Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Światy z podpowierzchniowymi oceanami oferują życiu bardziej stabilne i bezpieczniejsze warunki niż Ziemia

Rekomendowane odpowiedzi

Jednym z najważniejszych odkryć dokonanych w ciągu ostatnich 25 lat było stwierdzenie, że w Układzie Słonecznym istnieją światy, gdzie pod powierzchnią skał i lodu kryje się ocean. Takimi obiektami są księżyce wielkich planet jak Europa, Tytan czy Enceladus. Teraz S. Alan Stern z Southwest Research Institute przedstawił hipotezę mówiącą, że takie światy z wewnętrznym ciekłym oceanem (IWOW) są powszechne we wszechświecie i znacząco zwiększają one liczbę miejsc, w których może istnieć życie. Dzięki nim może ono bowiem występować poza wąską ekosferą.

Od dawna wiadomo, że planety takie jak Ziemia, z oceanami na powierzchni, muszą znajdować się w ekosferze swoich gwiazd, czyli w takiej odległości od nich, że gdzie temperatura pozwala na istnienie wody w stanie ciekłym. Jednak IWOW mogą istnieć poza ekosferą. Co więcej, obecne tam życie może być znacznie lepiej chronione niż życie na Ziemi. W światach taki jak nasz życie narażone jest na wiele zagrożeń, od uderzeń asteroidów przez niebezpieczne rozbłyski słoneczne po eksplozje pobliskich supernowych.

Stern, który zaprezentował swoją hipotez podczas 52. dorocznej Lunar and Planetary Science Conference, zauważa, że światy z wewnętrznym ciekłym oceanem” zapewniają istniejącemu tam życiu lepszą stabilność środowiskową i są mniej narażone na zagrożenia ze strony własnej atmosfery, gwiazdy, układu planetarnego czy galaktyki niż światy takie jak Ziemia, z oceanem na zewnątrz. IWOW są bowiem chronione przez grubą, liczącą nawet dziesiątki kilometrów, warstwę lodu i skał.

Uczony zauważa ponadto, że warstwa ta chroni potencjalnie obecne tam życie przed wykryciem jakąkolwiek dostępną nam techniką. Jeśli więc w takich światach istnieje życie i jeśli może w nich rozwinąć się inteligentne życie to – jak zauważa Stern – istnienie IWOW pozwala na poradzenie sobie z paradoksem Fermiego. Jego twórca, Enrico Fermi, zwrócił uwagę, że z jednej strony wszystko wskazuje na to, że wszechświat powinien być pełen życia, w tym życia inteligentnego, a my dotychczas nie mamy dowodu na jego istnienie. Ta sama warstwa, która tworzy w takich światach stabilne i bezpieczne środowisko jednocześnie uniemożliwia wykrycie tego życia, mówi Stern.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie sądzę aby miało to cokolwiek wspólnego z paradoksem Fermiego. Fermi nie brał pod uwagę światów z wewnętrznym oceanem, to znaczy, że wszystko wskazuje na to, że wszechświat powinien być pełen życia na wcześniej branych pod uwagę planetach. Wrzucenie życia do wewnętrznych oceanów nie rozwiązuje zagadki, bo wciąż nie wyjaśnia czemu nie obserwujemy życia powstałego na planetach bliższych do naszej, których również jest masa.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Troszkę to brzmi bez sensu. Inteligentne życie na poziomie przynajmniej naszym, czyli obserwującym kosmos, dawno już wydostało się poza swoją "hydrosferę" i  będzie wysyłać poza swoją skorupę lodową nie tylko sygnały świadome, ale też inne sygnały, potrzebne chociażby do sterowania satelitami czy komunikacji ze statkami kosmicznymi. To powoduje, że z pewnością moglibyśmy je wykryć, gdyby było blisko.

Poza tym istnieje jeszcze jedna sprawa. Ewolucję napędzają kataklizmy. Gdy ich nie ma stabilność powoduje brak rozwoju. To życie może trwać na poziomie ameby przez miliardy lat. A przy okazji ciekawa jest obserwacja dlaczegóż to przez 3 mld lat na Ziemi nie zmieniało się prawie nic, a potem nagle BUM - gady, ssaki, ptaki, ludzie ... w ułamku geologicznej sekundy. Dlaczego na Ziemi w 1 miliardzie nie rozwinęło się tak gwałtownie to życie? Dlaczego pozostawało na poziomie archeobakteri? A może nie pozostawało?

Edytowane przez Ergo Sum
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Inteligentne życie na wodnych światach pod grubym lodem jest mało prawdopodobne moim zdaniem.

Po pierwsze, samo życie będzie miało do dyspozycji niewielki procent energii, jaką dysponujemy na Ziemi. Fizyki i chemii nie przeskoczysz. Jedna z hipotez abiogenezy rozważa kominy geotermalne, ale to tylko mikroorganizmy.

Po drugie, inteligencja jest kosztowna i często niepotrzebna. Rekiny, które jako gatunek istnieją chyba 500 mln lat, maja mozgi mają praktycznie mikroskopijne. Ośmiornice są z kolei bardzo inteligentne, świetnie sobie radzą, potrafią odkręcać słoiki i niektóre tworzą coś na wzór osad, ale nic z tym więcej nie zdziałały niestety, a miały kilkaset milionów lat więcej.

Po trzecie, żeby wystartować z cywilizacją potrzeba dostępu do energii. Pod wodą praktycznie nie ma możliwości na odkrycia ognia a o użyteczny tlen ciężko. Jest to teoretycznie możliwe w jakiejś podwodnej jaskini, gdzie nagromadził się łatwopalny gaz, a odkrywca suszył płetwy energicznie pocierając i doszło do zapłonu, ale takie eksperymenty trzeba w pierwszej kolejności przeżyć ;)

Po czwarte, wysyłanie czegokolwiek w kosmos jest problematyczne, chociaż starty rakiet z wody są możliwe. Równanie rakietowe nie rozpieszcza i żeby cokolwiek wysłać sensownego, trzeba wystrzelić rakiety wielkości wieżowców na Ziemi. Na księżycach jest o wiele łatwiej. Masa startowa space shuttle to ponad 2000 ton, ale użyteczny ładunek niecałe 30 ton na LEO (+ duży orbiter).

Edytowane przez cyjanobakteria
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

W przypadku Europy istnienie wewnętrznego oceanu oparte jest na przesłankach jakie dostarczyły głównie sonda Galileo oraz teleskop orbitalny Hubble:

https://europa.nasa.gov/europa/ocean/

Quote

Istnieje kilka mocnych dowodów, które sugerują, że na Europie istnieje ocean podpowierzchniowy:

- Magnetometr na pokładzie sondy Galileo wykrył oznaki indukowanego pola magnetycznego w pobliżu powierzchni Europy - wyraźny dowód na obecność przewodzącej substancji w odległości mniejszej niż około 30 kilometrów  pod powierzchnią. To mocny dowód na obecność pewnej ilości słonej cieczy. Jednak sonda Galileo nie została zaprojektowana specjalnie do testowania hipotezy o podpowierzchniowym oceanie na Europie. Aby wiedzieć na pewno, czy Europa ma ocean, sonda musiałaby dokładnie zmierzyć fluktuacje pływowe powierzchni Europy, gdy okrąża ona Jowisza. Wymagałoby to od statku kosmicznego wejścia na orbitę wokół tego księżyca lub wielokrotnych przelotów w pobliżu przy zachowaniu odpowiedniej geometrii.

- Cechy powierzchni Europy (w tym pasma, grzbiety, tzw. „teren chaosu” i wielopierścieniowe struktury uderzeniowe) sugerują, że na stosunkowo płytkich głębokościach znajduje się ciepły, ruchomy lód podobny do lodowca, który czasami dociera do powierzchni. Obecność oceanu sprawiłaby, że zamarznięta powierzchnia Europy bardziej uginałaby się w wyniku codziennych pływów prowadząc do pękania i ogrzewania lodu, co wyjaśniałoby dziwną geologię powierzchni. Na przykład dziwaczne zakrzywione pęknięcia Europy (zwane cykloidami) prawdopodobnie zawdzięczają swoje pochodzenie pęknięciom spowodowanym zginaniem lodowej skorupy Europy w bardzo szybkiej skali czasu podczas rotacji trwającej 3,55 dni. Tworzenie w ten sposób dużych szczelin wymaga znacznych przypływów możliwych w ciekłym  środowisku wodnym. Wielopierścieniowe struktury uderzeniowe Europy sugerują również, że największe blizny przebiły się przez lodową skorupę do oceanu.

- Sądząc po strukturze pęknięć księżyca w dużej skali, powierzchnia Europy mogła wpaść w poślizg w stosunku do jej wnętrza (procesy zwane „obrotem niesynchronicznym” i „wędrówka polarna”). Ocean podpowierzchniowy znacznie ułatwiłby to ślizganie się, umożliwiając lodowej skorupie poślizg na płynnym oceanie. Taki poślizg byłby znacznie trudniejszy, gdyby skorupa lodowa była w bezpośrednim kontakcie ze skałą.

Inną kwestią jest grubość lodowej pokrywy Europy.

Quote

Teoria i obserwacje wskazują, że lodowa skorupa Europy ma około 15 do 25 km grubości i pokrywa ocean o głębokości około 60-150 km. Potwierdzeniem tej hipotezy są obserwacje zagłębień, kopuł i plam na powierzchni Europy. Rozmiar i rozmieszczenie tych struktur wskazuje, że są one spowodowane ubijaniem wewnątrz skorupy lodowej, a teoria wyjaśnia, że takie ubijanie o charakterze konwekcyjnym może wystąpić tylko wtedy, gdy powłoka ma grubość większą niż około 15 km. Pomiary wysokości kopuł na Europie (do kilometra) również sugerują, że skorupa lodowa musi być dość gruba aby kopuły mogły być tak wysokie. Niektórzy naukowcy argumentowali, że skorupa lodowa może być cieńsza i mieć zaledwie kilka kilometrów grubości. Wykorzystanie sygnałów radiowych sondy Galileo gdy przelatywała w pobliżu lodowego księżyca, dostarczyło wglądu w sposób ułożenia materiału w Europie. Wyniki te sugerują, że zewnętrzna warstwa wody i / lub lodu ma grubość od 80 do 170 km. Reszta wnętrza prawdopodobnie składa się ze skalistego płaszcza i metalowego rdzenia.

Prawdopodobnie dodatkowych cennych danych dostarczą sondy europejska JUICE oraz amerykańska Europa Clipper, które mają znaleźć się w pobliżu Europy pod koniec bieżącej dekady:

https://sci.esa.int/web/juice

https://www.jpl.nasa.gov/missions/europa-clipper

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Życie wymaga gradientów, cykli, zmian, nisz.
Nie energii, tylko źródła niskiej entropii.
Pod tym względem szanse na rozwinięcie się życia wewnątrz lodowych asteroid są mikroskopijne. Jedyne na co można realistycznie liczyć to jakieś kominy geotermalne napędzane siłami pływowymi dostarczające ograniczonych ilości energii chemicznej.
Rureczniki nie podbiły świata.
 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zdaje się, że kominy hydrotermalne mogą być na księżycach Europie i Enceladusie. Jeszcze pozostaje kwestia litotrofów, czyli organizmów które żyją w skałach i potrafią pozyskiwać energię z ograniczonych źródeł mineralnych. Są w stanie przetrwać w ekstremalnych środowiskach i jest prawdopodobne, że mogły by przetrwać w przestrzeni kosmicznej po uderzeniu meteorytu i wyrzuceniu w przestrzeń. Ciekawie by było, gdyby okazało się po przechwyceniu obiektu spoza układu jak jak Oumuamua, że są tam jakieś prymitywne formy życia zahibernowane w wiecznej zmarzlinie na miliony lat albo mikro skamieliny. Jest to oczywiście sfera dzikich spekulacji, a szanse na taki scenariusz są skrajnie mało prawdopodobne :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Kosmiczna niezwykłość, która rzuca wyzwanie naszemu rozumieniu wszechświata, pokazuje, jaki los może spotkać Drogę Mleczną. Międzynarodowy zespół naukowy, który pracował pod kierunkiem ekspertów z CHRIST University w Bangalore, badał olbrzymią galaktykę spiralną położoną w odległości miliarda lat świetlnych od Ziemi. W centrum galaktyki znajduje się supermasywna czarna dziura o masie miliardy razy większej od masy Słońca, która napędza gigantyczne dżety radiowe o długości 6 milionów lat świetlnych.
      Badana galaktyka jest jedną z największych znanych galaktyk spiralnych. Równie wyjątkowe są jej dżety. Tak potężne znajdowano dotychczas niemal wyłącznie w galaktykach eliptycznych, nie spiralnych. To oznacza, że potencjalnie i Droga Mleczna mogłaby wygenerować w przyszłości tak potężne dżety. Jeśli by do tego doszło, mogłoby to oznaczać masowe wymieranie na Ziemi w wyniku intensywnego promieniowania
      To odkrycie skłania nas do przemyślenia ewolucji galaktyk, zwiększania masy czarnych dziur i oraz sposobu, w jaki kształtują one swoje otoczenie. Jeśli galaktyka spiralna jest w stanie nie tylko przetrwać, ale i rozwijać się w tak ekstremalnych warunkach, co to oznacza dla przyszłości Drogi Mlecznej? Czy nasza galaktyka doświadczy w przyszłości takiego wysokoenergetycznego zjawiska, które będzie miało poważne konsekwencje dla życia?, zastanawia się główny autor badań, profesor Joydeep Bagchi.
      Badacze wykorzystali Teleskop Hubble'a, Giant Metrewave Radio Telescope oraz Atacama Large Millimeter Wave Array za pomocą których przyjrzeli się galaktyce 2MASX J23453268−0449256. Ma ona średnicę 3-krotnie większą od Drogi Mlecznej. W jej wnętrzu odkryli supermasywną czarną dziurę emitującą potężne dżety. Właśnie te dżety są najbardziej zaskakujące. Obowiązuje bowiem pogląd, zgodnie z którym tak aktywne dżety powinny zniszczyć delikatną strukturę galaktyki spiralnej.
      Tymczasem 2MASX J23453268−0449256 ma dobrze widoczne ramiona, niewielką poprzeczkę oraz otaczający ją niezakłócony wewnętrzny pierścień gwiazd o średnicy 4,4 kpc (ponad 14 000 lat świetlnych). Galaktykę otacza rozległe halo gorącego gazu emitującego promieniowanie rentgenowskie. Halo powoli stygnie, jednak potężne dżety działają jak piec, uniemożliwiając tworzenie się tam gwiazd, pomimo wystarczającej do ich powstania ilości materiału.
      Centralna czarna dziura w Drodze Mlecznej – Sagittarius A (Sgr A*) – ma masę 4 milionów mas Słońca i jest wyjątkowo spokojna. Jednak, jak mówią badacze, może się to zmienić, jeśli wchłonie duża chmurę gazu, gwiazdę czy galaktykę karłowatą. W takiej sytuacji mogłyby pojawić się duże dżety. Takie zjawiska, zwane rozerwaniami pływowymi (TDE – tidal disruption event), obserwowano już w innych galaktykach. Gdyby Sgr A* zaczęła napędzać dżety, to ich wpływ zależałby od siły, kierunku i emisji energii. Taki dżet skierowany w pobliże Układu Słonecznego mógłby pozbawić planety atmosfery, doprowadzić do uszkodzeń DNA w wyniku zwiększonego promieniowania. pozbawić Ziemię warstwy ozonowej i doprowadzić do masowego wymierania.
      Autorzy badań zauważyli też, że 2MASX J23453268−0449256 zawiera 10-krotnie więcej ciemnej materii niż Droga Mleczna. Jej obecność może być kluczowa dla stabilności tej szybko obracającej się galaktyki. Fascynującym tematem przyszłych badań może być przeanalizowanie zależności pomiędzy ciemną materią, aktywnością czarnej dziury a strukturą tej galaktyki.
      Ze szczegółami można zapoznać się na łamach Monthly Notices of the Royal Astronomical Society.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Losy wszechświata zależą od równowagi pomiędzy ciemną energią, a materią. Dark Energy Spectroscopic Instrument (DESI), zamontowany na Kitt Peak w Arizonie działa od 2021 roku i zebrał dane o milionach galaktyk i kwazarów, dzięki czemu powstała największa trójwymiarowa mapa wszechświata. Gdy zaś naukowcy połączyli dane z DESI z danymi uzyskanymi z innych instrumentów, pojawiły się wskazówki, że ciemna energia – o której sądzono, że jest stałą kosmologiczną – ewoluuje w niespodziewany sposób i słabnie z czasem. A to oznacza, że standardowy model kosmologiczny może wymagać aktualizacji.
      DESI to międzynarodowy eksperyment zarządzany przez Lawrence Berkeley National Laboratory (LBNL). Zaangażowanych weń jest ponad 900 naukowców z ponad 70 instytucji badawczych na całym świecie. To co widzimy, jest niezwykle intrygujące. Bardzo ekscytująca jest świadomość, że możemy być o krok od wielkiego odkrycia dotyczącego ciemnej energii i natury wszechświata, mówi profesor Alexie Leauthaud-Harnett, rzecznik prasowa DESI.
      Same w sobie dane z DESI są zgodne z najpowszechniej uznawanym modelem wszechświata Lambda-CDM (ΛCDM), gdzie Λ to ciemna energia będącą tutaj stałą kosmologiczną, a CDM to zimna ciemna materia. Jeśli jednak połączy się te dane z wynikami badań mikrofalowego promieniowania tła (CMB), supernowych oraz słabego soczewkowania grawitacyjnego, coraz bardziej staje się oczywiste, że ciemna energia może słabnąć w czasie i inne modele kosmologiczne mogą lepiej opisywać rzeczywistość.
      Coraz bardziej i bardziej wygląda na to, że musimy zmodyfikować nasz standardowy model kosmologiczny tak, by wszystkie dane do siebie pasowały. A przyjęcie, że ciemna energia ulega ewolucji wydaje się najbardziej obiecującą metodą modyfikacji, dodaje profesor Will Percival, drugi z rzeczników prasowych DESI.
      Jak na razie poziom ufności, że rzeczywiście chodzi o ewolucję ciemnej energii nie osiągnął 5 sigma, kiedy to mówi się o odkryciu. Jednak różne kombinacje danych z DESI z pomiarami CMB, supernowych i soczewkowania dają wartości od 2,8 do 4,2 sigma. Poziom 3 sigma oznacza, że istnieje 0,3% szansy, iż uzyskane dane nie są prawdziwe. Pozornie to niewiele, jednak w fizyce już niejednokrotnie zdarzało się, że obserwacje o poziomie ufności 3 sigma po uwzględnieniu dodatkowych danych okazywały się anomalią statystyczną. Dlatego właśnie o odkryciu jest mowa przy poziomie 5 sigma.
      Pozwalamy wszechświatowi opowiedzieć nam, jak działa i być może mówi nam, że jest bardziej złożony, niż sądziliśmy. To niezwykle interesujące, a coraz więcej linii dowodowych prowadzi nas w tym samym kierunku, dodaje Andrei Cuceu, który stoi na czele grupy roboczej Lyman-alpha, mapującej odległe obszary wszechświata na podstawie rozkładu międzygalaktycznego wodoru.
      Jeśli rzeczywiście ciemna energia słabnie, nie wiemy, co to oznacza. Być może rozszerzanie wszechświata się zatrzyma i pod wpływem grawitacji zacznie się on kurczyć. A być może ciemna energia ulegnie dodatkowemu wzmocnieniu i wszechświat zacznie rozszerzać się jeszcze szybciej. Nowe obserwacje otwierają przed teoretykami nowe możliwości. O ile, oczywiście, są prawdziwe.
      DESI prowadzi jeden z najszerzej zakrojonych przeglądów kosmosu. Supernowoczesny instrument jest w stanie jednocześnie badać światło z 5000 galaktyk. Celem projektu jest zbadanie 50 milionów galaktyk i kwazarów. Cel ten może zostać osiągnięty pod koniec 2026 lub na początku 2027 roku. W międzyczasie, jeszcze w bieżącym roku DESI opublikuje wyniki badań nad gromadzeniem się galaktyk i materii w ciągu miliardów lat. Proces ten obrazuje wzajemne oddziaływanie grawitacji i ciemnej energii. Wyniki tych badań powinny jeszcze lepiej pokazać, czy rzeczywiście ciemna energia ulega osłabieniu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba (JWST) pozwala na oglądanie kosmosu tak dokładnie, jak nigdy wcześniej. Dostarczył wielu danych, które zaskoczyły naukowców i zmusiły ich do uściślenia obowiązujących teorii, przyczynił się do pojawienia nowych hipotez, ma udział w interesujących odkryciach. Lior Shamir z Kansas State University poinformował na łamach Monthly Notices of the Royal Astronomical Society o kolejnej zaskakującej obserwacji. Uczony zauważył, że zdecydowana większość galaktyk spiralnych obraca się w tę samą stronę, przeciwną względem obrotu Drogi Mlecznej.
      Jeśli kierunek obrotu galaktyk byłby przypadkowy, to liczba galaktyk obracających się zgodnie z ruchem wskazówek zegara powinna być mniej więcej taka sama, co liczba galaktyk obracających się w stronę przeciwną. Tymczasem gdy Shamir przeanalizował dane dotyczące 263 galaktyk obserwowanych przez Webba w ramach programu James Webb Space Telescopce Advanced Deep Extragalactic Survey (JADES) okazało się, że 2/3 z nich (158) obraca zgodnie z ruchem wskazówek zegara, a obrót 1/3 (105) zachodzi w kierunku przeciwnym. To od razu rzuca się w oczy. Nie trzeba mieć specjalnych zdolności czy wiedzy, by zobaczyć, że liczby są tak bardzo różne. Dzięki JWST każdy może to zobaczyć, dziwi się Shamir.
      To nie pierwszy raz gdy Shamir, ale też i inni uczeni, zauważają taki rozdźwięk. W swojej pracy Shamir wspomina na przykład o galaktykach obrazowanych w ramach SDSS (Sloan Digital Sky Survey). Badania ponad 36 000 galaktyk również pokazują nierównowagę i – co interesujące – im bardziej galaktyki są od nas oddalone, tym nierównowaga ta większa.
      Wracając jednak do obecnych badań, Shamir stwierdza, że istnieją dwa możliwe wyjaśnienia zaobserwowanego zjawiska. Być może wszechświat obracał się w momencie narodzin. Wyjaśnienie to jest zgodne z teoriami takimi jak kosmologia czarnej dziury, zgodnie z którą cały wszechświat znajduje się wewnątrz czarnej dziury. Jeśli jednak rzeczywiście wszechświat obracał się w momencie narodzin, to oznacza, że obowiązujące teorie są niekompletne, mówi Shamir.
      Ziemia, wraz z Układem Słonecznym, krążą wokół centrum Drogi Mlecznej. Efekt Dopplera powoduje, że galaktyki obracające się w przeciwnym kierunku, niż obrót Ziemi względem centrum naszej galaktyki, będą wydawały się nam jaśniejsze. Tutaj może tkwić kolejne z możliwych wyjaśnień naszej zagadki. Astronomowie powinni brać pod uwagę wpływ prędkości obrotowej Drogi Mlecznej – zjawisko to się pomija, gdyż powszechnie uważa się, że jego wpływ jest pomijalny – na pomiary dotyczące innych galaktyk.
      Jeśli rzeczywiście w tym tkwi problem, to musimy inaczej skalibrować instrumenty do obserwacji głębokich partii kosmosu. Zmiana kalibracji i pomiarów odległości pozwoliłaby też rozwiązać kilka ważnych zagadek kosmologicznych, takich jak prędkość rozszerzania się wszechświata czy istnienie galaktyk, które – zgodnie z obecnymi pomiarami – są starsze od wszechświata, mówi Shamir.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W danych z nieczynnego już satelity ROSAT (Roentgen Satellite) znaleziono największą superstrukturę w lokalnym wszechświecie. I, jak twierdzą jej odkrywcy, największą w ogóle strukturę, o której można powiedzieć, że stanowi całość. Naukowcy z Instytutu Maxa Plancka, Uniwersytetu Ludwika i Maksymiliana w Monachium, Uniwersytetu w Kapsztadzie i Europejskiej Agencji Kosmicznej przyjrzeli się obszarowi położonemu w odległości 416–826 milionów lat świetlnych od Ziemi (przesunięcie ku czerwieni z=0,03–0,06). Zauważyli tam gigantyczną superstrukturę o długości 1,4 miliarda lat świetlnych. Nazwali ją Quipu.
      W wielkiej skali wszechświat jest niemal homogeniczny. Jednak gdy przyjrzymy się mniejszym skalom, okazuje się, że występują w nim znaczne różnice w rozkładzie materii. Dokładna wiedza na ten temat jest niezbędna do prowadzenia badań kosmologicznych. Jeśli przyjrzysz się rozkładowi gromad galaktyk na nieboskłonie na sferze znajdującej się w odległości 416–826 milionów lat świetlnych, natychmiast zobaczysz olbrzymią strukturę, która rozciąga się od wysokości północnych niemal do południowej krawędzie nieboskłonu, mówi główny autor bada Hans Böhringer. Składa się ona z 68 gromad galaktyk, ma około 1,4 miliarda lat świetlnych długości, a jej masę oszacowano na 2,4x1017 mas Słońca. Wykracza ona poza wszystko, co dotychczas udało się wiarygodnie zmierzyć we wszechświecie.
      Satelita ROSAT w ciągu ośmiu lat pracy dokonał przeglądu całego nieba w zakresie promieniowania rentgenowskiego. Dzięki niemu skatalogowano około 80 tysięcy źródeł takiego promieniowania i około 6 tysięcy źródeł skrajnego ultrafioletu. Dostarczone przez niego dane wciąż są analizowane i opracowywane. Dzięki nim naukowcy stworzyli bardziej precyzyjne trójwymiarowe mapy rozkładu gromad galaktyk. Stworzony w ten sposób katalog opisuje przestrzeń w odległości do 1 miliarda lat świetlnych od Ziemi.
      Odkrycie Quipu ma duże znaczenie dla pomiarów kosmologicznych. Obecność taki struktur wpływa bowiem na pomiary stałej Hubble'a czy mikrofalowego promieniowania tła. Nawet jeśli wpływ takich struktur zmienia wartości o kilka procent, to jest wpływ niezmiernie istotny, gdyż potrafimy dokonywać coraz bardziej precyzyjnych pomiarów, wyjaśnia Gayoung Chon z Instytutu Fizyki im. Maxa Plancka.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zwierzęta są nie tylko mieszkańcami Ziemi, ale też jej architektami, kształtującymi krajobraz, w którym żyją. Termity tworzą wysokie kopce i rozległe podziemne korytarze, hipopotamy drążą ścieżki i kanały, a bobry tworzą rozległe mokradła. Dotychczas jednak badania nad zwierzęcymi architektami krajobrazu skupiały się na konkretnych pojedynczych gatunkach. Profesor Gemma Harvey i jej zespół z Queen Mary University w Londynie opublikowali na łamach PNAS pierwszą globalną syntezę wiedzy o takich gatunków. Uczeni zidentyfikowali 603 gatunki, rodzaje i rodziny, które wpływają na procesy toczące się na powierzchni Ziemi.
      Setki gatunków owadów, ssaków, ryb, ptaków czy płazów w znaczący sposób kształtują swoje środowisko. Najczęściej są to przykłady bardzo nieoczywiste. Okazuje się na przykład, że łososie podczas tarła przemieszczają tyle osadów, ile przemieszcza się podczas powodzi. Zwierzęta słodkowodne odgrywają zresztą olbrzymią rolę w kształtowaniu środowiska. Mimo, że wody słodkie zajmują jedynie 2,4% powierzchni planety, to żyje w nich ponad 30% ze zidentyfikowanych gatunków zwierzęcych architektów.
      Autorzy badań ostrożnie obliczają, że energia włożona przez te gatunki w kształtowanie terenu wynosi co najmniej 76 000 GJ, czyli tyle, co energia setek tysięcy potężnych powodzi. To daje wyobrażenie, jak wielką rolę odgrywają zwierzęta. A jest to liczba z całą pewnością znacząco zaniżona, gdyż mamy poważne luki w wiedzy, szczególnie tej dotyczące obszarów tropikalnych i subtropikalnych, gdzie bioróżnorodność jest naprawdę duża, a liczba przeprowadzonych badań ograniczona.
      Dużą rolę w kształtowaniu krajobrazu odgrywają na przykład termity, których kopce w Brazylii pokrywają tysiące kilometrów kwadratowych terenu. Termity czy inni architekci krajobrazu – mrówki – są jednak bardzo rozpowszechnione. Około 1/3 ze wspomnianych w pracy gatunków to gatunki rzadkie, endemiczne lub zagrożone. Jeśli one znikną, dojdzie też do zatrzymania procesów, których są autorami. Będzie to nie tylko strata dla ludzkości, która nigdy nie pozna istoty tych procesów, ale też olbrzymie zagrożenie dla ekosystemów, dla których wiele z tego typu zjawisk odgrywa kluczową rolę.
      Nasze badania pokazują, że rola zwierząt w kształtowaniu krajobrazu Ziemi jest znacznie większa, niż sądziliśmy. Od bobrów tworzących mokradła, po mrówki budujące kopce z Ziemi, procesy te mają kluczowe znaczenie dla środowiska. Doprowadzając do utraty bioróżnorodności ryzykujemy ich utratę, mówi profesor Harvey.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...