Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

NASA chce wiedzieć, czy roboty mogą wybudować na Księżycu gigantyczny radioteleskop

Rekomendowane odpowiedzi

Jeden z zespołów NASA rozwija koncepcję zbudowania na niewidocznej stronie Księżyca największego radioteleskopu w Układzie Słonecznym. Na razie pomysł znajduje się na bardzo wczesnym etapie rozwoju, ale jeśli radioteleskop powstanie, pozwoli on na badanie przestrzeni kosmicznej w nieosiągalny dotychczas sposób i może zarejestrować sygnały pochodzące z wieków ciemnych, czyli epoki, która rozpoczęła się około 400 000 lat po Wielkim Wybuchu.

Niewidoczna strona Księżyca ma olbrzymie zalety z punktu widzenia radioastronomii. Srebrny Glob stanowi świetną osłonę przed zakłóceniami z Ziemi. Izolowałby teleskop nie tylko od zakłóceń generowanych przez człowieka, ale też od zakłóceń jonosfery, satelitów krążących wokół naszej planety, a w czasie księżycowej nocy, również od zakłóceń ze strony Słońca.

Wielki radioteleskop mógłby prowadzić obserwacje sygnałów o częstotliwości poniżej 30MHz (długość fali większa niż 10 metrów). Takich obserwacji praktycznie nie można prowadzić z powierzchni Ziemi, gdyż fale o tej długości są zakłócane przez atmosferę. Nawet teleskopy kosmiczne mają problem z poradzeniem sobie z zakłóceniami z naszej planety. Nie mówiąc już o tym, że nie jesteśmy w stanie zbudować i wysłać w przestrzeń kosmiczną zbyt dużego radioteleskopu.

Dlatego też inżynier Saptarshi Bandyopadhyay z Jet Propulsion Laboratory proponuje wybudowanie za pomocą robotów DuAxel w 3,5-kilometrowym kraterze radioteleskopu o średnicy 1-kilometra. Jak czytamy w złożonej propozycji Lunar Crater Radio Telescope (LCRT) byłby największym radioteleskopem w Układzie Słonecznym! LCRT umożliwiłby dokonanie niezwykłych odkryć w dziedzinie kosmologii obserwując sygnały z wczesnego wszechświata w paśmie 10–50 metrów (6–30Hz), które dotychczas nie było badane przez człowieka.

Bandyopadhyay przedstawił swój projekt w ramach rozpisanego przez NASA Innovative Advanced Concepts Program. Uznano go za na tyle interesujący, że przeszedł przez 1. z trzech faz programu. Inżynier i jego zespół otrzymali dofinansowanie w wysokości 125 000 USD. To pieniądze przeznaczone na obmyślenie projektu mechanicznego LCRT, wyszukanie odpowiednich kraterów na Księżycu oraz porównanie spodziewanych korzyści i wydajności LCRT z innymi pomysłami zaproponowanymi w literaturze fachowej. Jak mówi sam Bandyopadhyay, wszystko to oznacza, że jego pomysł znajduje się na bardzo wczesnym etapie rozwoju.

Jeśli jednak doszłoby do realizacji projektu, LCRT miałby być budowany przez grupę robotów zdolnych do wspinania się po ścianach krateru. W propozycji pada nazwa DuAxel. Bandyopadhyay posługuje się tutaj terminologią zaproponowaną przed 8 laty przez innych ekspertów z Jet Propulsion Laboratory. Jak czytamy w pracy Axel and DuAxel rovers for the sustainable exploration of extreme terrains łazik Axel to sterowany za pomocą kabla dwukołowy robot zdolny do przemierzania w dół stromych zboczy i jazdę po trudnym terenie. Łazik DuAxel to czterokołowy robot zbudowany z dwóch łazików Axel, który swobodnie – bez kabla – porusza się po ekstremalnie trudnym terenie.

Nie ma żadnej gwarancji, że pomysł Bandyopadhyaya będzie realizowany. Ma on bowiem silną konkurencję. O fundusze stara się wiele zespołów naukowych, które proponują m.in. nowatorskie materiały do budowy żagla słonecznego, skaczące próbniki eksplorujące ciała niebieskie, metody pozyskiwania wody na Księżycu czy systemy napędowe do eksploracji głębokiego kosmosu.

Obecnie największym radioteleskopem jest chiński FAST o średnicy 500 metrów, który pracuje w zakresie od 70MHz do 3GHz


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo słuszny pomysł.

Nie wspomniano o najważniejszych zaletach. Znalezienie i kupienie tych  kilkanaście km2 odpowiedniego terenu na Ziemi może być trudne i bardzo kosztowne. Lokalne podatki i inne daniny też są obciążeniem. Puki co księżyc jest darmowy dla przybyszów jak kiedyś "dziki zachód". Więc kto ma siłę tam dolecieć powinien już robić zapasy drutu kolczastego do grodzenia swoich parceli.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, tempik napisał:

zapasy drutu kolczastego do grodzenia swoich parceli

zapomniałeś o parawanach ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo ciekawy pomysł, choć inne też bardzo interesujące. Potrzebujemy nowych narzędzi badawczych o znacznie większej czułości i dużo mniejszej ilości zanieczyszczeń sygnału. Chciało by się doczekać postępu większego niż tylko kolejne 15% większej średnicy lustra. Wg mnie koncepcja multiteleskopu optycznego po ciemnej stronie księżyca jest bardzo atrakcyjna, można by widzieć wreszcie szczegóły planet pozasłonecznych - ale radio też ma olbrzymią wartość naukową.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zanim będziemy w stanie zbudować taki teleskop, na orbicie Księżyca zaroi się od satelitów :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
48 minut temu, Astro napisał:

Nie sądzicie, że w akcie desperacji NASA sięga już po SF?

W Ameryce mają powiedzenie "Dream big or go home" ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 hours ago, Ergo Sum said:

 Wg mnie koncepcja multiteleskopu optycznego po ciemnej stronie księżyca jest bardzo atrakcyjna, można by widzieć wreszcie szczegóły planet pozasłonecznych 

Nie ma czegoś takiego jak ciemna strona Księżyca. teleskop spokojnie możesz postawic po "jasnej" i przy okazji łatwiej nim bedzie sterować, bo sygnał będzie widoczny.

@all

NASA to jeszcze nie odpowiedziała logicznie na pytanie 'jak ominęli pasy van Allena' podczas lotów na Księżyc. twierdzą, ze je wymanewrowali; tylko jak? rencami i korbkami?) Nie można od nich zbyt duzo wymagać.  Nieobeznanym nawiasem wyjaśnię, że ISS jest na dość niskiej orbicie poniżej van Allenów, wiec problem nie występuje.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
5 minutes ago, Astro said:

odpowiedziała, ale wystarczy czytać ze zrozumieniem:

Ja to nie tylko przeczytałem ze zrozumieniem (wielokrotnie), ale i przestudiowałem (nie tylko tą wersję wypowiedzi NASA, bo są inne, typu 'ominęliśmy je'). Zadałem tez sobie trud zapoznania się z budową rakiet, orbiterów i lądowników.  I dalej to nie gra.

BTW: Po eksperymentach z wybuchem w jonosferze (lata 60te, przed lotami na Księżyc) pasy uległy wielokrotnemu wzmocnieniu w stosunku do pierwotnych. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
13 minut temu, Jarosław Bakalarz napisał:

Ja to nie tylko przeczytałem ze zrozumieniem (wielokrotnie), ale i przestudiowałem (nie tylko tą wersję wypowiedzi NASA, bo są inne, typu 'ominęliśmy je'). Zadałem tez sobie trud zapoznania się z budową rakiet, orbiterów i lądowników.  I dalej to nie gra.

BTW: Po eksperymentach z wybuchem w jonosferze (lata 60te, przed lotami na Księżyc) pasy uległy wielokrotnemu wzmocnieniu w stosunku do pierwotnych. 

A gdzie masz problem?

Sugerujesz że nie byli na księżycu? Czy NASA zaniżyła ilość promieniowania które kosmonauci wzięli na klatę? Z tego co wiem, większość z nich przeżyła dłużej niż statystyczny Amerykanin, więc tragedii raczej nie było

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 hours ago, Astro said:

"Owszem, ale chwilowo"  Wiesz, ja to co piszę to pisze z pamięci, bo nie mam czasu na cytaty, ale coś pamiętam, że wcale nie chwilowo, a na dziesięciolecia.

"Nie kłopocz się tym cytatem."   Służę; ale tak, nie jonosfery a stratosfery; przejęzyczenie.

"Jak zawiniesz się w folię aluminiową, to ominiesz." Z protonami nie tak predko, z neutronami w ogóle.. Pamiętam (pamiętam, bo znow nie zacytuję) wypowiedź pracownika NASA, który analizował ile ołowiu nalezałoby użyć do wyizolowania kabin. Wyszło mu na to, że lepiej nie izolowac wcale, bo wtedy szkody mogłyby byc większe.  "Ominąć" oznaczało 'nie wejśc w nie' - taka wersje podał kiedyś tam rzecznik lotów jako oficjalne wyjasnienie.

 

2 hours ago, tempik said:

"A gdzie masz problem?"   Za długo bym musiał pisać o mechanice tamtych lotów.

"Sugerujesz że nie byli na księżycu?"  To też jest prawdopodobne; oczywiście nie na bazie filmów Kubricka, bo ich istnienie nie dowodzi braku pobytu na księżycu, a jedynie to, ze nagrano "lądowania" w studio. Cel mógł być PRowy lub inny.

"Czy NASA zaniżyła ilość promieniowania które kosmonauci wzięli na klatę? Z tego co wiem, większość z nich przeżyła dłużej niż statystyczny Amerykanin, więc tragedii raczej nie było"    Z tego co wiem, to sa w Indiach rejony, gdzie promieniowanie tła przekracza 10tyś razy normę (tą starą) i tez nie ma problemu z życiem tam.  

Podsumowując: dlaczego mają to robić roboty? To juz nie lecimy tam człowiekami?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W grudniu 2020 roku miała miejsce spektakularna katastrofa. Zawalił się jeden z najbardziej znanych instrumentów naukowych na świecie, radioteleskop w Arecibo. W raporcie opublikowanym właśnie przez amerykańskie Narodowe Akademie Nauk czytamy, że główną przyczyną katastrofy było – wywołane potężnym promieniowaniem elektromagnetycznym – zmęczenie cynku w mocowaniach lin nośnych, które utrzymywały 900-tonową platformę odbiornika na wysokości 120 metrów nad czaszą radioteleskopu.
      Już wcześniejsze raporty wspominały o deformacji cynku, ale jako możliwe przyczyny katastrofy wskazywano też błędy konstrukcyjne czy uszkodzenia przez huragan Maria, który przeszedł w 2017 roku.
      Inspekcja wykonana po przejściu huraganu znalazła dowody na ślizganie się lin nośnych, jednak – jak dowiadujemy się z obecnego raportu – nie odnotowano wówczas wzorców zużycia i większości nie wyjaśniono. Ponadto na zdjęciach z roku 2019 widoczne jest poważne zużycie uchwytów lin, miejsc w których były one mocowane. Mimo to nie przeprowadzono żadnych badań. Zaskoczyło to autorów raportu. Ich zdaniem niepokojący jest fakt, że inżynierowie wynajęci do badania stanu lin pomiędzy przejściem huraganu Maria a zawaleniem się teleskopu nie wszczęli alarmu z powodu zauważonego zużycia elementów nośnych.
      Główną przyczyną katastrofy była deformacja cynkowych uchwytów lin. W wyniku olbrzymich naprężeń i pod wpływem temperatury doszło do ich deformacji oraz pękania drutów w linach, co osłabiało miejsca mocowania lin. Za główną zaś przyczynę deformacji uznano generowane przez teleskop promieniowanie elektromagnetyczne. Zdaniem badaczy, potężne nadajniki teleskopu indukowały w linach i miejscach mocowania prąd elektryczny, który wywoływał długoterminową elektroplastyczność cynku, co znacząco przyspieszało naturalne zmęczenia materiału.
      Twórcy raportu dodają, że – o ile im wiadomo – mamy tu do czynienia z pierwszym w historii udokumentowanym przypadkiem awarii wywołanej pełzaniem cynku. Dlatego też w raporcie zaproponowano, by Narodowa Fundacja Nauki, do której należy Arecibo, przekazała pozostałe liny i ich uchwyty społeczności naukowej, w celu dalszych badań zjawiska zmęczenia cynku pod wpływem silnego promieniowania elektromagnetycznego.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Krążący wokół Jowisza Ganimedes to największy księżyc w Układzie Słonecznym. Jest większy od najmniejszej planety, Merkurego. Na Ganimedesie znajduje się też największa w zewnętrznych częściach Układu Słonecznego struktura uderzeniowa. Planetolog Naoyuki Hirata z Uniwersytetu w Kobe przeanalizował jej centralną część i doszedł do wniosku, że w Ganimedesa uderzyła asteroida 20-krotnie większa, niż ta, która zabiła dinozaury. W wyniku uderzenia oś księżyca uległa znaczącej zmianie.
      Ganimedes, podobnie jak Księżyc, znajduje się w obrocie synchronicznym względem swojej planety. To oznacza, że jest do niej zwrócony zawsze tą samą stroną. Na znacznej części jego powierzchni widoczne są ślady tworzące kręgi wokół konkretnego miejsca. W latach 80. naukowcy doszli do wniosku, że to dowód na dużą kolizję. Wiemy, że powstały one w wyniku uderzenia asteroidy przed 4 miliardami lat, ale nie byliśmy pewni, jak poważne było to zderzenie i jaki miało wpływ na księżyc, mówi Naoyjuki Hirata.
      Japoński uczony jako pierwszy zwrócił uwagę, że miejsce uderzenia wypada niemal idealnie na najdalszym od Jowisza południku Ganimedesa. Z badan Plutona przeprowadzonych przez sondę New Horizons wiemy, że uderzenie w tym miejscu doprowadziło do zmiany orientacji osi planety, więc tak samo mogło stać się w przypadku Ganimedesa. Hirata specjalizuje się w symulowaniu skutków uderzeń w księżyce i satelity, wiedział więc, jak przeprowadzić odpowiednie obliczenia.
      Na łamach Scientific Reports naukowiec poinformował, że asteroida, która uderzyła w Ganimedesa, miała prawdopodobnie średnicę około 300 kilometrów i utworzyła krater przejściowy o średnicy 1400–1600 kilometrów. Krater przejściowy to krater uderzeniowy istniejący przed powstaniem krateru właściwego, czyli misy wypełnionej materiałem powstałym po uderzeniu. Z przeprowadzonych obliczeń wynika, że tylko tak duża asteroida mogła przemieścić wystarczającą ilość masy, by doszło do przesunięcia osi Ganimedesa na jej obecną pozycję.
      Przypomnijmy, że 14 kwietnia ubiegłego roku wystartowała misja Juice (Jupiter Icy Moons Explorer) Europejskiej Agencji Kosmicznej. Ma ona zbadać trzy księżyce Jowisza: Kallisto, Europę i Ganimedesa. Na jej pokładzie znalazły się polskie urządzenia, wysięgniki firmy Astronika, na których zamontowano sondy do pomiarów plazmy. Wszystkie trzy księżyce posiadają zamarznięte oceany. To najbardziej prawdopodobne miejsca występowania pozaziemskiego życia w Układzie Słonecznym. W lipcu 2031 roku Juice ma wejść na orbitę Jowisza, a w grudniu 2034 roku znajdzie się na orbicie Ganimedesa i będzie badała ten księżyc do września 2035 roku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Uczestnicy słynnego eksperymentu Milgrama tak bardzo ulegali autorytetowi prowadzącego, że byli w stanie na jego polecenie zadawać silny ból innemu człowiekowi. Takie bezwzględne bezrefleksyjne posłuszeństwo może prowadzić do zbrodni. Naukowcy z Uniwersytetu SWPS powtórzyli eksperyment Milgrama, ale prowadzącym był robot. Okazało się, że ludzie są skłonni podporządkować się poleceniom robota i na jego rozkaz krzywdzić innych.
      W latach 60. XX wieku amerykański psycholog Stanley Milgram, zastanawiając się nad przyczynami, dla których ludzie w czasie II wojny światowej wykonywali zbrodnicze rozkazy, przeprowadził eksperyment, którego celem było wykazanie, na ile H. sapiens ma skłonność do ulegania autorytetom. Osobom, które brały udział w eksperymencie powiedziano, że jego celem jest zbadanie wpływu kar na skuteczność uczenia się. W eksperymencie brał udział uczestnik-nauczyciel oraz uczeń. Eksperymentator zaś kazał nauczycielowi karać ucznia aplikując mu coraz silniejszy wstrząs elektryczny. Uczeń, którym była podstawiona osoba, w rzeczywistości nie był rażonym prądem (ale uczestnik-nauczyciel o tym nie wiedział), jednak w odpowiedzi na rzekomo podawane napięcie elektryczne, krzyczał z bólu. Eksperyment wykazał, że aż 62% uczestników – ulegając autorytetowi eksperymentatora – nacisnęło w końcu na generatorze przycisk 450 V, czyli najwyższy.
      Naukowcy z Uniwersytetu SWPS postanowili sprawdzić, czy ludzie będą równie posłuszni robotowi, jak innemu człowiekowi. Przeniesienie różnych funkcji nadzoru i podejmowania decyzji na robota budzi jednak szczególnie silne emocje, ponieważ wiąże się z różnymi zagrożeniami etycznymi i moralnymi. Pojawia się pytanie, czy wspomniane wyżej posłuszeństwo wykazywane przez badanych zgodnie z paradygmatem Milgrama nadal występowałoby, gdyby to robot (zamiast człowieka, tj. profesora uczelni) kazał uczestnikom zadać elektrowstrząsy innej osobie? Celem naszego badania było udzielenie odpowiedzi na to pytanie, mówi doktor Konrad Maj.
      Doktor Maj we współpracy z profesorem Dariuszem Dolińskim i doktorem Tomaszem Grzybem, powtórzył eksperyment Milgrama, ale w roli eksperymentatora osadzono robota. W grupie kontrolnej eksperymentatorem był człowiek. W badaniach wzięli udział uczestnicy, którzy nie wiedzieli, na czym polegał eksperyment Milgrama. Okazało się, że ludzie ulegają też autorytetowi robota i na jego polecenie są skłonni krzywdzić innych ludzi. Co więcej, zarejestrowano bardzo wysoki poziom posłuszeństwa. Aż 90% uczestników w obu grupach – badanej i kontrolnej – nacisnęło wszystkie przyciski na generatorze, dochodząc do wartości 150 V. Od kilku dekad z powodów etycznych te 150 V przyjmuje się za górną wartość przy eksperymencie Milgrama.
      O ile nam wiadomo, to pierwsze badanie, które pokazuje, że ludzie są skłonni szkodzić innemu człowiekowi, gdy robot nakazuje im to zrobić. Co więcej, nasz eksperyment pokazał również, że jeśli robot eskaluje żądania, instruując człowieka, aby zadawał coraz większy ból innemu człowiekowi, ludzie też są skłonni to zrobić, dodaje doktor Maj.
      Już wcześniejsze badania wykazały, że ludzie tak mocno uznają autorytet robota, że podążają za jego poleceniami, nawet gdy nie mają one sensu. Tak było np. podczas eksperymentu, w czasie którego osoby ewakuowane z – symulowanego – pożaru, podążały za poleceniami robota, mimo że wskazał im on drogę ewakuacji przez ciemne pomieszczenie bez widocznego wyjścia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Indyjska misja Chandrayaan-3 wylądowała na Księżycu. Tym samym Indie stały się czwartym, po USA, ZSRR i Chinach, krajem, którego pojazd przeprowadził miękkie lądowanie na Srebrnym Globie. Chandrayaan-3 wylądowała bliżej bieguna południowego, niż wcześniejsze misje. Biegun południowy jest ważny pod względem naukowym i strategicznym. Znajdują się tam duże zasoby zamarzniętej wody, które w mogą zostać wykorzystane jako źródło wody pitnej dla astronautów oraz materiał do produkcji paliwa na potrzeby misji w głębszych partiach kosmosu.
      Indie dokonały więc tego, co przed kilkoma dniami nie udało się Rosji. Jej pojazd, Luna 25, rozbił się 19 kwietnia o powierzchnię Księżyca. Tym samym porażką zakończyło się pierwsze od 47 lat lądowanie na Srebrnym Globie zorganizowane przez władze w Moskwie.
      Misja Chandrayaan-3 składa się z trzech elementów: modułu napędowego, lądownika i łazika. Na pokładzie lądownika Vikram znajduje się niewielki sześciokołowy łazik Pragyan o masie 26 kilogramów. Wkrótce opuści on lądownik i przystąpi do badań. Doktor Angela Marusiak z University of Arizona mówi, że ją najbardziej interesują dane z sejsmometru, w który wyposażono lądownik. Pozwoli on na badania wewnętrznych warstw Księżyca, a uzyskane wyniki będą miał olbrzymi wpływ na kolejne misje.
      Musimy się upewnić, że żadna potencjalna aktywność sejsmiczna nie zagrozi astronautom. Ponadto, jeśli chcemy budować struktury na Księżycu, muszą być one bezpieczne, dodaje. Trzeba tutaj przypomnieć, że USA czy Chiny planują budowę księżycowej bazy.
      Łazik i lądownik są przygotowane do dwutygodniowej pracy na Księżycu. Moduł napędowy pozostaje na orbicie i pośredniczy w komunikacji pomiędzy nimi, a Ziemią.
      Indie, we współpracy z USA i Francją, bardzo intensywnie rozwijają swój program kosmiczny. Lądowanie na Księżycu do kolejny ważny sukces tego kraju. Przed 9 laty Indie zaskoczyły świat umieszczając przy pierwszej próbie swój pojazd na orbicie Marsa.
      W najbliższych latach różne kraje chcą wysłać misje na Księżyc. Jeszcze w bieżącym miesiącu ma wystartować misja japońska. USA planują trzy misje komercyjne na zlecenie NASA, z których pierwsza ma wystartować jeszcze w bieżącym roku. Natomiast NASA przygotowuje się do powrotu ludzi na Księżyc. Astronauci mają trafić na Srebrny Glob w 2025 roku.
      Indie są jednym z krajów, które przystąpiły do zaproponowanej przez USA umowy Artemis Accords. Określa ona zasady eksploracji Księżyca i kosmosu. Umowy nie podpisały natomiast Rosja i Chiny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA i DARPA ujawniły szczegóły dotyczące budowy silnika rakietowego o napędzie atomowym. Jądrowy silnik termiczny (NTP) DRACO (Demonstration Rocket for Agile Cislunar Operations) powstaje we współpracy z Lockheed Martinem i BWX Technologies. Najpierw zostanie zbudowany prototyp, następnie silnik do pojazdów zdolnych dolecieć do Księżyca, w końcu zaś silnik dla misji międzyplanetarnych. Jeszcze przed kilkoma miesiącami informowaliśmy, że DRACO może powstać w 2027 roku. Teraz dowiadujemy się, że test prototypu w przestrzeni kosmicznej zaplanowano na koniec 2026 roku.
      To niezwykłe przyspieszenie prac – trzeba pamiętać, że zwykle projekty związane z przestrzenią kosmiczną i nowymi technologiami mają spore opóźnienie – było możliwe dzięki częściowemu połączeniu prac, które zwykle odbywają się osobno, w drugiej i trzeciej fazie rozwoju projektu. To zaś jest możliwe dzięki wykorzystaniu sprzętu i doświadczeń z dotychczasowych misji w głębszych partiach kosmosu. Budujemy stabilną i bezawaryjną platformę, w której wszystko, co nie jest silnikiem, to technologie o niskim ryzyku, mówi Tabitha Dodson, odpowiedzialna z ramienia DARPA za projekt DRACO.
      Wiemy, że niedawno zakończyła się pierwsza faza projektu, w ramach którego powstał projekt nowego reaktora. Nie ujawniono, ile faza ta kosztowała. Kolejne dwie fazy mają budżet 499 milionów USD. Jeśli prototyp zda egzamin, powstanie silnik dla misji na Księżyc. Przyniesie on spore korzyści. Napędzane nim rakiety będą przemieszczały się szybciej, zatem szybciej dostarczą ludzi, sprzęt i materiały na potrzeby budowy bazy na Księżycu. Jednak największe korzyści z nowego silnika ujawnią się podczas misji na Marsa.
      Okno startowe misji na Czerwoną Planetę otwiera się co 26 miesięcy i jest dość wąskie. Dzięki lepszym silnikom i szybszym rakietom okno to można poszerzyć, co ułatwi planowanie i przeprowadzanie marsjańskich misji. Nie mówiąc już o tym, że skrócenie samej podróży będzie korzystne dla zdrowia astronautów poddanych promieniowaniu kosmicznemu. Prędkość obecnie stosowanych silników jest ograniczona przez dostępność paliwa i utleniacza. Silnik z reaktorem atomowym działałby dzięki ogrzewaniu ciekłego wodoru z temperatury -253 stopni Celsjusza do ponad 2400 stopni Celsjusza i wyrzucaniu przez dysze szybko przemieszczającego się rozgrzanego gazu. To on nadawałby ciąg rakiecie.
      Pomysłodawcą stworzenia napędu atomowego jest polski fizyk Stanisław Ulam, który przedstawił go w 1946 roku. Dziesięć lat później rozpoczęto Project Orion. Efektem prac było powstanie prototypowego silnika, który został przetestowany na ziemi. Obecnie takie testy nie wchodzą w grę. Zgodnie z dzisiejszymi przepisami naukowcy musieliby przechwycić gazy wylotowe, usunąć z nich materiał radioaktywny i bezpiecznie go składować. Dlatego też prototyp zostanie przetestowany na orbicie 700 kilometrów nad Ziemią. Ponadto w latach 50. wykorzystano wzbogacony uran-235, taki jak w broni atomowej. Obecnie użyty zostanie znacznie mniej uran-235. Można z nim bezpieczne pracować i przebywać w jego pobliżu, mówi Anthony Calomino z NASA. Drugi z podobnych projektów, NERVA (Nuclear Engine for Rocket Vehicle Application), doprowadził do stworzenia dobrze działającego silnika. Ze względu na duże koszty projekt zarzucono.
      Reaktor będzie posiadał liczne zabezpieczenia, które nie dopuszczą do jego pełnego działania podczas pobytu na ziemi. Dopiero po opuszczeniu naszej planety będzie on w stanie w pełni działać.
      W czasie testów zostaną sprawdzone liczne parametry silnika, w tym jego ciąg oraz impuls właściwy. Impuls właściwy obecnie stosowanych silników chemicznych wynosi około 400 sekund. W przypadku silnika atomowego będzie to pomiędzy 700 a 900 sekund. NASA chce też sprawdzić, na jak długo wystarczy 2000 kilogramów ciekłego wodoru. Inżynierowie mają nadzieję, że taka ilość paliwa wystarczy na napędzanie rakiety przez wiele miesięcy. Obecnie górny człon rakiety nośnej ma paliwa na około 12 godzin. Silniki NTP powinny być od 2 do 5 razy bardziej efektywne, niż obecne silniki chemiczne. A to oznacza, że napędzane nimi rakiety mogą lecieć szybciej, dalej i zaoszczędzić paliwo.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...