InSight zmierzyła jądro Marsa
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Z załogową misją na Marsa wiążą się nie tylko duże koszty i problemy techniczne. Jedne i drugie można w końcu przezwyciężyć. Znacznie trudniejsze do pokonania będą ograniczenia ludzkiego organizmu. Wyewoluowaliśmy na Ziemi i jesteśmy przyzwyczajeni do ziemskiej grawitacji oraz zapewnianej przez atmosferę ochrony przed promieniowaniem kosmicznym. Niejednokrotnie informowaliśmy o problemach zdrowotnych astronautów. Pobyt w kosmosie może uszkadzać mózg, nerki, prowadzić do anemii. Od lat pojawiają się też doniesienia o negatywnym wpływie na wzrok.
Oftalmolog Santiago Costantino z Uniwersytetu w Montrealu poinformował, że co najmniej 70% osób, które przebywały na Międzynarodowej Stacji Kosmicznej cierpi na związany z lotem w kosmos zespół neurookulistyczny (SANS, spaceflight-associated neuro-ocular syndrome). Uczony wraz z zespołem chcieli przyjrzeć się zmianom biomechanicznym, które prowadzą do pojawienia się SANS. W tym celu przeanalizowali dane dotyczące 13 astronautów, którzy przebywali na Międzynarodowej Stacji Kosmicznej od 157 do 186 dni. Średnia wieku astronautów wynosiła 48 lat. Pochodzili oni z różnych krajów, ośmioro z nich w chwili badań miało za sobą jedną misję, były wśród nich 4 kobiety.
Naukowcy porównali trzy parametry, które mierzyli przed i po misji: sztywność gałki ocznej, ciśnienie wewnątrzgałkowe oraz amplitudę pulsu oka. Pierwszy z parametrów badano za pomocą koherencyjnej tomografii optycznej, dwa pozostałe – metodą tonometrii.
Naukowcy zauważyli, że w czasie misji doszło do znaczących zmian właściwości biomechanicznych gałek ocznych. Ich sztywność zmniejszyła się o 33%, ciśnienie węwnątrzgałkowe spadło o 11%, a amplituda pulsu był niższa o 25%. Tym zmianom fizycznym towarzyszyły objawy takie jak zmniejszenie rozmiarów gałki ocznej, zmiana obszaru, w którym oko widzi ostry obraz oraz – w części przypadków – obrzęk nerwu wzrokowego oraz fałdowanie siatkówki. Okazało się też, że u pięciu astronautów naczyniówka ma grubość większą niż 400 mikrometrów i nie było to skorelowane z wiekiem, płcią ani wcześniejszym pobytem w przestrzeni kosmicznej. "Brak powszechnego ciążenia zmienia dystrybucję krwi w organizmie, zwiększając przepływ krwi w głowie i spowalniając krążenie żylne w oczach. Prawdopodobnie dlatego dochodzi do zwiększenia grubości naczyniówki, gęstej sieci naczyń krwionośnych, odpowiedzialnej za odżywianie siatkówki.
Zdaniem naukowców powiększenie się naczyniówki w wyniku braku grawitacji może rozciągać włókna kolagenowe w twardówce, prowadząc do długotrwałych zmian właściwości mechanicznych gałki ocznej. Badacze sądzą też, że pulsowanie krwi w warunkach mikrograwitacji może prowadzić do pojawienia się zjawiska uderzeń hydraulicznych, w wyniku których nagłe zmiany ciśnienia przepływu krwi wywołują w oku wstrząsy mechaniczne prowadzące do znacznego przemodelowania tkanek oka.
Autorzy badań uważają, że zmiany te nie powinny stanowić problemu w przypadku misji trwających 6 do 12 miesięcy. Po powrocie na Ziemię oczy astronautów powróciły do normy, a problemy ze wzrokiem można było korygować za pomocą okularów. Problemem mogą być jednak dłuższe misje, takie jak załogowa wyprawa na Marsa, która może trwać nawet ponad 30 miesięcy. Obecnie nie znamy ani skutków tak długotrwałego pobytu w warunkach mikrograwitacji, ani nie potrafimy im zapobiegać.
Zaobserwowane przez nas zmiany właściwości mechanicznych oka mogą być biomarkerami SANS. Pomoże to zidentyfikować tych astronautów, którzy są szczególnie narażeni na ryzyko, zanim jeszcze pojawią się u nich problemy spowodowane długotrwałym pobytem w przestrzeni kosmicznej, mówi Costantino.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Załogowa podróż na Marsa nie będzie łatwym i szybkich przedsięwzięciem. Tymczasem, chociażby z powodu negatywnego wpływu na zdrowie stanu nieważkości i promieniowania kosmicznego, powinna zająć ona jak najmniej czasu. Dlatego też w należącym do NASA Langley Research Center w Virginii trwają prace nad napędem, dzięki któremu astronauci powinni dolecieć na Czerwoną Planetę i wrócić na Ziemię w ciągu około 2 lat.
Tamtejsi inżynierowe pracują nad jądrowym napędem elektrycznym. Ma on wykorzystywać reaktor atomowy do wytwarzania energii elektrycznej, która będzie jonizowała wydobywające się z dysz paliwo zapewniając ciąg pojazdowi kosmicznemu.
W ramach projektu Modular Assembled Radiators for Nuclear Electric Propulsion Vehicles (MARVL) powstaje jeden z najważniejszych elementów napędu, jego system rozprowadzania ciepła. Inżynierowie NASA chcą, by miał on budowę modułową i by można było go złożyć w przestrzeni kosmicznej za pomocą autonomicznych robotów. W ten sposób unikniemy konieczności umieszczenia wszystkiego w rakiecie nośnej, co da nam nieco większą elastyczność i pozwoli na zoptymalizowanie całego projektu, mówi Amanda Stark, odpowiedzialna za MARVL.
Takie rozwiązanie jest bardzo pożądane. Cały układ rozprowadzania ciepła może mieć, po pełnym rozłożeniu, wymiary boiska do futbolu amerykańskiego (ok. 5400 m2). Można więc sobie wyobrazić, z jakimi trudnościami wiąże się umieszczenie takich instalacji w rakiecie startującej z Ziemi. Zespół Strak chce, by poszczególne elementy wcześniej wysłać w przestrzeń kosmiczną. Tam roboty złożyłyby instalację, w której będzie krążyła substancja chłodząca, na przykład stop sodu i potasu.
Trzeba zauważyć, że taka technologia wpłynęłaby też na architekturę samego pojazdu, do którego instalacja będzie montowana. Istniejące dotychczas pojazdy kosmiczne nie były projektowane z myślą o składaniu czegokolwiek w kosmosie. Mamy tutaj więc okazję, by zastanowić się, jak taki pojazd powinien być zbudowany, jak należy go przygotować, jak będzie wyglądał.
Projekt MARVL jest rozwijany w ramach programu Early Career Initiative. Biorące w nim udział zespoły mają dwa lata na opracowanie szczegółów swojego pomysłu. Stark i jej zespół współpracują z firmą Boyd Lancaster, która specjalizuje się w przemysłowych systemach chłodzenia. Do pomocy mają też specjalistów od układów rozpraszania ciepła oraz ekspertów specjalizujących się w przepływie cieczy z NASA. Po dwóch latach prac NASA oczekuje, że twórcy MARVL przystąpią do budowy niewielkiego działającego na Ziemi prototypu. Jeśli projekt się powiedzie, podobne rozwiązania mogą zostać zastosowane podczas innych misji, nie tylko załogowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Tysiące kilometrów pod naszymi stopami, wewnątrz płynnego jądra Ziemi, znajduje się nieznana dotychczas struktura, donoszą naukowcy z Australian National University (ANU). Struktura ma kształt torusa (oponki), znajduje się na niskich szerokościach geograficznych i jest równoległa do równika. Nikt wcześniej jej nie zauważył.
Jądro Ziemi składa się z dwóch warstw, sztywnej wewnętrznej oraz płynnej zewnętrznej. Nowo odkryta struktura znajduje się w górnych partiach jądra zewnętrznego, gdzie jądro spotyka się z płaszczem ziemskim.
Współautor badań, geofizyk Hrvoje Tkalčić mówi, że fale sejsmiczne wędrują wolniej w nowo odkrytym regionie, niż w reszcie jądra zewnętrznego. Region ten znajduje się na płaszczyźnie równikowej, na niskich szerokościach geograficznych i ma kształt donuta. Nie znamy jego dokładnej grubości, ale uważamy, że rozciąga się on na kilkaset kilometrów poniżej granicy jądra i płaszcza, wyjaśnia uczony.
Uczeni z ANU podczas badań wykorzystali inną technikę niż tradycyjne obserwacje fal sejsmicznych w ciągu godziny po trzęsieniu. Badacze przeanalizowali podobieństwa pomiędzy kształtami fal, które docierały do nich przez wiele godzin od wstrząsów. Zrozumienie geometrii rozprzestrzeniania się fal oraz sposobu, w jaki przemieszczają się przez jądro zewnętrzne, pozwoliło nam zrekonstruować czasy przejścia przez planetę i wykazać, że ten nowo odkryty region sejsmiczny cechuje wolniejsze przemieszczanie się fal, stwierdza Tkalčić.
Jądro zewnętrzne zbudowane jest głównie z żelaza i niklu. To w nim, dzięki ruchowi materiału, powstaje chroniące Ziemię pole magnetyczne, które umożliwiło powstanie złożonego życia. Naukowcy sądzą, że szczegółowe poznanie budowy zewnętrznego jądra, w tym jego składu chemicznego, jest kluczowe dla zrozumienia pola magnetycznego i przewidywania tego, kiedy może potencjalnie osłabnąć.
Nasze odkrycie jest istotne, gdyż wolniejsze rozprzestrzenianie się fal sejsmicznych w tym regionie wskazuje, że znajduje się tam dużo lekkich pierwiastków. Te lżejsze pierwiastki, wraz z różnicami temperatur, pomagają w intensywnym mieszaniu się materii tworzącej jądro zewnętrzne. Pole magnetyczne to podstawowy element potrzebny do podtrzymania istnienia życia na powierzchni planety, zwraca uwagę profesor Tkalčić.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Członkowie międzynarodowego zespołu badawczego STAR Collaboration, jednego z czterech projektów prowadzonych w Relatywistycznym Zderzaczu Ciężkich Jonów (RHIC) w Brookhaven National Laboratory – w którym odtwarzane są warunki, jakie panowały we wczesnym wszechświecie – ogłosili odkrycie najcięższego jądra antymaterii. Składa się ono z antyprotonu, dwóch antyneutronów oraz antyhiperonu i zostało nazwane antyhiperwodorem-4. Odkrycia dokonano analizując wyniki 6 miliardów zderzeń jąder atomowych.
Antymateria ma, z wyjątkiem przeciwnego ładunku elektrycznego, te same właściwości co materia: tę samą masę, taki sam czas życia przed rozpadem, wchodzi w takie same interakcje, wyjaśnia Junlin Wu, świeżo upieczony magister ze Wspólnego Wydziału Fizyki Jądrowej Uniwersytetu w Lanzhou i Instytutu Współczesnej Fizyki Chińskiej Akademii Nauk. Wciąż za to nie wiemy, i jest to jedna z najważniejszych zagadek współczesnej fizyki, dlaczego wszechświat zbudowany jest głównie z materii, a nie antymaterii i dzieje się tak mimo tego, że podczas Wielkiego Wybuchu powstało tyle samo antymaterii co materii.
RHIC to idealne miejsce do prób szukania odpowiedzi na to pytanie. To pierwszy i jeden z zaledwie dwóch – drugim jest Wielki Zderzacz Hadronów (LHC) – akcelerator, w którym zderzane są ciężkie jony. W urządzeniu zderzane są ciężkie jony pędzące z prędkością bliską prędkości światła. Po zderzeniu powstaje mieszanina kwarków i gluonów, w której biorą początek nowe cząstki. I tak, jak we wczesnych wszechświecie, cząstki materii i antymaterii rodzą się tam w niemal równych proporcjach. Badacze mają nadzieję, że badając te cząstki znajdą przyczynę, dla której symetria została zachwiana na rzecz wszechświata zbudowanego z materii.
U podstaw naszych eksperymentów leży proste przypuszczenie, że jeśli chcemy poznać przyczynę asymetrii materii i antymaterii, to musimy najpierw odkryć nowe cząstki antymaterii, mówi fizyk Hao Qiu, doradca naukowy Junlina Wu.
Naukowcy ze STAR Collaboration już wcześniej znajdowali antymaterię w danych ze zderzeń w RHIC. W 2010 roku odkryli antyhipertryt, pierwsze jądro antymaterii zawierającą hiperon. Hiperony to cząstki, które zawierają co najmniej jeden kwark dziwny, ale nie zawierające kwarka górnego i dolnego. Wchodzą one w skład hiperjąder. Pierwsze hiperjądro odkryli w 1952 roku Marian Danysz i Jerzy Pniewski z Uniwersytetu Warszawskiego.
Odkrycie antyhiperwodoru-4 oznacza nie tylko znalezienie najcięższego jądra antymaterii, ale również trafienie na igłę w stogu siana. Hiperjądra żyją bowiem tak długo, jak istnieje hiperon, a czas jego życia nie przekracza 10-10 sekundy. Ponadto, by powstał antyhiperwodór-4, z zupy kwarkowo-gluonowej powstałej po zderzeniu ciężkich jąder w RHIC muszą wyłonić się wszystkie cztery składowe nowego jądra, muszą one powstać w odpowiednim miejscu, przemieszczać się w tym samym kierunku, by w odpowiednim czasie się połączyć i na krótko utworzyć antyhiperwodór-4.
Zidentyfikowanie nowej cząstki antymaterii było możliwe dzięki zidentyfikowaniu cząstek, na które się ona rozpadła. Jednym z produktów rozpadu był antyhel-4, drugim jest pion o ładunku dodatnim. Jako że już wcześniej odkryliśmy antyhel-4, użyliśmy tej samej metody do jego zidentyfikowania, a następnie dokonaliśmy rekonstrukcji cząstki macierzystej, wykorzystując w tym celu π+, wyjaśnia Wu. Rekonstrukcja taka polega na śledzeniu wstecz trasy przemieszczania się antyhelu-4 i π+, co pozwala stwierdzić, czy obie cząstki pojawiły się w tym samym punkcie. Nie było to łatwe zadanie. Naukowcy musieli przeanalizować miliardy zderzeń. Każdy zauważony antyhel-4 mógł mieć coś wspólnego nawet z 1000 pionów. Trzeba było więc sprawdzić każdą z możliwości. Kluczem do sukcesu było znalezienie takiej pary antyhel-4-π+, której trajektoria rozpoczynała się w tym samym punkcie. Znaleziono 22 takie pary, a analiza wykazała, że sześć takich wydarzeń to szum tła. Tym samym uczeni ze STAR Collaboration mogli poinformować o wykryciu 16 jąder antyhiperwodoru-4.
Naukowcy porównali czas życia antyhiperwodoru-4 z hiperwodorem-4 oraz antyhipertrytu i hipertrytu. Nie znaleźli żadnych zasadniczych różnic. Ich badania potwierdziły istnienie symetrii, a zatem prawdziwość obecnych modeli fizycznych. Obecnie pracują nad porównaniem masy wspomnianych cząstek i antycząstek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po 2,5 roku pracy na dnie Krateru Jezero łazik Perseverance przygotowuje się do wielomiesięcznej wspinaczki na zachodnią krawędź Krateru. Prawdopodobnie napotka tam najbardziej stromy i najtrudniejszy teren, z jakim przyszło mu się dotychczas zmierzyć. Perseverance wyruszy w podróż 18 sierpnia, a wspinaczka i badanie terenu będą już 5. kampanią naukową prowadzoną od czasu lądowania 18 lutego 2021 roku.
Perseverance zakończył 4 projekty badawcze, zebrał 22 próbki skał i przejechał ponad 18 mil. Zaczynamy teraz Crater Rim Campaign. Łazik jest w doskonałym stanie, a my nie możemy się doczekać, by zobaczyć, co jest na szczycie badanego przez nas obszaru, mówi Art Thompson, menedżer projektu Perseverance w Jet Propulsion Laboratory.
Głównymi celami najnowszej kampanii badawczej są dwa miejsca, nazwane „Pico Turquino” oraz „Witch Hazel Hill”. Na zdjęciach z orbiterów krążących wokół Marsa widać, że na Pico Turquino znajdują się stare pęknięcia, które mogą powstać w wyniku zjawisk hydrotermalnych. Z kolei warstwy, z których zbudowane jest Witch Hazel Hill sugerują, że struktura ta powstała w czasach, gdy na Marsie panował zupełnie inny klimat niż obecnie. Zdjęcia ujawniły tam podłoże skalne o jaśniejszym kolorze, podobne do tego, które łazik znalazł na obszarze zwanym „Bright Angel”. Tamtejsza skała „Cheyava Falls” miała strukturę i sygnatury chemiczne wskazujące, że mogła powstać przed miliardami lat w wyniku działania organizmów żywych w środowisku wodnym.
Podczas podróży ku krawędzi krateru Perseverance będzie polegał na półautomatycznych mechanizmach, których celem jest unikanie zbyt dużego ryzyka. Ma wspinać się po stokach nachylonych nawet o 23 stopnie i unikać miejsc, których nachylenie będzie wynosiło ponad 30 stopni. Łazik wjedzie na wysokość 300 metrów i zakończy podróż w miejscu nazwanym „Aurora Park”.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.