Światy z podpowierzchniowymi oceanami oferują życiu bardziej stabilne i bezpieczniejsze warunki niż Ziemia
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
DESI (Dark Energy Spectroscopis Instrument) tworzy największą i najdokładniejszą trójwymiarową mapę wszechświata. W ten sposób zapewnia kosmologom narzędzia do poznania masy neutrin w skali absolutnej. Naukowcy wykorzystują w tym celu dane o barionowych oscylacjach akustycznych – czyli wahaniach w gęstości widzialnej materii – dostarczanych przez DESI oraz informacje z mikrofalowego promieniowania tła, wypełniającym wszechświat jednorodnym promieniowaniu, które pozostało po Wielkim Wybuchu.
Neutrina to jedne z najbardziej rozpowszechnionych cząstek subatomowych. W trakcie ewolucji wszechświata wpłynęły one na wielkie struktury, takie jak gromady galaktyk. Jedną z przyczyn, dla których naukowcy chcą poznać masę neturino jest lepsze zrozumienie procesu gromadzenia się materii w struktury.
Kosmolodzy od dawna sądzą, że masywne neutrina hamują proces „zlepiania się” materii. Innymi słowy uważają, że gdyby nie oddziaływanie tych neutrin, materia po niemal 14 miliardach lat ewolucji wszechświata byłaby zlepiona ze sobą w większym stopniu.
Jednak wbrew spodziewanym dowodom wskazującym na hamowanie procesu gromadzenia się materii, uzyskaliśmy dane wskazujące, że neutrina wspomagają ten proces. Albo mamy tutaj do czynienia z jakimś błędem w pomiarach, albo musimy poszukać wyjaśnienia na gruncie zjawisk, których nie opisuje Model Standardowy i kosmologia, mówi współautor badań, Joel Meyers z Southern Methodist University. Model Standardowy to najlepsza i wielokrotnie sprawdzona teoria budowy wszechświata.
Dlatego też Meyers, który prowadził badania we współpracy z kolegami w Uniwersytetu Kalifornijskiego w Santa Barbara i San Diego oraz Uniwersytetu Johnsa Hopkinsa stwierdza, że jeśli uzyskane właśnie wyniki się potwierdzą, możemy mieć do czynienia z podobnym problemem, jak ten, dotyczący tempa rozszerzania się wszechświata. Tam solidne, wielokrotnie sprawdzone, metody pomiarowe dają różne wyniki i wciąż nie udało się rozstrzygnąć tego paradoksu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wszystkie organizmy żywe wykorzystują metale w czasie podstawowych funkcji życiowych, od oddychania po transkrypcję DNA. Już najwcześniejsze organizmy jednokomórkowe korzystały z metali, a metale znajdziemy w niemal połowie enzymów. Często są to metale przejściowe. Naukowcy z University of Michigan, California Institute of Technology oraz University of California, Los Angeles, twierdzą, że żelazo było tym metalem przejściowym, który umożliwił powstanie życia.
Wysunęliśmy radykalną hipotezę – żelazo było pierwszym i jedynym metalem przejściowym wykorzystywanym przez organizmy żywe. Naszym zdaniem życie oparło się na tych metalach, z którymi mogło wchodzić w interakcje. Obfitość żelaza w pierwotnych oceanach sprawiła, że inne metale przejściowe były praktycznie niewidoczne dla życia, mówi Jena Johnson z University of Michigan.
Johnson połączyła siły z profesor Joan valentine z UCLA i Tedem Presentem z Caltechu. Profesor Valentine od dawna bada, jakie metale wchodziły w skład enzymów u wczesnych form życia, umożliwiając im przeprowadzanie niezbędnych procesów życiowych. Od innych badaczy wielokrotnie słyszała, że przez połowę historii Ziemi oceany były pełne żelaza. W mojej specjalizacji, biochemii i biochemii nieorganicznej, w medycynie i w procesach życiowych, żelazo jest pierwiastkiem śladowym. Gdy oni mi powiedzieli, że kiedyś nie było pierwiastkiem śladowym, dało mi to do myślenia, mówi uczona.
Naukowcy postanowili więc sprawdzić, jak ta obfitość żelaza w przeszłości mogła wpłynąć na rozwój życia. Ted Present stworzył model, który pozwolił na sprecyzowanie szacunków dotyczących koncentracji różnych metali w ziemskich oceanach w czasach, gdy rozpoczynało się życie. Najbardziej dramatyczną zmianą, jaka zaszła podczas katastrofy tlenowej, nie była zmiana koncentracji innych metali, a gwałtowny spadek koncentracji żelaza rozpuszczonego w wodzie. Nikt dotychczas nie badał dokładnie, jaki miało to wpływ na życie, stwierdza uczona.
Badacze postanowili więc sprawdzić, jak przed katastrofą tlenową biomolekuły mogły korzystać z metali. Okazało się, że żelazo spełniało właściwie każdą niezbędną rolę. Ich zdaniem zdaniem, ewolucja może korzystać na interakcjach pomiędzy jonami metali a związkami organicznymi tylko wówczas, gdy do interakcji takich dochodzi odpowiednio często. Obliczyli maksymalną koncentrację jonów metali w dawnym oceanie i stwierdzili, że ilość jonów innych biologiczne istotnych metali była o całe rzędy wielkości mniejsza nią ilość jonów żelaza. I o ile interakcje z innymi metalami w pewnych okolicznościach mogły zapewniać ewolucyjne korzyści, to - ich zdaniem - prymitywne organizmy mogły korzystać wyłącznie z Fe(II) w celu zapewnienia sobie niezbędnych funkcji spełnianych przez metale przejściowe.
Valentine i Johnson chciały sprawdzić, czy żelazo może spełniać w organizmach żywych te funkcje, które obecnie spełniają inne metale. W tym celu przejrzały literaturę specjalistyczną i stwierdziły, że o ile obecnie życie korzysta z innych metali przejściowych, jak cynk, to nie jest to jedyny metal, który może zostać do tych funkcji wykorzystany. Przykład cynku i żelaza jest naprawdę znaczący, gdyż obecnie cynk jest niezbędny do istnienia życia. Pomysł życia bez cynku był dla mnie trudny do przyjęcia do czasu, aż przekopałyśmy się przez literaturę i zdałyśmy sobie sprawę, że gdy nie ma tlenu, który utleniłby Fe(II) do Fe(III) żelazo często lepiej spełnia swoją rolę w enzymach niż cynk, mówi Valentine. Dopiero po katastrofie tlenowej, gdy żelazo zostało utlenione i nie było tak łatwo biologicznie dostępne, życie musiało znaleźć inne metale, które wykorzystało w enzymach.
Zdaniem badaczy, życie w sytuacji powszechnej dostępności żelaza korzystało wyłącznie z niego, nie pojawiła się potrzeba ewolucji w kierunku korzystania w innych metali. Dopiero katastrofa tlenowa, która dramatycznie ograniczyła ilość dostępnego żelaza, wymusiła ewolucję. Organizmy żywe, by przetrwać, musiały zacząć korzystać z innych metali. Dzięki temu pojawiły się nowe funkcje, które doprowadziły do znanej nam dzisiaj różnorodności organizmów żywych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Teleskop Webba dostarczył wielu wyjątkowych informacji, które pozwalają lepiej zrozumieć wszechświat. Były wśród nich i takie, które spowodowały, że zaczęto mówić o kryzysie w kosmologii i konieczności rewizji modeli. Jak bowiem stwierdzono, we wczesnym wszechświecie istniały galaktyki znacznie bardziej masywne, niż wynika to z obecnie stosowanych modeli. Tak masywne galaktyki nie powinny pojawić się tak krótko po Wielkim Wybuchu. Autorzy najnowszej pracy twierdzą jednak, że – przynajmniej niektóre z nich – są znacznie mniej masywne, niż się wydawało.
Autorką najnowszych badań jest Katherine Chworowsky i jej zespół z University of Texas w Austin. Jak zauważyli badacze, galaktyki położone dalej, a więc starsze, wciąż były mniejsze od tych, położonych bliżej. Wszystko się więc zgadzało. To była wskazówka, że warto przyjrzeć się bliżej temu zjawisku.
Naukowcy wykonali więc szczegółową analizę danych z Webba zebranych w ramach projektu Cosmic Evolution Early Release Science (CEERS) i znaleźli w nich sygnały świadczące o istnieniu szybko przemieszczającego się wodoru. Wszystko więc wskazuje na to, że galaktyki, które wydają się zbyt masywne, jak na swój wiek, zawierają czarne dziury, które w bardzo szybkim tempie wchłaniają otaczający je gaz. Ten szybko poruszający się gaz emituje tak dużo światła, że wydaje się, iż galaktyki zawierają znacznie więcej gwiazd, niż w rzeczywistości. A więc, że są znacznie bardziej masywne. Gdy badacze usunęli te „podejrzane” galaktyki z analizy, okazało się, ze cała reszta starych galaktyk mieści się w ramach przewidzianych obecnymi modelami. Tak więc standardowy model kosmologiczny nie przeżywa kryzysu. Za każdym razem, gdy mamy teorię, która tak długo wytrzymała próbę czasu, potrzebujemy przytłaczających dowodów, by ją obalić. A tak nie jest w tym przypadku, mówi profesor Steven Finkelstein, którego badania w ramach projektu CEERS dostarczyły dowodów wykorzystanych przez zespół Chworowsky.
O ile więc naukowcom udało się rozwiązać główny problem dotyczący zbyt dużej masy galaktyk we wczesnym wszechświecie, nierozwiązana pozostała jeszcze jedna zagadka. W danych Webba widzimy bowiem niemal dwukrotnie więcej masywnych starych galaktyk, niż wynika to z modelu kosmologicznego. Może we wczesnym wszechświecie galaktyki bardziej efektywnie zmieniały gaz w gwiazdy, zastanawia się Chworowsky.
Gwiazdy powstają, gdy gaz schłodzi się na tyle, że zapada się pod wpływem grawitacji. Dochodzi wówczas do jego kondensacji w gwiazdę. Jednak w miarę kurczenia się obłoku gazu, jego temperatura wzrasta i pojawia się ciśnienie skierowane na zewnątrz. W naszym kosmicznym sąsiedztwie istnieje równowaga obu tych sił - skierowanego do wewnątrz ciśnienia chłodnego gazu i skierowanego na zewnątrz ciśnienia zapadającej się gwiazdy, przez co gwiazdy tworzą się bardzo powoli. Być może jednak we wczesnym wszechświecie, który był bardziej gęsty od obecnego, ciśnienie skierowane na zewnątrz napotykało większy opór, więc gwiazdy tworzyły się szybciej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jedno z ważnych pytań o początki życia brzmi: w jaki sposób cząstki RNA swobodnie przemieszczające się w pierwotnej zupie zostały opakowane w chronione błoną komórki. Odpowiedź na to pytanie zaproponowali właśnie na łamach Science Advances inżynierowie i chemicy z Uniwersytetów w Chicago i w Houston oraz Jack Szostak, laureat Nagrody Nobla w dziedzinie fizjologii lub medycyny. W swoim artykule pokazują, jak przed 3,8 miliardami lat krople deszczu mogły ochronić pierwsze protokomórki i umożliwić powstanie złożonych organizmów żywych.
Uczeni przyjrzeli się koacerwatom, dużym grupom cząstek, samoistnie tworzącym się w układach koloidalnych (niejednorodnych mieszaninach). Zachowanie koacerwatów można porównać do zachowania kropli oleju w wodzie.
Już dawno pojawiła się hipoteza, że nie posiadające błon mikrokrople koacerwatów mogły być modelowymi protokomórkami, gdyż mogą rosnąć, dzielić się i gromadzić wewnątrz RNA. Jednak błyskawiczna wymiana RNA pomiędzy koacerwatami, ich szybkie łączenie się, zachodzące w ciągu minut oznaczają, że poszczególne krople nie są w stanie utrzymać swojej odrębności genetycznej. To zaś oznacza, że ewolucja darwinowska nie jest możliwa, a populacja takich protokomórek byłaby narażona na błyskawiczne załamanie w wyniku rozprzestrzeniania się pasożytniczego RNA, czytamy w artykule. Innymi słowy każda kropla, która zawierałaby mutację potencjalnie użyteczną na drodze do powstania życia, błyskawicznie wymieniałaby swoje RNA z innymi RNA, nie posiadającymi takich pożytecznych mutacji. W bardzo szybkim tempie wszystkie krople stałyby się takie same. Nie byłoby różnicowania, konkurencji, a zatem nie byłoby ewolucji i nie mogłoby powstać życie.
Jeśli dochodzi do ciągłej wymiany molekuł czy to między kroplami czy między komórkami i po krótkim czasie wszystkie one wyglądają tak samo, to nie pojawi się ewolucja. Będziemy mieli grupę klonów, wyjaśnia Aman Agrawal z Pritzker School of Molecular Engineering na University of Chicago.
Nauka od dawna zastanawia się, co było pierwszą molekułą biologiczną. To problem kury i jajka. DNA koduje informacje, ale nie przeprowadza żadnych działań. Białka przeprowadzają działania, ale nie przenoszą informacji. Badacze tacy jak Szostak wysunęli hipotezę, że pierwsze było RNA. To molekuła jak DNA, zdolna do kodowania informacji, ale zawija się jak białko.
RNA było więc kandydatem na pierwszy materiał biologiczny, a koacerwaty kandydatami na pierwsze protokomórki. Wszystko wydawało się dobrze układać, aż w 2014 roku Szostak opublikował artykuł, w którym informował, że wymiana materiału pomiędzy kroplami koacerwatów zachodzi zbyt szybko. Możesz stworzyć różnego rodzaju krople koacerwatów, ale nie zachowają one swojej unikatowej odrębności. Zbyt szybko będą wymieniały RNA. To był problem z którym przez długi czas nie potrafiono sobie poradzić, mówi Szostak.
W naszym ostatnim artykule wykazaliśmy, że problem ten można przynajmniej częściowo przezwyciężyć, jeśli koacerwaty zamkniemy w wodzie destylowanej – na przykład wodzie deszczowej czy jakiejś innej słodkiej wodzie. W kroplach takich pojawia się rodzaj wytrzymałej błony, która ogranicza wymianę zawartości, dodaje uczony.
Na trop tego zjawiska naukowcy wpadli, gdy Aman Agrawal był na studiach doktoranckich. Badał zachowanie koacerwatów poddanych działaniu pola elektrycznego w destylowanej wodzie. Jego badania nie miały nic wspólnego z początkami życia. Interesował go fascynujący materiał z inżynieryjnego punktu widzenia. Manipulował napięciem powierzchniowym, wymianą soli, molekuł itp. Chciał w swojej pracy doktorskiej badać podstawowe właściwości koacerwatów.
Pewnego dnia Agrawal jadł obiad z promotorem swojej pracy magisterskiej, profesorem Alamgirem Karimem oraz jego starym znajomym, jednym ze światowych ekspertów inżynierii molekularnej, Matthew Tirrellem. Tirrell zaczął się zastanawiać, jak badania Agrawala nad wpływem wody destylowanej na koacerwaty mogą się mieć do początków życia na Ziemi. Zadał swoim rozmówcom pytanie, czy 3,8 miliarda lat temu na naszej planecie mogła istnieć woda destylowana. Spontanicznie odpowiedziałem „deszczówka”! Oczy mu się zaświeciły i od razu było widać, że jest podekscytowany tym pomysłem. Tak połączyły się nasze pomysły, wspomina profesor Karim.
Tirrell skontaktował Agrawla z Szostakiem, który niedawno rozpoczął na Uniwersytecie Chicagowskim nowy projekt badawczy, nazwany z czasem Origins of Life Initiative. Profesor Tirrel zadał Szostakowi pytanie: Jak sądzisz, skąd na Ziemi przed powstaniem życia mogła wziąć się woda destylowana. I Jack odpowiedział dokładnie to, co już usłyszałem. Że z deszczu.
Szostak dostarczył Agrawalowi próbki DNA do badań, a ten odkrył, że dzięki wodzie destylowanej transfer RNA pomiędzy kroplami koacerwatów znacząco się wydłużył, z minut do dni. To wystarczająco długo, że mogło dochodzić do mutacji, konkurencji i ewolucji. Gdy mamy populację niestabilnych protokomórek, będą wymieniały materiał genetyczny i staną się klonami. Nie ma tutaj miejsca na ewolucję w rozumieniu Darwina. Jeśli jednak ustabilizujemy te protokomórki tak, by przechowywały swoją unikatową informację wystarczająco długo, co najmniej przez kilka dni, może dojść do mutacji i cała populacja będzie ewoluowała, stwierdza Agrawal.
Początkowo Agrawal prowadził swoje badania z komercyjnie dostępną laboratoryjną wodą destylowaną. Jest ona wolna od zanieczyszczeń, ma neutralne pH. Jest bardzo odległa od tego, co występuje w naturze. Dlatego recenzenci pisma naukowego, do którego miał trafić artykuł, zapytali Agrawala, co się stanie, jeśli woda będzie miała odczyn kwasowy, będzie bardziej podobna do tego, co w naturze.
Naukowcy zebrali więc w Houston deszczówkę i zaczęli z nią eksperymentować. Gdy porównali wyniki badań z wykorzystaniem naturalnej deszczówki oraz wody destylowanej laboratoryjnie, okazało się, że są one identyczne. W obu rodzajach wody panowały warunki, które pozwalałyby na ewolucję RNA wewnątrz koacerwatów.
Oczywiście skład chemiczny deszczu, który pada obecnie w Houston, jest inny, niż deszczu, który padał na Ziemi przed 3,8 miliardami lat. To samo zresztą można powiedzieć o modelowych protokomórkach. Autorzy badań dowiedli jedynie, że taki scenariusz rozwoju życia jest możliwy, ale nie, że miał miejsce.
Molekuły, których użyliśmy do stworzenia naszych protokomórek to tylko modele do czasu, aż znajdziemy bardziej odpowiednie molekuły. Środowisko chemiczne mogło się nieco różnić, ale zjawiska fizyczne były takie same, mówi Agrawal.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W 1929 roku Edwin Hubble odkrył, że najbardziej odległe galaktyki oddalają się od Ziemi szybciej, niż galaktyki pobliskie. Tym samym dowiedzieliśmy się, że wszechświat się rozszerza. Jednak tempo jego rozszerzania stanowi jedną z najważniejszych zagadek kosmologicznych. Spór w tej kwestii trwa od dziesięcioleci. Naukowcy, korzystający z różnych, solidnych i wielokrotnie sprawdzonych, metod pomiaru otrzymują dwa różne wyniki. Być może jednak pogodzą ich nowe badania, których autorzy – wykorzystując Teleskop Webba – zmierzyli tempo ucieczki 10 pobliskich galaktyk i uzyskali nową wartość rozszerzania się wszechświata.
Tempo rozszerzania się wszechświata – stała Hubble'a – mierzone jest dwiema głównymi metodami. Jedna z nich to pomiar promieniowania mikrofalowego tła, czyli światła, które pozostało z Wielkiego Wybuchu. Badanie tą metodą pokazuje, że wszechświat rozszerza się w tempie 67,4 km/s/Mpc (kilometra na sekundę na megaparsek). Druga metoda wykorzystuje do pomiaru świece standardowe, obiekty o znanej jasności. Im są dalej, tym słabsze dociera z nich światło, co pozwala na pomiary odległości i prędkości oddalania się. Pomiary tą metodą dają wynik 74 km/s/Mpc. Oba wyniki na tyle się różnią, że skłoniły naukowców do przypuszczeń, iż standardowy model kosmologiczny – Lambda-CDM – może wymagać zmiany. Zwraca się uwagę, że jedna z tych metod bada mikrofalowe promieniowanie tła, zatem najwcześniejsze ślady wszechświata, a druga współczesne galaktyki, może więc w międzyczasie doszło do jakiejś istotnej zmiany, której Lambda-CDM nie uwzględnia.
Zagadnieniu temu przyjrzała się kosmolog Wendy Freedman z University of Chicago, która specjalizuje się w badaniu tempa rozszerzania wszechświata metodą świec standardowych. Wraz ze swoim zespołem wykorzystała Teleskop Webba do przyjrzenia się 10 pobliskim galaktykom. Naukowcy wykorzystali przy tym trzy różne metody badawcze, które posłużyły im do wzajemnego sprawdzania uzyskanych wyników. W pierwszej z nich do pomiarów użyli cefeid, niezwykle jasnych gwiazd, które regularnie pulsują, zmieniając swoją jasność. Drugą z metod była TRGB (tip of the red giant branch - wierzchołek gałęzi czerwonych olbrzymów), która wykorzystuje fakt, że gwiazdy o niskiej masie osiągają pewną maksymalną jasność. W ostatniej metodzie, JAGB (J-Region Asymptotic Giant Branch), wykorzystano gwiazdy węglowe, których jasność i kolor są stałe w bliskiej podczerwieni. To pierwsze prace, w czasie których użyto wszystkich tych trzech metod do zbadania tych samych galaktyk.
Wszystkie trzy metody, po uwzględnieniu marginesu błędu, dały wartość bliższą wartości uzyskiwanej z badania mikrofalowego promieniowania tła. Odległości mierzone metodami TRGB i JAGB zgadzały się z dokładnością do 1%, ale różniły się od odległości z cefeid o 2,5–4 procent. Średnia wartość stałej Hubble'a uzyskana z tych dwóch pierwszych metod wynosi 69,03+/-1,75 km/s/Mpc, czytamy w artykule udostępnionym na łamach arXiv. Również dane z pomiarów cefeid są zbliżone do tych wartości i mieszczą się w marginesach błędu.
Pomiary dokonane przez uczonych z Chicago mogą wskazywać, że nie potrzebujemy poprawek do modelu kosmologicznego, a różnica w uzyskiwanych dotychczas wynikach to skutek błędów systematycznych.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.