Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Sieci neuronowe 100 milionów razy szybsze od algorytmu Brutus

Recommended Posts

Problem trzech ciał, czyli ruchu trzech ciał oddziałujących na siebie przez grawitację, stanowi poważne wyzwanie obliczeniowe od czasu sformułowania go przez Newtona. Obecnie, dzięki komputerom. możemy poznać dokładne rozwiązanie problemu, jednak nawet nowoczesnym maszynom obliczenia zajmują całe tygodnie, a nawet miesiące.

Grupa naukowców z Uniwersytetów w Lejdzie, Aveiro, Edynburgu i Cambridge zaprzęgła do obliczeń sztuczną inteligencję. Okazało się, że sieci neuronowe radzą sobie z obliczeniami nawet 100 milionów razy szybciej niż najbardziej zaawansowany obecnie algorytm Brutus. Jak mówi Chris Foley z University of Cambridge, to pokazuje, że sieci neuronowe mogą zostać wykorzystane do badania zachowania gromad gwiazd i lepszego poznania wszechświata.

Jak czytamy w opublikowanym w arXiv artykule pod tytułem „Newton vs the machine: solving the chaotic three-body problem using deep neural networks [PDF]”, równania takie odgrywają główną rolę w rozwiązaniu wielu klasycznych problemów fizyki. Na przykład wyjaśniają one dynamiczną ewolucję gromad kulistych i jąder galaktycznych, które są uważane za miejsca powstawania układów podwójnych czarnych dziur, które w końcu łączą się, wytwarzając fale grawitacyjne. Los tych systemów zależy od interakcji trzech ciał, układów podwójnych czarnych dziur i pojedynczej czarnej dziury. Interakcje pomiędzy nimi zachodzą zwykle w ściśle określonym przedziale czasu i, biorąc pod uwagę silne interakcje pomiędzy tymi trzema ciałami, można zignorować wpływ innych ciał, co oznacza, że interakcje pomiędzy trzema ciałami można obliczać w izolacji od innych interakcji.

Foley zauważa, że jeśli potwierdzi się, że sieć neuronowa pozwala na dokonanie precyzyjnych obliczeń w bardo krótkim czasie, to będziemy mogli myśleć o odpowiedziach na znacznie głębsze pytania, jak np. te o powstawanie fal grawitacyjnych.

Jako, że sieci neuronowe wymagają odpowiedniego treningu przed zaprzęgnięciem ich do pracy Foley i jego koledzy – Philip G. Breen, Tjarda Boekholt i Simon Portegies Zwart – przygotowali za pomocą Brutusa 9900 uproszczonych scenariuszy dotyczących problemu trzech ciał. One posłużyły do treningu. Następnie przetestowali swoją sieć neuronową dając jej do rozwiązania 5000 kolejnych problemów tego typu, z którymi wcześniej się nie zetknęła. Okazało się, że wykonane przez nią obliczenia dały bardzo podobne wyniki, jak te, które uzyskano z Brutusa. O ile jednak Brutus potrzebował na rozwiązanie każdego z tych 5000 problemów około 2 minut, sieć neuronowa radziła sobie z nimi w ułamku sekundy.

Christopher Foley wyjaśnia, że Brutus i podobne mu algorytmy są znacznie wolniejsze od SI, gdyż prowadzą obliczenia dla każdego niewielkiego przesunięcia się każdego z ciał w układzie. Tymczasem sztuczna inteligencja przygląda się ruchowi i poszukuje wzorców, które pozwolą na przewidzenie przyszłego zachowania ciał.

Uczony zauważa, że problemem może być skalowanie możliwości sieci neuronowej. Musi ona bowiem się uczyć na istniejącym zestawie danych. Teraz była trenowana na uproszczonych scenariuszach. Jeśli jednak będzie potrzeba nauczenia jej radzenia sobie z bardziej złożonymi scenariuszami, czy z układami czterech lub nawet pięciu ciał, konieczne będzie wcześniejsze przygotowanie scenariuszy treningowych. A te trzeba będzie wykonać za pomocą powolnego Brutusa. Tu właśnie dochodzimy do momentu, gdy z jednej strony możemy trenować fantastycznie pracującą sieć neuronową, a z drugiej potrzebujemy danych treningowych. To wąskie gardło, stwierdza Foley. Sposobem na poradzenie sobie z tym problemem byłoby stworzenie całego zestawu danych uzyskanych za pomocą takich programów jak Brutus. To jednak oznacza, że najpierw musiałyby powstać standardowe protokoły, dzięki którym dane uzyskane od różnych programów będą spełniały te same wymagania i zostaną zapisane w tych samych formatach.

Innym problemem jest fakt, że sieć neuronowa może zostać uruchomiona na określony czas. Nie sposób jednak przewidzieć, jak długo potrwają konkretne obliczenia zatem sieć może przestać działać zanim dostarczy wyników. Foley przewiduje powstawanie hybryd, w których część pracy wykonają programy takie jak Brutus, a sieci neuronowe zajmą się przetwarzaniem tylko najbardziej wymagających obliczeń. Za każdym razem gdy podczas obliczeń Brutus się zatnie, może włączać się sieć neuronowa i popchnie obliczenia do przodu, a gdy Brutus znowu będzie gotów do pracy, podejmie ją na nowo.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Trochę OT, ale, czy wiecie może, jakie są możliwości, żeby zapoznać się samodzielnie z sieciami neuronowymi czy ML w domu? Tzn. od czego można w miarę szybko i sprawnie zacząć, np. (tak sobie wyobrażam) ściągnąć z internetu jakiś darmowy framework czy tp., napisać jakiś prosty program w Pythonie, który coś ciekawego robi? Można przyjąć, że mam podstawy teoretyczne - dawno temu mieliśmy na studiach dość obszerny kurs - bez praktycznego programowania - ale wzory itp. pewnie sobie przypomnę w miarę szybko "w boju" :)

Share this post


Link to post
Share on other sites
3 godziny temu, darekp napisał:

od czego można w miarę szybko i sprawnie zacząć, np. (tak sobie wyobrażam) ściągnąć z internetu jakiś darmowy framework czy tp., napisać jakiś prosty program w Pythonie, który coś ciekawego robi?

Biblioteki Tensorflow i Keras dla Pythona są przygotowane stricte do Deep learningu i uczenia maszynowego ;)

Edited by wilk
Nie ma potrzeby cytować całości wypowiedzi. Prawda, że teraz jest znacznie czytelniej i mniej bałaganu na forum i głównej?

Share this post


Link to post
Share on other sites
4 godziny temu, darekp napisał:

ale wzory itp. pewnie sobie przypomnę w miarę szybko "w boju"

Nic nie trzeba nawet znać do prostych zastosowań, jak wspomniał przedmówca, tensorflow/keras przykładów jest mnóstwo.

Można wejść tak wysokopoziomowo, że praktycznie tylko wystarczy znormalizować wejście ustalić ilość warstw (są jeszcze typy) i jazda.

Jakiś czas temu był artykuł podobny do tego, co wyżej też jakieś "kosmiczne obliczenia"  i dali link do githuba do kodu i okazuje się, że całą sieć była tak "skomplikowana" jak dowolne przykłady użycia sieci dla studentów/początkujących.

 

Share this post


Link to post
Share on other sites

Nie jestem żadnym fizykiem, ale z tego, co zrozumiałem, to sieć neuronowa może być kompatybilna z tym Brutusem, który w przeciwieństwie do tego pierwszego może obliczać różne rozwiązania bez wzorowania się na dostarczanych fizycznie widocznych danych. Ogólnie pewnie Newton byłby dumny :D Oglądałem kiedyś serial rozkminiaczowy na temat m.in fal grawitacyjnych tworzących się w pewnej szkole z czarną dziurą w centrum budynku, taka fajna produkcja dla młodzieży. Szczerze bardzo zachęcała do uczenia się tego, co wtedy uważałem za zbędne. Polecam "dziwne przypadki w Blake Hose-High". Tam będzie dużo o grawitacji, kombinowaniu co by było, gdyby pewne prawa fizyki przestały funkcjonować itd. Może wtedy jeszcze przy okazji wpadniecie na coś nowego i pochwalicie się tym tutaj. 

Share this post


Link to post
Share on other sites

Problem nie trzech ale miliardów ciał poruszających się w "polu grawitacyjnym" Natura rozwiązuje on-line!

Share this post


Link to post
Share on other sites

Kiedyś stworzymy komputer, który zasymuluje cały wszechświat, a istoty, ktore tam powstaną będą go nazywały Natura

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Algorytmy do maszynowego uczenia się pozwoliły specjalistom z MIT zidentyfikować nowe potężne antybiotyki. Podczas testów laboratoryjnych nowe związki zabiły jedne z najtrudniejszych w zwalczaniu bakterii chorobotwórczych, w tym szczepy oporne na działanie wszystkich znanych antybiotyków. Jakby tego było mało, umożliwiły one zwalczenie infekcji w dwóch różnych mysich modelach chorób.
      Naukowcy wykorzystali model komputerowy, który pozwala na przeanalizowanie w ciągu zaledwie kilku dni działania setek milionów związków chemicznych. Taka analiza pozwala na wybór do dalszych badań najbardziej obiecujących środków. Uczeni szukają związków, które zabijają bakterie w inny sposób, niż obecnie znane antybiotyki.
      Chcieliśmy stworzyć platformę, która pozwoliłaby nam na wykorzystanie sztucznej inteligencji do zapoczątkowania nowej epoki w odkrywaniu antybiotyków. Dzięki takiemu podejściu natrafiliśmy na zadziwiającą molekułę, która jest jednym z najpotężniejszych znanych antybiotyków, mówi profesor James Collins z MIT.
      Przy okazji zidentyfikowano wiele innych obiecujących kandydatów na antybiotyki. Substancje te dopiero będą testowane. Uczeni uważają, że ich model można wykorzystać również do projektowania nowych leków.
      Model maszynowego uczenia się pozwala nam masowo badać związki chemiczne. Przeprowadzenie takich badań w laboratorium byłoby niemożliwe ze względu na koszty, dodaje Regina Barzilay z Computer Science and Artificial Intelligencje Laboratory (CSAIL) na MIT.
      Przez ostatnich kilkadziesiąt lat wynaleziono niewiele nowych antybiotyków, a większość z tych nowych to lekko istniejące wersje wcześniej istniejących. Obecnie wykorzystywane metody badania związków chemicznych pod kątem ich przydatności do produkcji antybiotyków są niezwykle kosztowne, wymagają dużo czasu i zwykle pozwalają zbadać wąską grupę mało zróżnicowanych środków.
      Stoimy w obliczu rosnącej antybiotykooporności. Z jednej strony problem ten spowodowany jest coraz większą liczbą antybiotykoopornych patogenów, a z drugiej – powolnym postępem na tym polu, mówi Collins. Coraz częściej pojawiają się głosy, że ludzie mogą zacząć umierać na choroby zakaźne, na które nie umierali od dziesięcioleci. Dlatego też niezwykle pilnym zadaniem jest znalezienie nowych antybiotyków. Niedawno informowaliśmy o odkryciu antybiotyków, które zabijają bakterie w niespotykany dotąd sposób.
      Pomysł wykorzystania komputerów do identyfikowania potencjalnych antybiotyków nie jest nowy, dotychczas jednak obliczenia takie były albo niezwykle czasochłonne, albo niedokładne. Nowe sieci neuronowe znacznie skracają czas obliczeń.
      Naukowcy z MIT dostosowali swój model obliczeniowy tak, by poszukiwał związków chemicznych mogących być zabójczymi dla E. coli. Swój model trenowali na około 2500 molekuł, w tym na około 1700 lekach zatwierdzonych przez FDA i około 800 naturalnych produktach o zróżnicowanych strukturach i działaniu.
      Po zakończonym treningu sieć neuronowa została przetestowana na należącej do Broad Institute bazie Drug Repository Hub, która zawiera około 6000 związków. Algorytm znalazł tam molekułę, która miała strukturę inną od wszystkich istniejących antybiotyków i o której sądził, że będzie wykazywała silne działanie antybakteryjne. Naukowcy najpierw poddali tę molekułę badaniom za pomocą innego modelu maszynowego i stwierdzili, że prawdopodobnie jest ona mało toksyczna dla ludzi.
      Halicyna, bo tak nazwano tę molekułę, była w przeszłości badana pod kątem jej przydatności w leczeniu cukrzycy. Teraz naukowcy przetestowali ją na dziesiątkach szczepów bakterii pobranych od ludzi. Okazało się, że zabija ona wiele antybiotykoopornych patogenów, w tym Clostridium difficile, Acinetobacter bumannii czy Mycobacterium turebculosis. Jedynym patogenem, który oparł się jej działaniu była Pseudomonas aeruginosa, powodująca trudne w leczeniu choroby płuc.
      Po pomyślnych testach in vitro rozpoczęto badania na zwierzętach. Halicynę użyto do leczenia myszy zarażonej wcześniej opornym na działanie wszystkich znanych antybiotyków szczepem A. baumannii. Halicyna w ciągu 24 godzin zwalczyła infekcję u zwierząt.
      Wstępne badania sugerują, że nowy antybiotyk działa poprzez zaburzanie u bakterii możliwości utrzymania gradientu elektrochemicznego w błonie komórkowej. Gradient ten jest niezbędny m.in. do wytwarzania molekuły ATP, niezbędnego nośnika energii. Bakterie pozbawione ATP giną. Naukowcy uważają, że bakteriom będzie bardzo trudno nabyć oporność na taki sposób działania antybiotyku.
      Podczas obecnych badań uczeni stwierdzili, że w ciągu 30 dni leczenia u E. coli w ogóle nie rozwinęła się oporność na halicynę. Tymczasem np. oporność na cyprofloksacynę zaczyna się u E. coli rozwijać w ciągu 1-3 dni od podania, a po 30 dniach bakteria jest 200-krotnie bardziej oporn działanie tego środka.
      Po zidentyfikowaniu halicyny naukowcy wykorzystali swój model do przeanalizowania ponad 100 milionów molekuł wybranych z bazy ZINC15, w której znajduje się około 1,5 miliarda molekuł. Analiza trwała trzy doby, a sztuczna inteligencja znalazła 23 molekuły, które są niepodobne do żadnego istniejącego antybiotyku i nie powinny być toksyczne dla ludzi. Podczas testów in vitro stwierdzono, że 8 z tych molekuł wykazuje właściwości antybakteryjne, z czego 2 są szczególnie silne. Uczeni planują dalsze badania tych molekuł oraz analizę pozostałych związków z ZINC15.
      Naukowcy planują dalsze udoskonalanie swojego modelu. Chcą np. by poszukiwał on związków zdolnych do zabicia konkretnego gatunku bakterii, a oszczędzenia bakterii korzystnych dla ludzi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dr inż. Marcin Sieniek jest absolwentem Akademii Górniczo-Hutniczej w Krakowie i tamtejszego Uniwersytetu Ekonomicznego. Na AGH otrzymał również doktorat z informatyki za badania w dziedzinie nauk obliczeniowych. W Google Health zajmuje się pracą nad zastosowaniem sztucznej inteligencji w diagnozie raka piersi. Oprócz Google pracował w zespole Autopilota Tesli oraz prowadził w Polsce startup z dziedziny social learning. Prywatnie gra w zespole rockowym i prowadzi bloga expat-pozytywnie.pl.
      Jak trafia się do Google Health i dlaczego właśnie tam? To dość niszowa działka w działalności Google'a czy Alphabetu i wymagająca chyba szczególnych umiejętności?
      W Google Health pomocne są przede wszystkim różnorodne umiejętności i doświadczenia. W Google pracuję od ponad 5 lat, początkowo jako inżynier oprogramowania w polskim biurze firmy. Jednak już od samego początku pracowałem nad wykorzystywaniem sztucznej inteligencji, a konkretniej określonych technik - tzw. uczenia maszynowego. Później kontynuowałem pracę nad moimi projektami w amerykańskich biurach Google. Dopiero wtedy, szukając ciekawych wyzwań wewnątrz firmy, znalazłem możliwość dołączenia do Google Research - działu firmy skupiającego się na badaniach nad rozwojem sztucznej inteligencji i jej wykorzystaniem w różnych dziedzinach życia.
      Tam powstawał właśnie mały zespół badawczy zajmujący się zastosowaniem głębokiego uczenia maszynowego właśnie w radiologii. Proces selekcji do zespołu był wymagający - sprawdzano m.in. znajomość technik sztucznej inteligencji oraz udokumentowane doświadczenie w badaniach biotechnologicznych co akurat zupełnie przypadkiem było przedmiotem jednej z moich prac na studiach doktoranckich.
      Pod koniec 2018 roku mój zespół stał się częścią nowego działu Google Health - łączącego w sobie nie tylko inżynierów oprogramowania, ale także doświadczenie i wiedzę lekarzy, prawników, etyków i specjalistów od procedur medycznych.
      Jest Pan jednym ze współtwórców algorytmu, który lepiej diagnozuje raka piersi niż lekarze. Jak powstaje i działa taki algorytm?
      Algorytm taki powstaje podobnie jak np. technologia która pozwala rozpoznawać co znajduje się na zdjęciu. Algorytm sztucznej inteligencji jest „szkolony” na istniejącym zbiorze danych, gdzie obrazom (w tym wypadku medycznym, czyli zdjęciom z mammografii) towarzyszą oznaczenia (w tym wypadku: czy wykryto nowotwór złośliwy i ewentualna informacja o jego umiejscowieniu). Takie zbiory danych powstają w ramach normalnej praktyki w szpitalach i centrach programów przesiewowych, jednak często na tym ich zastosowanie się kończy.
      Takie algorytmy działają na bazie mechanizmu zwanego „sieciami neuronowymi”. Ich struktura inspirowana jest tym w jaki sposób informacje przetwarza ludzki mózg. Proces nauki przypomina w istocie proces w którym człowiek uczy się rozróżniać obrazy (np. dziecko rozpoznawać koty i psy, a radiolog rozpoznawać groźne guzy od nieszkodliwych zmian). W odróżnieniu jednak od radiologa, który w toku treningu może zobaczyć kilkadziesiąt-kilkaset nowotworów, komputer jest w stanie przetworzyć dziesiątki tysięcy przykładów w przeciągu jedynie kilku godzin.
      Taki „wytrenowany” algorytm stosuje się następnie do oceny osobnego, nowego zbioru danych. Następnie inżynierowie mogą wprowadzić poprawki w procesie uczenia się albo w budowie modelu i powtórzyć testy. Dopiero gdy wyniki działania modelu zadowalają jego twórców, sprawdza się go na kolejnym zbiorze danych, np. pochodzących z innej instytucji lub z innego źródła.
      Na tym właśnie etapie postanowiliśmy opublikować nasz artykuł w Nature.
      Na tym jednak nie kończymy pracy. Zanim taki model znajdzie praktyczne zastosowanie w szpitalach na całym świecie, muszą zostać przeprowadzone próby kliniczne i o na różnych populacjach pacjentów, musimy także ocenić skuteczność modelu na danych pochodzących z innych aparatów mammograficznych.
      Niejednokrotnie informowaliśmy o systemach SI radzących sobie w pewnych zadaniach lepiej od lekarzy. Skąd się bierze ta przewaga sztucznej inteligencji?
      Warto powiedzieć, że to „potencjalna” przewaga. Raczej patrzymy na to jako na wsparcie i usprawnienie procesów diagnostycznych lekarzy. To potencjalne usprawnienie bierze się kilku źródeł: po pierwsze, w procesie uczenia się algorytm może przeanalizować dużo więcej przypadków niż pojedynczy lekarz w procesie nauki (z drugiej strony ludzie wyciągają wnioski szybciej – maszyna potrzebuje więcej przykładów). Co więcej automat nie ma skłonności do zaspokojenia swoich poszukiwań jednym „znaleziskiem” i jest mniejsze ryzyko, że umknie mu inne, często ważniejsze. Wreszcie, system sztucznej inteligencji pozwala na „nastrojenie” go na pożądany przez daną placówkę medyczną poziom czułości i swoistości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Trenowanie systemów sztucznej inteligencji trwa obecnie wiele tygodni. Firma Cerebras Systems twierdzi, że potrafi skrócić ten czas do kilku godzin. Pomysł polega na tym, by móc testować więcej pomysłów, niż obecnie. Jeśli moglibyśmy wytrenować sieć neuronową w ciągu 2-3 godzin, to rocznie możemy przetestować tysiące rozwiązań, mówi Andrew Feldman, dyrektor i współzałożyciel Cerebras.
      Jeśli chcemy wytrenować sieć sztucznej inteligencji, która np. ma zarządzać autonomicznym samochodem, potrzebujemy wielu tygodni i olbrzymiej mocy obliczeniowej. Sieć musi przeanalizować olbrzymią liczbę zdjęć czy materiałów wideo, by nauczyć się rozpoznawania istotnych obiektów na drodze.
      Klienci Cerebras skarżą się, że obecnie trenowanie dużej sieci neuronowej może trwać nawet 6 tygodni. W tym tempie firma może wytrenować około 6 sieci rocznie. To zdecydowanie zbyt mało dla przedsiębiorstw, które chcą sprawdzić wiele nowych pomysłów za pomocą SI.
      Rozwiązaniem problemu ma być komputer CS-1, a właściwie jego niezwykły procesor. Maszyny CS-1 mają wysokość 64 centymetrów, a każda z nich potrzebuje do pracy 20 kW. Jednak 3/4 obudowy każdego z komputerów zajmuje układ chłodzenia, a tym, co najbardziej rzuca się w oczy jest olbrzymi układ scalony. Zajmuje on powierzchnię 46 255 milimetrów kwadratowych, czyli około 50-krotnie więcej niż tradycyjny procesor. Zawiera 1,2 biliona tranzystorów, 400 000 rdzeni obliczeniowych i 18 gigabajtów pamięci SRAM.
      Procesor o nazwie Wafer Scale Engine (WSE) wypada znacznie lepiej niż podobne systemy. Jak zapewniają przedstawiciele Cerebras, ich maszyna, w porównaniu z klastrem TPU2 wykorzystywanym przez Google'a do trenowania SI, zużywa 5-krotnie mniej energii i zajmuje 30-krotnie mniej miejsca, a jest przy tym 3-krotnie bardziej wydajna. Takie zestawienie brzmi imponująco, a na ile rzeczywiście WSE jest lepszy od dotychczasowych rozwiązań powinno ostatecznie okazać się w bieżącym roku. Jak zauważa analityk Mike Demler, sieci neuronowe stają się coraz bardziej złożone, więc możliwość szybkiego ich trenowania jest niezwykle ważna.
      Trzeba jednak przyznać, że w twierdzeniach Cerebras musi być ziarno prawdy. Wśród klientów firmy jest m.in. Argonne National Laboratory, które ma już maszyny CS-1 u siebie. Zapewne już wkrótce dowiemy się, czy rzeczywiście zapewniają one tak wielką wydajność i pozwalają tak szybko trenować sieci neuronowe.
      Twórcami Cerebras są specjaliści, którzy pracowali w firmie Sea Micro, przejętej przez AMD. Pomysł stworzenia komputera wyspecjalizowanego w sztucznej inteligencji zaczął kiełkować w ich głowach w 2015 roku. Stwierdzili, że odpowiedni procesor musi być w stanie szybko przesyłać duże ilości danych, układy pamięci muszą znajdować się blisko rdzenia, a same rdzenie nie powinny zajmować się danymi, którymi już zajmują się inne rdzenie. To zś oznaczało, że tego typu układ musi składać się z olbrzymiej liczby niewielkich rdzeni wyspecjalizowanych w obliczeniach z zakresu sieci neuronowych, połączenia między rdzeniami muszą być szybkie i zużywać niewiele energii, a wszystkie dane muszą być dostępne na procesorze, a nie w osobnych układach pamięci.
      Twórcy Cerebras uznali, że tym, czego potrzebują, jest chip niemalże wielkości całego plastra krzemowego. Udało im się taki układ skonstruować, chociaż nie było to łatwe zadanie i wciąż muszą poradzić sobie z licznymi problemami. Jednym z nich było poradzenie sobie z filozofią tworzenia współczesnych plastrów krzemowych. Obecnie z pojedynczego plastra tworzy się wiele procesorów. Po ich przygotowaniu, plaster, zawierający wiele identycznych układów, jest cięty. W procesie przygotowywania plastra do produkcji tworzy się na nim specjalne linie, wzdłuż których przebiegają cięcia. Tymczasem Cerebras potrzebowało takiego plastra w całości, z połączeniami pomiędzy poszczególnymi rdzeniami. To zaś wymagało nawiązania współpracy z TSMC i opracowania metody przeprowadzenia połączeń przez linie.
      Wysiłek się opłacił. Poszczególne rdzenie komunikują się między sobą z prędkością 1000 Pb/s, a komunikacja pomiędzy pamięcią a rdzeniami przebiega w tempie do 9 PB/s. To nie jest trochę więcej. To o cztery rzędy wielkości więcej, gdyż wszystko odbywa się w ramach tego samego plastra, cieszy się Feldman.
      Jednak przeprowadzenie połączeń przez linie nie był jedynym problemem. Trzeba było zmodyfikować cały proces projektowania i produkcji układów. Nawet oprogramowanie do projektowania procesorów jest przygotowane pod niewielkie układy. Każda zasada, każde narzędzie i każde urządzenie jest obecnie dostosowana do produkcji układów scalonych o zwyczajowych rozmiarach. My zaś potrzebujemy czegoś znacznie większego, dlatego też musieliśmy na nowo opracować każdy element, dodaje Feldman.
      Jeszcze innym problemem okazało się zasilanie takiego układu. Każdy z 1,2 biliona tranzystorów potrzebuje 0,8 wolta. To standardowe napięcie, ale tranzystorów jest tak dużo, że do układu należy doprowadzić prąd o natężeniu 20 000 amperów.
      Uzyskanie w całym plastrze 20 000 amperów bez znacznego spadku napięcia było kolejnym wyzwaniem inżynieryjnym, mówią przedstawiciele Cerebras. Doprowadzenie prądu do krawędzi WSE nie wchodziło w rachubę, gdyż opory spowodowałyby spadek napięcia do zera zanim prąd osiągnąłby środek układu. Rozwiązaniem okazało się prostopadłe podłączenie od góry. Inżynierowie Cerebras zaprojektowali specjalny zestaw składający się z setek układów wyspecjalizowanych w kontrolowaniu przepływu prądu. Za pomocą miliona miedzianych połączeń dostarcza on zasilanie do WSE.
      Cerebras nie podaje żadnych danych odnośnie testów wydajności swojego rozwiązania w porównaniu z innymi systemami. Zamiast tego firma zachęca swoich klientów, by po prostu sprawdzili, czy  CS-1 i WSE sprawują się lepiej w zadaniach, których ci klienci potrzebują. Nie ma w tym jednak nic dziwnego. Każdy korzysta z własnych modeli dostosowanych do własnych potrzeb. To jedyne co się liczy dla klienta, mówi analityk Karl Freund.
      Jednym z takich klientów jest właśnie Argonne National Laboratory. Ma ono dość specyficzne potrzeby. Wykorzystuje sieci neuronowe do rozpoznawania różnych rodzajów fal grawitacyjnych w czasie rzeczywistym. Pracujący tam specjaliści wolą więc samodzielnie przekonać się, czy nowe urządzenie lepiej sprawdzi się w tych zastosowaniach niż dotychczas stosowane superkomputery.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ostatni piątek w Instytucie Fizyki PAN zakończyła się konferencja „INNO THINKING, Nauka dla Społeczeństwa 2.0”. Zaprezentowane na niej trzy projekty badawcze mogą zrewolucjonizować medycynę i ochronę środowiska.
      Sztuczna inteligencja w diagnostyce ścięgna Achillesa
      Urazy ścięgna Achillesa należą do najczęstszych urazów ortopedycznych. Samych tylko zerwań ścięgna notuje się około 200 rocznie na 1 mln ludności w USA i Europie. Rosnąca podaż wykonywanych badań stanowi ogromne wyzwanie dla zmniejszających się zastępów lekarzy radiologów. Już dziś zdarza się, że dostępność zaawansowanych aparatów diagnostycznych jest dość powszechna, ale czas oczekiwania na opisy wykonanych badań znacznie się wydłuża.
      Diagnostyka oparta na obrazowaniu medycznym otwiera nowe możliwości w zakresie leczenia oraz doboru optymalnych metod rehabilitacji pourazowej lub pooperacyjnej – przekonuje Bartosz Borucki, Kierownik laboratorium R&D na Uniwersytecie Warszawskim. Już dziś stworzyliśmy rozwiązanie do oceny ścięgna Achillesa, które wprowadza automatyzację, umożliwiającą tworzenie obiektywnych ocen radiologicznych w oparciu o wykorzystanie sztucznej inteligencji. To pierwsze tego typu rozwiązanie na świecie. Jesteśmy przekonani, że nasz projekt wyznaczy nowe kierunki rozwoju diagnostyki obrazowej w ortopedii i medycynie sportowej, i usprawni czas oraz skuteczność stawianych diagnoz – dodaje.
      Projekt objęty jest obecnie pracami przedwdrożeniowymi, które uwzględniają m.in. usługi badawcze związane z poszerzoną walidacją i analizą dot. certyfikacji i legislacji. Status ten jest doskonałym przykładem komercjalizacji badań naukowych, realizowanych przez polskie instytucje badawczo-naukowe i ma szansę już w nieodległej przyszłości na dobre wpisać się w proces diagnostyki urazów ścięgna Achillesa, a także innych urazów – jak na przykład więzadeł w kolanie.
      Osteoporoza na trzecim miejscu śmiertelnych chorób cywilizacyjnych
      Szczególnym wyzwaniem, wobec którego stanie ludzkość w nadchodzących dekadach, będzie znalezienie skutecznego arsenału rozwiązań do walki z mutującymi wirusami i superbakteriami. Dane Światowej Organizacji Zdrowia (WHO) są zatrważające. Obecnie już 2 mln ludzi umiera rocznie w wyniku zakażeń lekoopornymi bakteriami. Według prognoz w 2050 roku, liczba ta zwiększy się dziesięciokrotnie. Naukowcy zgodni są wobec faktu, że możliwości znanych nam antybiotyków wyczerpują się. Powstawanie nowych bakterii, na które medycyna nie zna lekarstwa, wymusza poszukiwanie alternatywnych rozwiązań.
      W Instytucie Fizyki PAN od wielu lat prowadzone są badania związane z wykorzystaniem tlenków metali o właściwościach antybakteryjnych. Dotychczasowe kierunki badań zostały rozwinięte, obejmując swoim zastosowaniem sektor medycyny implantacyjnej. Udało się bowiem dowieźć, że technologia pokrywania implantów warstwami tlenków metali wpływa na przyspieszenie regeneracji kości i tkanek.
      Wyniki naszych badań to nadzieja dla wszystkich pacjentów, którzy zmagają się z problemami osteointegracji. Nasze badania dają nadzieję na wyeliminowanie  poimplantacyjnych stanów zapalnych, infekcji bakteryjnych, metalozy czy reakcji alergicznych – mówi Aleksandra Seweryn z IF PAN. Jesteśmy przekonani, że zastosowanie naszej technologii bezpośrednio przełoży się na minimalizację ryzyk wynikających z leczenia implantacyjnego, zarówno u pacjentów cierpiących na osteoporozę, jak również przy zabiegach dentystycznych.
      Potrzebujemy coraz więcej energii
      Model życia ludzkości i rozwój technologiczny wymusza coraz większe zapotrzebowanie na energię elektryczną. Szacuje się, że do 2050 roku podwoimy jej wykorzystanie – z 15 TW do ok. 30 TW. Wykorzystywane dziś źródła energii, wciąż w dużej mierze uzależnione od paliw kopalnych, z pewnością okażą się niewystarczające w dłuższej perspektywie czasowej.
      Zbyt niska produkcja prądu będzie hamowała rozwój ludzkości. Do tego czasu zmagać się będziemy ze zjawiskiem globalnego ocieplenia i jego, już dziś zauważalnymi, katastrofalnymi efektami. Utrzymanie obecnego stanu rzeczy skutkować będzie do 2050 roku podniesieniem poziomu mórz i oceanów o 4 m, przesunięciem stepów i pustyń o 600 km na północ, wielkimi ruchami migracyjnymi ludzkości, kataklizmami, które wpłyną również na wyginięcie milionów gatunków zwierząt i roślin.
      Instytut Fizyki PAN realizuje zaawansowane badania związane z fotowoltaiką. Wierzymy bowiem, że energia słoneczna jest naturalnym, bezpiecznym i w zasadzie nieograniczonym źródłem energii. W ciągu 40 lat koszt paneli słonecznych zmniejszył się stukrotnie, znacząco zwiększając dostępność tego typu rozwiązań dla przeciętnych gospodarstw domowych, twierdzi Monika Ożga, naukowiec IF PAN.
      Opracowane przez Instytut rozwiązania można z powodzeniem stosować w produkcji diod oświetleniowych i energooszczędnych okien, które redukują przyjmowanie i oddawanie ciepła, a co za tym idzie, zmniejszają ilość energii potrzebnej do ogrzania lub ochłodzenia pomieszczeń. Diody mogą się ponadto przyczynić nie tylko do ograniczenie popytu na energię, ale i znaleźć swoje zastosowanie w technologii budowania farm wertykalnych, które coraz częściej są wskazywane jako metoda walki z deficytem żywności na świecie.
      Według wstępnych szacunków, zastosowanie nowej kategorii diod może przynieść Polsce oszczędności rzędu 1-1,5 mld złotych, a poprzez redukcję wykorzystania prądu, przyczynić do zmniejszenia emisji CO2 i innych trujących gazów, powstałych wskutek spalania węgla.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Opracowanie planu radioterapii to skomplikowane zadanie, dlatego też nawet pacjenci, którzy potrzebują natychmiastowego wdrożenia leczenia muszą zwykle czekać kilka dni lub dłużej, aż lekarze opracują plan. Okazuje się jednak, że z pomocą może tutaj przyjść sztuczna inteligencja, która odpowiedni plan może przygotować w ułamku sekundy.
      Niektórzy z takich pacjentów wymagają natychmiastowej radioterapii, ale lekarze odsyłają ich do domu i każą czekać. Opracowanie w czasie rzeczywistym planu leczenia jest bardzo ważne. To część naszego projektu, w ramach którego chcemy zaprząc SI do poprawy wszelkich aspektów walki z nowotworami, mówi doktor Steve Jiang, który kieruje Laboratorium Medycznej Sztucznej Inteligencji i Automatyzacji na UT Soutwestern Medical Center.
      Radioterapia to często stosowana metoda walki z nowotworami. Badania pokazują, że w przypadku niektórych nowotworów odroczenie radioterapii o zaledwie tydzień zwiększa ryzyko nawrotu lub rozprzestrzenienia się choroby nawet o 14%. To właśnie takie dane stały się przyczyną, dla której zespół Jianga postanowił wykorzystać SI to pomocy w zaplanowaniu radioterapii. Od rozpoczęcia leczenia po przeliczenie dawek w miarę postępów leczenia.
      Testy przeprowadzone za pomocą specjalnie opracowanego algorytmu wykazały, że jest on w stanie opracować optymalny plan leczenia zaledwie w ciągu 5/100 sekundy od momentu otrzymania danych dotyczących pacjenta.
      Nowo opracowany algorytm korzystał z technik głębokiego uczenia się. Szkolono go na przykładzie 70 osób cierpiących na nowotwór prostaty, a przy uczeniu wykorzystano 4 algorytmy głębokiego uczenia się. Z czasem sztuczna inteligencja nauczyła się opracowywania optymalnego planu leczenia. Okazało się, że w przypadku każdego z tych pacjentów jest on taki sam, jak ten opracowany przez lekarzy.
      To jednak nie wszystko. Algorytm był też w stanie przed każdą kolejną sesją radioterapii błyskawicznie obliczyć prawidłowe dawki promieniowania. Zwykle pacjenci przed każdą sesją przechodzą badanie, na podstawie którego obliczane są dawki.
      Nowy algorytm korzysta z dwóch standardowych modeli obliczania dawki. Jednego szybkiego, który jednak jest mniej precyzyjny, i drugiego bardzo precyzyjnego, który jednak wymaga półgodzinnych obliczeń. SI, porównując na przykładzie wspomnianych 70 pacjentów wyniki obu modeli, nauczyła się, jak wykorzystać szybkość jednego i precyzję drugiego, by w czasie krótszym od sekundy uzyskać precyzyjne wyniki.
      Naukowcy z UT Southwestern Medical Center mają teraz zamiar wykorzystać swój algorytm w codziennej praktyce klinicznej.

      « powrót do artykułu
×
×
  • Create New...