychczas przypuszczano. Szczególnie jest to widoczne nad Oceanem Południowym.
      Z artykułu opublikowanego na łamach Science Advances dowiadujemy się, że oceany nie tylko przechwytują i przechowują energię cieplną ze Słońca, ale również wytwarzają gazy, które mają natychmiastowy bezpośredni wpływ na klimat, na przykład powodują, że chmury są jaśniejsze i lepiej odbijają promieniowanie cieplne. Autorzy badań skupili się przede wszystkim na metanotiolu (MeSH). To gaz o wzorze chemicznym CH3SH.
      Emitowany przez oceany siarczek dimetylu to ważne źródło aerozoli ochładzających klimat. Jednak w oceanach większość siarki pochodzącej z organizmów żywych nie zmienia się w siarczek dimetylu, ale w metanotiol. Gaz ten, ze względu na duża reaktywność, trudno jest jednak zarejestrować, stąd też jego wpływ na klimat pozostawał nieznany.
      Autorzy nowych badań stworzyli bazę danych dotyczącą koncentracji MeSH w wodzie morskiej, zidentyfikowali czynniki statystyczne pozwalające na określenia ilości MeSH i opracowali mapę miesięcznych emisji tego związku, dodając je do emisji siarczku dimetylu.
      Dzięki temu dowiedzieli się, że nad Oceanem Południowym emisje MeSH zwiększają o 30–70 procent ilość aerozoli zawierających siarkę, wzmacniają więc wywierany przez ten pierwiastek efekt chłodzący, jednocześnie pozbawiają atmosferę utleniaczy, co z kolei zwiększa czas trwania dimetylu siarki, pozwalając na jego transport na większe odległości.
      Odkrycie to jest znaczącym rozwinięciem jednej z najważniejszych teorii dotyczących roli oceanów w regulowaniu klimatu na Ziemi.
      Opracowana przed 40 lat teoria mówiła, że plankton żyjący na powierzchni oceanów wytwarza siarczek dimetylu, który po trafieniu do atmosfery ulega utlenieniu, tworząc aerozole. Aerozole te odbijają część promieniowania słonecznego z powrotem w przestrzeń kosmiczną, zmniejszając w ten sposób ilość ciepła docierającego do powierzchni planety. Ich wpływ chłodzący zostaje wzmocniony, jeśli wejdą w skład chmur. Nowe badanie pokazuje, w jaki sposób pomijany dotychczas MeSH wpływa na cały ten proces, wzmacnia go oraz jak ważne dla klimatu są aerozole zawierające siarkę. A skoro sama natura zawiera tak silne mechanizmy chłodzące, tym bardziej pokazuje to, jak wielki wpływ na atmosferę wywołuje działalność człowieka.
      To ten element klimatu, który ma największy wpływ chłodzący, a który jest najsłabiej rozumiany. Wiedzieliśmy, że metanotiol jest emitowany przez oceany, ale nie wiedzieliśmy, jak duża jest to emisja i gdzie do niej dochodzi. Nie wiedzieliśmy też, że ma tak silny wpływ na klimat. Modele klimatyczne znacząco przeceniają wpływ promieniowania słonecznego na Ocean Południowy, w dużej mierze dlatego, że nie są w stanie prawidłowo symulować wpływu chmur. Nasze prace częściowo wypełniają tę lukę, stwierdzają badacze.
      Główny autor badań, Charel Wohl z barcelońskiego Institut de Ciències del Mar dodaje, że poznanie wielkości emisji MeSH pozwoli na lepsze reprezentowanie chmur nad Oceanem Południowym i stworzenie modeli lepiej przewidujących ich wpływ chłodzący.
      Dzięki poznaniu ilości emitowanego metanotiolu, dowiadujemy się, że średnia roczna emisja siarki ze znanych źródeł oceanicznych jest o 25% wyższa, niż sądzono. Gdy dane te dodano do najlepszych modeli klimatycznych, okazało się, że wpływ tej emisji jest znacznie bardziej widoczny na półkuli południowej, na której powierzchnia oceanu jest większa, a ludzka aktywność mniejsza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Geoff Smith, emerytowany profesor fizyki stosowanej z Uniwersytetu Technologicznego z Sydney poinformował na łamach Journal of Physics Communications, że przyspieszające ocieplanie się oceanów, które nie pasuje do obecnych modeli klimatycznych, można wyjaśnić na gruncie fizyki kwantowej. Profesor Smith zauważa, że dane z ostatnich 70 lat pokazują, że oceny ogrzewają się coraz szybciej, rośnie więc ilość przechowywanej w nich energii. W bieżącym roku średnia globalna temperatura powierzchni oceanów przekroczyła 21 stopni Celsjusza, co nazwano złowróżbnym kamieniem milowym.
      Obecne modele atmosferyczne uwzględniające wzrost gazów cieplarnianych w atmosferze, niże przewidują takiego przyspieszenia. Rozwiązaniem problemu jest przyjęcie, że energia w oceanach jest przechowywana w połączonej postaci ciepła z energią stanowiącą źródło informacji natury o właściwościach materiału. Gdy woda w oceanie jest ogrzewana przez promieniowanie słoneczne, przechowuje energię nie tylko w postaci ciepła, ale również w postaci hybrydowych par fotonów splątanych z oscylującymi molekułami wody. Te pary to naturalna forma informacji kwantowej, odmienna od informacji w komputerach kwantowych. Ten dodatkowy magazyn energii zawsze był obecny i pomagał stabilizować temperatury oceanów przed rokiem 1960, stwierdza uczony.
      Profesor Smith wyjaśnia, że obecnie średnia ilość energii cieplnej emitowanej nocą po codziennym podgrzewaniu, nie jest stabilna, gdyż dodatkowa energia z atmosfery zwiększa ilość obu rodzajów energii w oceanach. I to właśnie ta druga, nietermiczna, energia jest odpowiedzialna, zdaniem uczonego, za ogrzewanie oceanów, którego nie uwzględniają modele klimatyczne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
      Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
      Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
      Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
      Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...