
Światy z podpowierzchniowymi oceanami oferują życiu bardziej stabilne i bezpieczniejsze warunki niż Ziemia
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Niedługo po tym, jak Teleskop Jamesa Webba rozpoczął pracę, naukowcy zauważyli na przesłanych przez niego zdjęciach coś niezwykłego – niewielkie czerwone kropki. Niezwykłe obiekty były wyraźne i było ich całkiem sporo. Od razu stało się jasne, że Webb zauważył coś, czego nie widział Hubble. Kolejne spływające dane pokazały, że obiekty są kompaktowe i znajdują się w odległości 12 miliardów lat świetlnych. A analizy widma światła nie pasowały do żadnych znanych nam obiektów. Astronomowie musieli więc szukać poza standardowymi wyjaśnieniami.
Jedną z pierwszych hipotez było stwierdzenie, że małe czerwone kropki to galaktyki o niezwykle dużym zagęszczeniu gwiazd, a silnie czerwona barwa pochodzi od otaczających je chmur pyłu. Jeśli zamkniemy Układ Słoneczny w sześcianie o boku 1 roku świetlnego, to znajdzie się w nim 1 gwiazda – Słońce. Zgodnie z nową hipotezą, w czerwonych kropkach w takim sześcianie miały istnieć setki tysięcy gwiazd. Byłoby to niezwykle duże zagęszczenie. Najbardziej gęstym regionem Drogi Mlecznej jest jej centrum. Tam w sześcianie o boku 1 roku świetlnego znaleźlibyśmy około tysiąca gwiazd. Istnienie zagęszczenia gwiazd takiego, jakie postulowano dla czerwonych kropek oznaczałoby, że gwiazdy powstają również w sposób, jakiego wcześniej nie obserwowaliśmy.
Wkrótce jednak zaproponowano kolejne wyjaśnienie: czerwone kropki miały być aktywnymi jądrami galaktyk (AGN) otoczonymi chmurami pyłu. AGN-y emitują duże ilości energii, która wytwarzania jest podczas opadania materiału na supermasywną czarną dziurę. Jednak widmo spektroskopowe kropek nie zgadzało się z widmem znanych AGN, ponadto ta hipoteza wymagałaby istnienia supermasywnych czarnych dziur, a biorąc pod uwagę liczbę czerwonych kropek, dziur musiałoby być zaskakująco wiele.
Anna de Graaff z Instytutu Astronomii im. Maxa Plancka w Heidelbergu i jej międzynarodowy zespół zaangażowali do pracy nową aplikację RUBIES (Red Unknowns: Bright Infrared Extragalactic Survey).
Pomiędzy styczniem a grudniem ubiegłego roku aplikacja wykorzystała niemal 60 godzin czasu obserwacyjnego Webba do uzyskania widm 4500 galaktyk. Wśród nich znaleziono 35 czerwonych kropek. Najważniejszym, najbardziej obiecującym znaleziskiem było zauważenie obiektu, który nazwano „Klifem”. Znajduje się on 11,9 miliardów lat świetlnych od nas, a jego wyróżniającą się cechą był wyraźny wzrost promieniowania w zakresie ultrafioletu.
Sygnał ten był tak silny, że wymagał nowej interpretacji czerwonych kropek. Ekstremalne właściwości Klifu zmusiły nas do powrotu do tablicy i opracowania nowych modeli, przyznaje de Graaff. Co prawda podobne wzrosty promieniowania UV widoczne są w widmach galaktyk zawierających dużo bardzo gorących młodych gwiazd, jednak nie są one tak gwałtowne. Widać je również w widmach samych młodych gwiazd. I – co było niezmiernie zaskakujące – dane z czerwonych kropek wskazywały, że są one bardziej podobne do pojedynczej gwiazdy niż do galaktyki.
Naukowcy opracowali model, które nazwali „gwiazdą czarnej dziury” (BH*). BH* nie są technicznie gwiazdami, gdyż w ich wnętrzu nie zachodzi fuzja jądrowa, ponadto tworzący je gaz ulega znacznie bardziej gwałtownym turbulencjom niż w gwiazdach. Wedle tej koncepcji BH* to AGN-y, czarne dziury, ale otoczone nie pyłem, a gęstą powłoką wodoru. Gaz gwałtownie opada do czarnej dziury, dochodzi do jego rozgrzania tak, że z zewnątrz całość przypomina gwiazdę.
Jeśli badacze mają rację, i Teleskop Webba odkrył dużą populację supermasywnych czarnych dziur otoczonych gazem, wyjaśniałoby to, mechanizm powstawania supermasywnych czarnych dziur we wczesnym wszechświecie. Bo sygnały istnienia takich dziur odkryto już wcześniej, problemem zaś był mechanizm ich powstawania.
Warto jednak zwrócić uwagę, że hipoteza Graaff i jej zespołu jest nowa. Badania zostały na razie opublikowane w repozytorium arXiv, a nie w recenzowanym piśmie naukowym. I mimo, że dostarcza ona pożądanego wyjaśnienia powstawania supermasywnych czarnych dziur we wczesnym wszechświecie, nie została jeszcze zweryfikowana przez środowisko naukowe.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zęby rekinów to niezwykle skuteczne narzędzie do cięcia mięsa upolowanych zwierząt. Rekiny znane są z tego, że przez całe życie wymieniają tę śmiercionośną broń. W końcu od ostrych zębów zależy ich przeżycie. Okazuje się jednak, że w miarę zakwaszania się oceanów, zęby rekinów mogą stawać się słabsze i bardziej podatne na uszkodzenia. A to może postawić pod znakiem zapytania możliwość przetrwania rekinów.
Naukowcy z Niemiec postanowili zbadać, jak zachowają się zęby rekinów w różnych scenariuszach zakwaszenia oceanów. Wzrost kwasowości wód oceanicznych jest napędzany głównie przez antropogeniczną emisję dwutlenku węgla, który jest pochłaniany przez oceany. Obecnie średnie pH oceanów wynosi 8,1. Do roku 2300 spodziewane jest jego obniżenie do 7,3, co oznacza, że woda stanie się niemal 10-krotnie bardziej kwaśna.
Podczas swoich badań uczeni wykorzystali zęby żarłaczy rafowych czarnopłetwych zebranych przez nurków w akwarium, z którym przetrzymywane są te ryby. Z ponad 600 zębów wybrano 16, które były w doskonałym stanie oraz 36, które zostały użyte do pomiarów. Zęby podzielono na 2 grupy, z których każda była przez 8 tygodni przechowywana w 20-litrowym zbiorniku z morską wodą. W jednym zbiorniku woda miała odczyn pH 8,1, w drugim zaś – pH 7,3.
Okazało się, że zęby ze zbiornika z bardziej kwaśną wodą były znacznie bardziej uszkodzone. Naukowcy stwierdzili obecność widocznych uszkodzeń, takich jak pęknięcia i dziury, uszkodzenia korzeni i osłabienie struktury. Zęby ze zbiornika z bardziej kwaśną wodą miały też większy obwód. Nie oznacza to, ze urosły, ale ich powierzchnia stała się bardziej nieregularna, co skutkowała jej zwiększeniem. Takie nieregularności mogą z jednej strony zwiększać zdolność zębów do cięcia mięsa, jednak z drugiej osłabiają zęby i powodują, że są one bardziej narażone na pękanie.
Autorzy badań podkreślają, że użyli zębów, których rekiny się pozbyły. Zatem nie zachodziły w nich potencjalne procesy ponownej mineralizacji. W przypadku zębów znajdujących się w szczęce rekina sytuacja może być znacznie bardziej złożona. Może mieć miejsce szybsza remineralizacja czy wymiana zębów. Jednak w wodach bardziej kwaśnych procesy te będą z pewnością bardziej kosztowne energetycznie, mówi profesor Sebastian Fraune z Uniwersytetu Heinricha Heine w Düsseldorfie.
Nawet niewielki wzrost kwasowości wód oceanicznych może mieć negatywny wpływ na wiele gatunków zwierząt. Uszkodzenia mogą kumulować się przez długi czas, a zwierzęta nie będą w stanie ich naprawić lub też koszt naprawy będzie bardzo duży. To zaś może zagrozić przetrwaniu poszczególnych osobników lub całych gatunków. To przypomnienie, że zmiany klimatu mają wpływ na całe łańcuchy pokarmowe i ekosystemy, ostrzega główny autor badań, Maximilian Baum z Düsseldorfu.
Z badaniami można zapoznać się na łamach Frontiers in Marine Science.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Szybkie rozbłyski radiowe (FRB) wciąż stanowią zagadkę. Astronomowie ciągle nie wiedzą, co jest ich źródłem, jak powstają, często nie potrafią też określić położenia źródła. Niedawno dzięki rozbudowanemu Canadian Hydrogen Intensity Mapping Experiment (CHIME) zarejestrowano najjaśniejszy z FRB i dokładnie określono jego położenie. To zaś może się przyczynić do rozwiązania zagadki rozbłysków.
Teleskop CHIME powstał, by wykrywać i tworzyć mapę rozkładu wodoru we wszechświecie. Pracę rozpoczął w 2018 roku i od tej pory wykrył około 4000 FRB. Nie był jednak w stanie dokładnie określić lokalizacji rozbłysków. Ostatnio jednak został rozbudowany. Dodano do niego CHIME Outriggers, trzy miniaturowe wersje CHIME rozsiane po całej Ameryce Północnej. Dzięki temu teleskop jest w stanie zlokalizować miejsce rozbłysku. Precyzja narzędzia jest zadziwiająca. Wyobraź sobie, że jesteśmy w Nowym Jorku, a na Florydzie przez tysięczną część sekundy – tyle trwają FRB – rozbłysł świetlik. Zlokalizowanie tej części galaktyki, w której doszło do FRB jest jak wskazanie nie tylko tego, z którego drzewa świetlik pochodzi, ale na której gałęzi przysiadł, mówi Shion Andrew z Kavli Institute.
Wspomniany na wstępie rozbłysk zyskał nieoficjalną nazwę RBLOAT, od „radio brightest flash of all time” (najjaśniejszy rozbłysk radiowy wszech czasów). Jego jasność, w połączeniu ze stosunkowo niewielką odległością, w jakiej do rozbłysku doszło, daje astronomom bezprecedensową okazję do badania tego typu zjawisk. RBFLOAT miał bowiem miejsce w odległości około 130 milionów lat świetlnych od Ziemi, w Gwiazdozbiorze Wielkiej Niedźwiedzicy.
Ultrajasny rozbłysk został wykryty 16 marca 2025 roku. Był tak jasny, że początkowo naukowcy nie byli pewni, czy to FRB czy też jakieś zjawisko, do którego doszło na Ziemi. Okazało się jednak, że teleskopy CHIME Outrigger wskazały, że zjawisko miało miejsce w galaktyce spiralnej NGC4141. Mieliśmy więc do czynienia z jednym z najbliższych i najjaśniejszych z wykrytych FRB.
Dzięki kolejnym obserwacjom tego obszaru astronomowie dowiedzieli się, że FRB pochodził zza krawędzi regionu aktywnego formowania się gwiazd. Autorzy badań wysunęli hipotezę, że źródłem RBFLOAT był magnetar, młoda gwiazda neutronowa o potężnych polach magnetycznych. Lokalizacja miejsca rozbłysku, zaraz za krawędzią regionu formowania się gwiazd, może sugerować, że to magnetar w nieco starszym wieku.
Uczeni przeszukali cały zestaw danych CHIME i nie znaleźli w tym regionie innego rozbłysku. Zatem przynajmniej w ciągu ostatnich 6 lat nie doszło tam do podobnego wydarzenia. Wciąż nie wiadomo, czy powtarzające się i unikatowe FRB mają to samo źródło. Istnieją pewne dowody wskazujące, że nie wszystkie rozbłyski powstają tak samo. Dzięki takim urządzeniom jak CHIME naukowcy mogą rejestrować setki FRB rocznie, porównywać je ze sobą i próbować rozwiązać zagadkę tych niezwykłych zjawisk.
Badania zostały szczegółowo opisane na łamach Astrophysical Journal Letters.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Virginia Tech wykazali, że lodowy dysk może sam się napędzać na odpowiednio przygotowanej powierzchni, podobnie do kropli wody, na którą działa zjawisko Leidenfrosta. Każdy z nas obserwował, że kropla wody upuszczona na gorącą powierzchnię, odparowuje przez długi czas, poruszając się po powierzchni. Amerykańscy uczeni odkryli, że kawałek lodu może samodzielnie napędzać się na powierzchni o wzorze przypominającym układ rybich ości.
Badaczy z Virginia Tech zainspirowała rozwiązana ledwie przed 11 laty zagadka wędrujących głazów z Racetrack Playa z kalifornijskiej Doliny Śmierci. Tam kry, przesuwające się pod wpływem wiatru, przesuwają kamienie. Jonathan Boreyko postanowił stworzyć takie warunki, by lód samodzielnie się przesuwał. Wraz z zespołem przez trzy lata prowadził eksperymenty. Gdy zaś udało się doprowadzić do samodzielnego ruchu lodowego dysku, przez kolejne dwa lata naukowcy tworzyli model wyjaśniający obserwowane zjawisko.
Kluczem do sukcesu była aluminiowa powierzchnia ponacinana we wzór rybich ości. Wystarczy, że powierzchnia zostanie rozgrzana powyżej temperatury topnienia – nie jest więc potrzebna, jak w zjawisku Leidenfrosta, bardzo wysoka temperatura – by lód zaczął się poruszać. Jest on napędzany przez kierunkowy przepływ wody w nacięciach na powierzchni. Początkowo kawałek lodu rusza bardzo wolno, by gwałtownie przyspieszyć.
Niezwykle interesujące okazało się spryskanie powierzchni aluminium cieczą hydrofobową. Naukowcy spodziewali się, że spowoduje to przyspieszenie lodu. Tymczasem dysk w ogóle się nie przesunął. To pozwoliło badaczom wyjaśnić obserwowane zjawisko. Doszli do wniosku, że na powierzchni pokrytej płynem hydrofobowym woda z roztapiającego się lodu zostaje ściśnięta i lodowy dysk utyka na krawędziach wyżłobień. Woda ciągle płynie kanalikami, ale lód nie jest już w stanie się na niej unosić.
Bez powłoki hydrofobowej woda po jednej stronie lodowego dysku tworzy kałużę, jej obecność powoduje nierównowagę napięcia powierzchniowego po obu stronach lodu, co powoduje, że zaczyna się on poruszać.
Boreyko uważa, że odkryte przezeń zjawisko być może posłuży do celów praktycznych. Wyobraźmy sobie, że wzór na powierzchni tworzy okręgi, a nie proste linie. Wówczas roztapiający się obiekt kręciłby się w kółko. A teram wyobraźmy sobie, że na powierzchni lodu umieszczamy magnesy. One też by się obracały, co można by wykorzystać do produkcji energii, stwierdza uczony.
Badania zostały opublikowane na łamach ACS Applied Materials & Interfaces.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Lód w przestrzeni kosmicznej jest inny, niż dotychczas sądzono, wynika z badań przeprowadzonych przez uczonych z University College London i University of Cambridge. Ich zdaniem, zawiera on niewielkie kryształki i nie jest całkowicie nieuporządkowanym amorficznym materiałem, jak woda. Przez dekady uważano, że lód poza Ziemią nie posiada struktury, jest amorficzny, gdyż znacznie niższe niż na Ziemi temperatury nie zapewniają wystarczająco dużo energii, by podczas zamarzania uformowały się kryształy.
Autorzy nowych badań przyjrzeli się najpowszechniej występującej formie lodu we wszechświecie, amorficznemu lodowi o niskiej gęstości, który występuje w kometach, na lodowych księżycach czy w chmurach materiału, z których powstają gwiazdy i planety. Przeprowadzone przez nich symulacje komputerowe wykazały, że lód taki najlepiej odpowiada wynikom analiz gdy nie jest w pełni amorficzny, a zawiera niewielkie kryształki o średnicy 3 nanometrów. Naukowcy przeprowadzili też badania, w czasie których krystalizowali (np. poprzez podgrzewanie) uzyskane w różny sposób próbki amorficznego lodu. Zauważyli, że ostateczna struktura krystaliczna lodu zależała od tego, w jaki sposób został oryginalnie utworzony. Stwierdzili też, że gdyby taki lód był w pełni amorficzny, to nie zachowałby żadnych informacji o swojej wcześniejszej strukturze.
Teraz mamy dobre pojęcie, jak na poziomie atomowym wygląda najbardziej rozpowszechniony lód we wszechświecie. To bardzo ważna wiedza, gdyż lód bierze udział w wielu procesach kosmologicznych, na przykład w formowaniu się planet, ewolucji galaktyk czy przemieszczaniu materii we wszechświecie, wyjaśnia główny autor badań doktor Michael B. Davies.
Lód na Ziemi to kosmologiczny ewenement z powodu wysokich temperatur panujących na naszej planecie. Ma dzięki nim uporządkowaną naturę. Uznawaliśmy, że lód w pozostałych częściach wszechświata jest jak unieruchomiona ciekła woda, nieuporządkowana struktura. Nasze badania pokazują, że nie jest to do końca prawda. I każą zadać pytanie o amorficzne struktury w ogóle. Takie materiały są niezwykle ważne dla nowoczesnych technologii. Na przykład światłowody powinny być amorficzne. Jeśli jednak zawierają niewielkie kryształki, a my będziemy potrafili je usunąć, poprawimy ich wydajność, dodaje profesor Christoph Salzmann.
Badania prowadzono zarówno metodą symulacji komputerowych, jak i tworząc amorficzny lód. Metodami obliczeniowymi sprawdzano dwa rodzaje wirtualnego lodu. Jeden powstawał podczas obniżania temperatury wirtualnych molekuł wody do -120 stopni Celsjusza. W zależności od tempa schładzania otrzymany lód składał się ze struktury krystalicznej i amorficznej w różnych proporcjach. Okazało się, że właściwości wirtualnego lodu zawierającego 20% struktury krystalicznej i 80% amorficznej blisko odpowiadają właściwościom prawdziwego lodu amorficznego o niskiej gęstości, który badano metodą dyfrakcji promieniowania rentgenowskiego. Drugi rodzaj lodu składał się z niewielkich ściśniętych razem kryształków pomiędzy którymi symulowano istnienie struktury amorficznej. Taki lód wykazywał największe podobieństwo do prawdziwego kosmicznego lodu gdy zawierał 25% kryształków.
Natomiast podczas badań eksperymentalnych uzyskiwano amorficzny lód o niskiej gęstości albo poprzez osadzanie pary wodnej na bardzo zimnej powierzchni, albo podgrzewając amorficzny lód o dużej gęstości. Następnie tak uzyskany amorficzny lód o niskiej gęstości był delikatnie podgrzewany, by miał wystarczająco dużo energii do utworzenia kryształów. Różnice w uzyskanej w ten sposób strukturze zależały od pierwotnej metody wytworzenia lodu. W ten sposób naukowcy doszli do wniosku, że gdyby lód taki był całkowicie amorficzny, nie zachowałby pamięci o swojej pierwotnej strukturze.
Lód to potencjalnie bardzo przydatny materiał w kosmosie. Mógłby posłużyć do ochrony pojazdu kosmicznego przed promieniowaniem czy do wytworzenia paliwa. Dlatego musimy lepiej rozumieć jego różne rodzaje i właściwości, podsumowuje doktor Davies.
Źródło: Low-density amorphous ice contains crystalline ice grains, https://journals.aps.org/prb/abstract/10.1103/PhysRevB.112.024203
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.