Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' lód'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 7 results

  1. Dzięki amerykańsko-chińskiej współpracy powstała hydrożelowa powłoka, która zapobiega tworzeniu się lodu aż na trzy sposoby. Naukowcy podkreślają, że inspirowali się naturalnymi mechanizmami, które nie dopuszczają do zamarzania krwi kilku gatunków ryb z Antarktyki. Autorzy artykułu z pisma Matter sugerują, że nowa powłoka będzie tanim i wszechstronnym sposobem na zapobieganie oblodzeniu skrzydeł samolotów czy rur. To pierwszy materiał, który zapobiega tworzeniu się lodu, wpływając na 3 różne procesy. Choć dysponujemy rozmaitymi rozwiązaniami antyoblodzeniowymi, są one tak pomyślane, by wpływać tylko na niektóre aspekty tego złożonego procesu albo działać tylko na pewnych rodzajach powierzchni. Nowa powłoka jest rozwiązaniem kompleksowym, które zapobiega powstawaniu lodu na wielu różnych powierzchniach, od tworzyw, przez metale, po ceramikę, w dodatku w różnych warunkach - opowiada Ximin He z Uniwersytetu Kalifornijskiego w Los Angeles. Poza tym materiał łatwo uzyskać i jest ponoć bardzo wytrzymały. Żel składa się głównie z wody, ale jego kluczowym składnikiem jest poli(dimetylosiloksan), polimer z grupy silikonów, używany m.in. do produkcji soczewek kontaktowych czy jako dodatek do kosmetyków (E900). Gdy nasprejuje się go na powierzchnię, tworzy cienką przezroczystą powłokę, która zapobiega oblodzeniu na 3 różne sposoby: obniża temperaturę zamarzania wody na powierzchni (hamuje nukleację), opóźnia wzrost kryształów lodu (rozprzestrzenianie się lodu), a także utrudnia jego przywieranie, czyli adhezję. Akademicy przetestowali powłokę na różnych materiałach, w tym na plastiku, szkle, ceramice i metalach. Ustanowili rekord, zapobiegając tworzeniu się lodu do momentu, aż temperatura osiągnęła -31°C. Poprzedni rekord padł w 2016 r. i wynosił -28°C; różne powłoki nanoszono m.in. na szkło. Pracami zespołu kierował wtedy Jianjun Wang z Chińskiej Akademii Nauk; jest on współautorem również ostatniego badania. Oprócz tego hydrożel pozwolił na ustanowienie rekordu odnośnie do czasu odroczenia tworzenia lodu w temperaturze -25°C. By na spryskanych nim powierzchniach z tworzywa, szkła, ceramiki i metalu utworzył się w tej temperaturze lód, musiało minąć ponad 65 min, a więc o ponad 40 min więcej niż przy poprzednim rekordzie, który także padł podczas studium z 2016 r. Nawet jeśli na powierzchni, na której zastosowano hybrydowy antyoblodzeniowy hydrożel, utworzy się lód, łatwo go usunąć za pomocą szczotki czy dmuchawy (nie trzeba skrobać czy podgrzewać). W latach 60. naukowcy odkryli, że kilka gatunków ryb antarktycznych wytwarza białka zapobiegające zamarzaniu (ang. anti-freeze proteins, AFP) krwi. Później stwierdzono, że także owady wytwarzają AFP, dzięki czemu ich płyny ustrojowe nie zamarzają. U bakterii AFP stwierdzono po raz pierwszy w 1993 r. W następnych latach opisano wiele bakterii zdolnych do syntezy takich białek. Wiadomo, że dysponują nimi także rośliny. Nowa powłoka jest bioinspirowana (działa po części dlatego, że naśladuje molekularną strukturę tych białek). Większość eksperymentów przeprowadzono w laboratorium, ale jeden test odbył się na dworze, w Pekinie, w temperaturach ujemnych. « powrót do artykułu
  2. Zwykle w zamarzającej wodzie pojawiają się kryształy lodu, które rozrastają się, zamieniając płyn w ciało stałe. Zwykle, bo nie zawsze. Okazuje się, że kropla po opadnięciu na zimną powierzchnię zamarza w inny sposób. Naukowcy z Uniwersytetu Twente i Centrum Dynamiki Płynów im. Maxa Plancka zauważyli, że gdy kropla spadnie na zimną powierzchnię, w jej centrum pojawia się rodzaj zimnych frontów rozszerzających się ku krawędziom. Wciąż rozprzestrzeniająca się kropla zaczyna zamarzać, w miarę, jak przesuwają się przez nią kolejne fronty. To wyjaśnia, dlaczego gdy na bardzo zimą drogę spada deszcz, błyskawicznie robi się ona niezwykle śliska. Naukowcy badali sposób zamarzania opadających kropli filmując od dołu krople heksadekanu. Używali przy tym lasera, którego światło odbijało się od płynu oraz super szybkiej kamery. Temperatura topnienia heksadekanu wynosi 18 stopni Celsjusza. Uczeni zaobserwowali, że wspomniane zimne fronty pojawiały się, gdy kropla tego związku spadała na powierzchnię, której temperatura była o 11 stopni Celsjusza niższa od temperatury topnienia. Wykazali przy tym, że kropla jest najzimniejsza w punkcie, w którym uderzyła w powierzchnię, czyli na środku. Formują się tam kryształy, ale jednocześnie ruch płynu wypycha je ku krawędziom. Proces ten powtarza się do czasu, aż kropla zamarza. Okazało się też, że temperatura powierzchni zmienia siłę przywierania doń zamarzniętej kropli. Badania takie nie tylko pozwalają odkryć mechanizmy zamarzania, ale umożliwią też opracowanie np. powłok zapobiegających pokrywaniu się lodem skrzydeł samolotów. Mogą również przyczynić się do udoskonalenia technik druku 3D, w których wykorzystywany jest płynny wosk. W końcu przyczynią się do udoskonalenia procesu produkcji procesorów za pomocą technologii litografii w ekstremalnie dalekim ultrafiolecie (EUV). « powrót do artykułu
  3. NASA planuje powrót człowieka na Księżyc, który ma stać się ważnym etapem załogowej misji na Marsa. Wciąż nierozwiązane pozostaje jednak pytanie, gdzie na Czerwonej Planecie powinni lądować ludzie. W podjęciu decyzji może pomóc najnowszy artykuł z Geophysical Research Letters, którego autorzy dostarczyli mapę zamarzniętej wody na Marsie znajdującej się nawet 2,5 centymetra pod powierzchnią planety. Dostępność wody będzie kluczowym elementem dla wybrania miejsca lądowania misji załogowej. Posłuży ona astronautom zarówno do picia, jak i do wyprodukowania paliwa. NASA chce bowiem tak przygotować misję, by po wylądowaniu możliwe było korzystanie z zasobów planety. W ich badaniu biorą udział satelity okrążające Marsa. Sylvain Piqueux z Jet Propulsion Laboratory, autor wspomnianego na wstępie artykułu, wykorzystał dane z Mars Reconnaissance Orbitera (MRO) i Mars Odyssey, by znaleźć wodę, która jest łatwo dostępna. Nie potrzebujesz koparki by dostać się do tej wody. Wystarczy szpadel. Cały czas zbieramy dane na temat pokrywy lodowej Marsa, szukając najlepszych miejsc do lądowania misji załogowej, mówi Piqueux. Na Marsie woda w stanie ciekłym nie może się utrzymać. Niskie ciśnienie powoduje, że lód wystawiony bezpośrednio na oddziaływanie czynników zewnętrznych szybko odparowuje. Lód na Czerwonej Planecie występuje na średnich wysokościach, w pobliżu biegunów. Piqueux postanowił poszukać takich złóż, do których astronauci mogą łatwo się dostać. Wykorzystał w tym celu instrumenty badające temperatury i połączył te dane z ze zdjęciami kraterów po uderzeniach meteorytów oraz danymi z radaru wskazującymi na obecność lodu. Dzięki temu udało mu się określić głębokość, na jakiej występuje lód. Niewiele miejsc na Marsie nadaje się do lądowania misji załogowej. Dlatego też naukowcy skupiają się na średnich szerokościach półkuli północnej i południowej, gdzie jest znacznie cieplej niż na biegunach. Preferowana jest półkula północna, której tereny są położone niżej, zatem mamy tam grubszą warstwę atmosfery do wyhamowania lądującego pojazdu. Naukowców szczególnie interesuje równina Arkadia na półkuli północnej. Na stworzonej przez Piqueuxa mapie widzimy kilka kolorów. Te chłodne, niebieski i purpurowy, wskazują na lód znajdujący się nie więcej niż 30 centymetrów pod powierzchnią. Kolory ciepłe to lód ukryty głębiej, co najmniej 60 centymetrów pod powierzchnią. Z kolei kolor czarny to miejsce, gdzie zdecydowanie nic nie powinno lądować. Pojazd mógłby bowiem zatonąć tam w pyle. Piqueux chce teraz rozpocząć długoterminowe obserwacje marsjańskiego lodu. Uczony ma zamar sprawdzić, jak jego ilość i dostępność zmienia się wraz z porami roku. Im dłużej badamy lód, tym więcej się dowiadujemy. Całoroczne obserwacje prowadzone przez różne pojazdy przez wiele lat pozwolą odkryć nam jego nowe zasoby, mówi Leslie Tamppari, odpowiedzialna za stronę naukową misji MRO. « powrót do artykułu
  4. Tytan, największy księżyc Saturna, ma w pobliżu równika olbrzymi pas lodu. Większość powierzchni Tytana jest pokryta materiałem organicznym, który bez przerwy nań opada. Jednak teraz naukowcy stwierdzili, że w pobliżu równika istnieje tam długi na 6300 kilometrów pas lodu. Nie koreluje on ani z topografią ani budową pod powierzchnią. W innych regionach Tytana bogate w lód obszary występują tylko w kraterach, albo zostają odkryte wskutek erozji, co wskazuje na kriowulkanizm, piszą autorzy badań w Nature Astronomy. Na Tytanie znajdują się też oceany metanu oraz gruba atmosfera pełna organicznych molekuł. To właśnie przez nią trudno jest oglądać powierzchnię księżyca. Tylko kilka długości fali przenika przez atmosferę. Caitlin Griffith i jej koledzy z University of Arizona wykorzystali dane zebrane przez sondę Cassini do poszukiwania lodu. O ile już wcześniej było wiadomo, że regionalnie lód na Tytanie występuje, to istnienia długiego na tysiące kilometrów pasa lodu naukowcy nie potrafią wyjaśnić. Taka struktura powinna być ukryta pod setkami metrów osadów. Możliwe, że widzimy coś, z czasów, gdy Tytan był zupełnie inny. Obecnie nie potrafimy tego wyjaśnić, przyznaje Griffith. Obecnie Tytan jest nieaktywny pod względem geologicznym, ale odkryty właśnie pas lodu może wskazywać, że w przeszłości jego powierzchnia się przemieszczała. Zdaniem Griffith, lód prawdopodobnie występuje na klifach odsłoniętych przez erozję, a nie na płaskim terenie. Lepsze poznanie rozmieszczenia osadów organicznych opadających na powierzchnię księżyca dostarczyłoby nam wielu informacji nie tylko o samym Tytanie, ale również o historii jego atmosfery. « powrót do artykułu
  5. Komitet ds. Statusu Zagrożenia Dzikiej Przyrody w Kanadzie (Committee on the Status of Endangered Wildlife in Canada, COSEWIC) alarmuje, że topnienie lodu w Arktyce i problemy związane z polowaniem zagrażają kanadyjskim niedźwiedziom polarnym. To jasne, że musimy się bacznie przyglądać temu gatunkowi - podkreśla Graham Forbes, wiceszef COSEWIC. Kanadyjczyk wyjaśnia, że niedźwiedzie zaczajają się na foki podobnie do ludzi łowiących z lodu ryby. Przewiduje się wydłużenie arktycznych lat, co oznacza, że polowania będą dla niedźwiedzi trudniejsze. Odnosząc się do zdolności przystosowawczych tych drapieżników, Inuci zachowują ostrożny optymizm. W ramach swojej ostatniej oceny COSEWIC uwzględnił zarówno podejście naukowe, jak i wiedzę Inuitów. W raporcie napisano, że choć nie ma obecnie zagrożenia wyginięciem, przyszłość gatunku jest niepewna. Komitet ds. Statusu Zagrożenia Dzikiej Przyrody wyraził również swoje zaniepokojenie spadkiem liczebności populacji czawyczy (Oncorhynchus tshawytscha) wzdłuż wybrzeża pacyficznego, a także losem jesionów Fraxinus nigra (w rejonie Wielkich Jezior opiętek jesionowiec zniszczył już 2 mld drzew). Podczas ostatniego liczenia niedźwiedzi polarnych w 2011 r. ustalono, że w Kanadzie mieszka 15,5 tys. tych zwierząt. W tym samym roku niedźwiedzie objęto Ustawą o gatunkach zagrożonych (Species at Risk Act). « powrót do artykułu
  6. W ciągu ostatnich 25 lat Antarktyka straciła 3 biliardy ton lodu. Większość z tej straty odnotowano w Zachodniej Antarktyce, gdzie tempo utraty lodów zwiększyło się trzykrotnie w ciągu ostatniej ćwierci wieku. Załamanie się pokrywy lodowej w Zachodniej Antarktyce może oznaczać zwiększenie poziomu oceanów aż o 3 metry. Najnowsze badania dają jednak nadzieję, że sytuacja może nie być tak dramatyczna. Zauważono bowiem proces, który może spowolnić utratę lodu. W miarę, jak ubywa lodu, zmniejsza się nacisk na położone poniżej warstwy skał. Już teraz podłoże skalne pod Zachodnią Antarktyką gwałtownie się unosi. W przyszłym wieku w niektórych miejscach może się ono podnieść nawet o 8 metrów, co mogłoby ochronić lód przed roztapiającymi go od spodu wodami oceanu. To może opóźnić proces utraty lodu o kilka dekad, uważa Rick Aster, sejsmolog z Colorado State University i główny autor badań. Zachodnia Antarktyka jest szczególnie podatna na globalne ocieplenie, gdyż podstawa jej lodu znajduje się znacznie poniżej poziomu oceanu, tworząc na lądzie basen o głębokości ponad kilometra pod poziomem morza. Erozja może spowodować, że woda wedrze się pod lód, uniesie go, co znacznie przyspieszy topnienie. Tam mamy do czynienia z bardzo niestabilną sytuacją, mówi geofizyk Natalya Gomez z McGill University. Ten położony poniżej poziomu oceanu basen powstał w czasie ostatniej epoki lodowej, gdy rosnące warstwy lodu naciskały na skały, coraz bardziej je obniżają. Obecnie jednak mamy do czynienia z odwrotną sytuacją. Ziemia działa jak materac, dodaje Valentina Barletta z Duńskiego Uniwersytetu Technicznego w Kongens Lyngby. Przeprowadzone przez nią badania wykazały, że w różnych miejscach skały unoszą się w różnym tempie. Wszystko zależy od temperatury i elastyczności skał. Badania za pomocą czujników GPS ujawniły, że w niektórych miejscach podłoże skalne unosi się w tempie ponad 4 centymetrów na rok. To pokazuje, że skały tutaj są elastyczne. Znacznie bardziej elastyczne niż sądziliśmy, mówi Robin Bell, geofizyk z Columbia University. Uczony dodaje, że podobny proces miał miejsce w przeszłości. Przed 12 000 laty pod koniec epoko lodowej Zachodnia Antarktyka traciła pokrywę lodową i jej skały się unosiły. Później jednak znowu lodu przybyło. Część naukowców twierdzi jednak, że żaden proces unoszenia się podłoża skalnego nie uchroni w dłuższym terminie Zachodniej Antarktyki przed załamaniem, o ile ludzkość nie zredukuje emisji dwutlenku węgla. Podkreślają, że unoszenie się podłoża jest bardzo powolnym procesem w porównaniu z tempem utraty lodu. Gdy ocean szybko się ogrzewa, pokrywy lodowe zanikną, niezależnie od tego, co dzieje się z podłożem, stwierdził Igo Sasgen, geofizyk z niemieckiego Instytutu Alfreda Wegenera. « powrót do artykułu
  7. Litr arktycznego lodu morskiego jest zanieczyszczony nawet 12 000 fragmentów mikroplastiku. Naukowcy z Instytutu Badań Morskich i Polarnych im. Alfreda Wegenera wykorzystali technikę spektroskopii fourierowskiej do zbadania zanieczyszczenia lodu morskiego mikroplastikiem. W czasie naszych badań zauważyliśmy, że ponad połowa mikroplastiku uwięzionego w lodzie ma wymiary mniejsze niż 1/20 milimetra. oznacza to, że plastik z łatwością może zostać połknięty przez orzęski czy widłorogi. Nikt nie wie na pewno, jak bardzo mikroplastik jest szkodliwy dla organizmów morskich i – w efekcie – dla człowieka, mówi główna autorka badań Ilka Peeken. Niedawno ukazały się badania, których autorzy donosili, że przeciętna osoba jedząca ryby spożywa w ciągu roku do 11 000 kawałków mikroplastiku. Mikroplastik to odpady z tworzyw sztucznych o wielkości poniżej 5 milimetrów. Znaczna część mikroplastiku do plastikowe opady, które trafiły do oceanów i tam uległy rozpadowi. Jednak mikroplastik wędruje do oceanów także za pośrednictwem systemów kanalizacyjnych, do których trafia on np. podczas prania tworzyw sztucznych, jak i z powietrza, w którym unoszą się np. resztki startych opon samochodowych. Najmniejsze fragmenty mikroplastiku, jakie zauważyli w lodzie niemieccy naukowcy, miały zaledwie 11 mikrometrów. Do sześciokrotnie mniej niż grubość ludzkiego włosa. Aż 67% fragmentów mikroplastiku należało do mniejszej kategorii o wymiarach poniżej 50 mikrometrów. W sumie znaleziono 17 rodzajów tworzyw sztucznych. Sześć z nich – polietylen, polipropylen, nylon, poliester, oktat celulozy i fragmenty farb – odpowiadały za połowę wszystkich zanieczyszczeń. Lód morski więzi mikroplastik przez 2-11 lat. Nie wiadomo, czy zanieczyszczenia te pozostają w Arktyce, czy też wędrują bardziej na południe. Wiadomo jednak, że mikroplastik dość szybko tonie. Jest on kolonizowany przez bakterie i algi, staje się coraz cięższy i coraz bardziej się zanurza. Podczas niedawnych badań dna morskiego w Cieśninie Fram stwierdzono, że na każdy kilogram osadów przypada tam 6500 fragmentów mikroplastiku,. « powrót do artykułu
×
×
  • Create New...