Ziemia przyspieszyła i obraca się coraz szybciej. Będzie ujemna sekunda przestępna?
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W 2017 roku fizycy wykazali, że dokładność zegara kwantowego jest bezpośrednio proporcjonalna do tworzonej entropii. Teraz naukowcy z Wielkiej Brytanii i Austrii odkryli podobną zależność w przypadku nanoskalowego zegara klasycznego. Z opublikowanej pracy nie tylko dowiadujemy się, że pomiar czasu wymaga zwiększenia entropii, ale również, że związek pomiędzy dokładnością pomiaru a entropią może być uniwersalną cechą mierzenia czasu. Wyniki badań mogą mieć duże znaczenie dla nanoskalowych silników cieplnych oraz technologii, których działanie jest zależne od dokładnych pomiarów czasu.
W systemach klasycznych badanie związku pomiędzy dokładnością pomiaru a entropią jest trudne, gdyż trudno jest śledzić wymianę ciepła i pracy. Naukowcy z University of Oxford, Lancaster University oraz Wiedeńskiego Centrum Kwantowej Nauki i Technologii stworzyli prosty optomechaniczny nanozegar, składający się z membrany poruszanej za pomocą pola elektrycznego. Membrana porusza się w górę i w dół, a każda zmiana pozycji wyznacza pomiar jednostki czasu. Zegar daje nam użyteczne dane wyjściowe – ciąg pomiarów – kosztem zwiększenia nieuporządkowania swojego otoczenia, które jest ogrzewane przez obwód podłączony do membrany.
Nanoskalowy zegar był zbyt duży by analizować go z punktu widzenia mechaniki kwantowej. Był też fizycznie całkowicie różny od wcześniej badanych zegarów kwantowych. Mimo to naukowcy zauważyli w nim identyczny tym zależności pomiędzy dokładnością a entropią, jaki istnieje w zegarach atomowych. Związek pomiędzy dokładnością a entropią był też zgodny z opracowanym przez uczonych modelem teoretycznym. Potwierdziło to, że ten sam wzorzec dotyczy systemów klasycznych i kwantowych.
Autorzy mówią, że – mimo iż badali związek między entropią a dokładnością dla jednej implementacji klasycznego zegara – uzyskane wyniki i ich podobieństwo do wyników zegarów atomowych sugerują, że mogą być one prawdziwe dla każdego zegara. Sugerują jednocześnie, by optymalny zegar definiować jako taki, który ma najwyższą możliwość dokładność przy jak najmniejszej dyssypacji, bez względu na budowę samego zegara.
Natalia Ares z University of Oxford sugeruje, że badania pomiędzy entropią a dokładnością pomiaru mogą zostać wykorzystane do lepszego zrozumienia natury czasu i powiązanych z tym ograniczeń w wydajności nanoskalowych silników.
« powrót do artykułu -
przez KopalniaWiedzy.pl
My odbieramy otoczenie w jednostkach odległości, natomiast nietoperze – w jednostkach czasu. Dla nietoperza owad znajduje się nie w odległości 1,5 metra, ale 9 milisekund. Badania przeprowadzone przez naukowców z Uniwersytetu w Tel Awiwie dowodzą, że nietoperze od urodzenia znają prędkość dźwięku.
Żeby to udowodnić naukowcy hodowali dopiero co urodzone nietoperze w środowisku wzbogaconym o hel, w którym prędkość dźwięku jest wyższa od prędkości dźwięku w powietrzu. W ten sposób odkryli, że zwierzęta wyobrażają sobie dystans w jednostkach czasu, nie odległości.
W życiu codziennym nietoperze używają sonaru – emitują dźwięki i analizują ich odbicia. Dla nich istotny jest czas, w jaki emitowany dźwięk do nich powraca. To zaś zależy od czynników środowiskowych, jak np. temperatura czy skład powietrza. Na przykład w pełni gorącego lata prędkość dźwięku może być o 10% większa, niż w zimie.
Zespół z Izraela, pracujący pod kierunkiem profesora Yossiego Yovela i doktoranta Derna Emichaj wzbogacił powietrze helem, dzięki czemu prędkość dźwięku była wyższa. Okazało się, że ani dorosłe nietoperze, ani młode, które były wychowywane w takiej atmosferze, nie lądowały w miejscu, w którym zamierzały. Zawsze lądowały zbyt blisko. To zaś pokazuje, że uważały, iż ich cel jest bliżej. Innymi słowy, nie dostosowywały swojego zachowania do wyższej prędkości dźwięku.
Jako,że dotyczyły to zarówno dorosłych nietoperzy, które wychowywały się w normalnych warunkach atmosferycznych, jak i młodych wychowywanych w atmosferze wzbogaconej helem, naukowcy stwierdzili, że poczucie prędkości dźwięku jest u nietoperzy wrodzone. Dzieje się tak dlatego, że nietoperze muszą nauczyć się latać wkrótce po urodzeniu. Uważamy więc, że w drodze ewolucji pojawiła się u nich wrodzona wiedza o prędkości dźwięku, co pozwala na oszczędzenie czasu na początku rozwoju zwierząt, mówi profesor Yoel.
Inne interesujące spostrzeżenie jest takie, że nie potrafią zmienić tego poczucia prędkości dźwięku w zmieniających się warunkach, co wskazuje że przestrzeń odbierają wyłącznie jako funkcję czasu, nie odległości.
Udało się nam odpowiedzieć na podstawowe pytanie – odkryliśmy, że nietoperze nie mierzą odległości, a czas. Może się to wydawać jedynie różnicą semantyczną, ale sądzę, że przestrzeń odbierają one w całkowicie inny sposób niż ludzie i inne ssaki. Przynajmniej wtedy, gdy polegają na sonarze, dodaje Yovel.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Polski, USA i Niemiec uważają, że można wykorzystać globalną sieć czujników kwantowych oraz zegary atomowe systemu GPS do rejestrowania hipotetycznych egzotycznych pól o niskiej masie (ELF), sygnałów pochodzących z łączenia się czarnych dziur i innych gwałtownych wydarzeń astronomicznych. Wykrycie takich sygnałów dawałoby istotny wgląd w fizykę wykraczającą poza Model Standardowy.
Andrei Derevianko z University of Nevada i jego zespół, w pracach którego udział bierze Szymon Pustelny z Uniwersytet Jagiellońskiego, opublikowali pracę, w której wyliczają właściwości ELF i mówią gdzie oraz jak ich szukać.
Astronomia wielokanałowa (multimessenger astronomy), to skoordynowane obserwacje różnych sygnałów pochodzących z tego samego źródła. Obserwacje takie zapewniają duże bogactwo danych na temat procesów astrofizycznych. Dotychczas astronomia wielokanałowa odbierała skorelowane sygnały ze znanych oddziaływań podstawowych i standardowych cząstek, jak promieniowanie elektromagnetyczne, neutrina czy fale grawitacyjne. Jednak wielu autorów sugeruje, że istnieją egzotyczne pola o niskiej masie ( <-2), czytamy w pracy opublikowanej na łamach Nature.
W naszej pracy wykażemy, że sieć precyzyjnych czujników kwantowych, które są izolowane od wpływu konwencjonalnych sygnałów fizycznych, może być potężnym narzędziem astronomii wielokanałowej. Rozważamy tutaj sytuację, w której wysokoenergetyczne wydarzenia astrofizyczne wywołują intensywne rozbłyski egzotycznych pól o niskiej masie (ELF) i proponujemy nowy model wykrywania ELF bazujący na generalnych założeniach. Wyliczamy tutaj amplitudy sygnałów EFL, opóźnienia, częstotliwości i odległości od źródeł fal grawitacyjnych, które to sygnały mogą zostać zarejestrowane przez globalną sieć magnetometrów i zegarów atomowych. Stwierdziliśmy, że sieci takich urządzeń mogą działać jak teleskopy ELF, wykrywając sygnały ze źródeł, które generują ELF.
Czarne dziury i gwiazdy neutronowe mają silne pola grawitacyjne, zatem można przypuszczać, że przyciągają ciemną materię. Wiele rozszerzeń Modelu Standardowego sugeruje, że wokół wielkich masywnych obiektów astrofizycznych, jak czarne dziury, mogą gromadzić się ELF. Gdy czarne dziury się łączą i dochodzi do uwolnienia olbrzymich ilości energii, część z tych ELF może zostać rozerwana i wyrzucona w kierunku Ziemi. Możemy więc spróbować je wykryć i badać.
Jednak sposób badania ELF będzie zależał od ich natury. Derevianko uważa, że jedną z metod może być wykorzystanie zegarów atomowych. ELF mogą wpłynąć na odległości pomiędzy powłokami elektronowymi, co wpłynie na częstotliwość pracy zegara atomowego. Globalna sieć zegarów atomowych już istnieje. Urządzenia takie mają na pokładzie satelity systemu GPS. Można by ją więc wykorzystać do wykrywania ELF, których źródło znajduje się w dowolnym miejscu obserwowalnego wszechświata.
Jest jeszcze inna możliwość obserwacji ELF. Naukowcy przypuszczają, że pola te mogą wchodzić w interakcje ze spinami atomów, zatem mogą być wykrywane przez magnetometry. Global Network of Optical Magnetometers for Exotic physics (GNOME) to sieć 13 stacji rozsianych na 4 kontynentach. Co prawda, jak zauważa Derevianko, obecnie magnetometry te nie są wystarczająco czułe, by wykryć ELF, ale w przyszłości mogą osiągnąć wymaganą czułość, gdyż są ciągle udoskonalane.
Uczeni nie znają dokładnej natury sygnałów pochodzących z ELF, w końcu samo istnienie pól jest jedynie hipotezą, jednak przewidują niektóre z ich właściwości. Ich zdaniem cząstki będące nośnikami sygnału mają dużą energię i bardzo niską masę. W związku z tym przemieszczają się niemal z prędkością światła. Co więcej, uważają, że jako pierwsze dotrą do nas elementy o wysokiej częstotliwości. To zaś będzie zapowiedzią impulsu, który trafi na Ziemię wkrótce po dotarciu fal grawitacyjnych.
Zdaniem zespołu Derevianko, naukowcy mogą szukać ELF w wydarzeniach, którym nie towarzyszy fala grawitacyjna, np. w wybuchach supernowych. A jeśli np. uda się znaleźć w zegarach atomowych systemu GPS ślady ELF pochodzących z połączenia czarnych dziur, to można przeanalizować dane historyczne, sprzed okresu, gdy byliśmy w stanie wykrywać fale grawitacyjne.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.