Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Sieci neuronowe 100 milionów razy szybsze od algorytmu Brutus

Recommended Posts

Problem trzech ciał, czyli ruchu trzech ciał oddziałujących na siebie przez grawitację, stanowi poważne wyzwanie obliczeniowe od czasu sformułowania go przez Newtona. Obecnie, dzięki komputerom. możemy poznać dokładne rozwiązanie problemu, jednak nawet nowoczesnym maszynom obliczenia zajmują całe tygodnie, a nawet miesiące.

Grupa naukowców z Uniwersytetów w Lejdzie, Aveiro, Edynburgu i Cambridge zaprzęgła do obliczeń sztuczną inteligencję. Okazało się, że sieci neuronowe radzą sobie z obliczeniami nawet 100 milionów razy szybciej niż najbardziej zaawansowany obecnie algorytm Brutus. Jak mówi Chris Foley z University of Cambridge, to pokazuje, że sieci neuronowe mogą zostać wykorzystane do badania zachowania gromad gwiazd i lepszego poznania wszechświata.

Jak czytamy w opublikowanym w arXiv artykule pod tytułem „Newton vs the machine: solving the chaotic three-body problem using deep neural networks [PDF]”, równania takie odgrywają główną rolę w rozwiązaniu wielu klasycznych problemów fizyki. Na przykład wyjaśniają one dynamiczną ewolucję gromad kulistych i jąder galaktycznych, które są uważane za miejsca powstawania układów podwójnych czarnych dziur, które w końcu łączą się, wytwarzając fale grawitacyjne. Los tych systemów zależy od interakcji trzech ciał, układów podwójnych czarnych dziur i pojedynczej czarnej dziury. Interakcje pomiędzy nimi zachodzą zwykle w ściśle określonym przedziale czasu i, biorąc pod uwagę silne interakcje pomiędzy tymi trzema ciałami, można zignorować wpływ innych ciał, co oznacza, że interakcje pomiędzy trzema ciałami można obliczać w izolacji od innych interakcji.

Foley zauważa, że jeśli potwierdzi się, że sieć neuronowa pozwala na dokonanie precyzyjnych obliczeń w bardo krótkim czasie, to będziemy mogli myśleć o odpowiedziach na znacznie głębsze pytania, jak np. te o powstawanie fal grawitacyjnych.

Jako, że sieci neuronowe wymagają odpowiedniego treningu przed zaprzęgnięciem ich do pracy Foley i jego koledzy – Philip G. Breen, Tjarda Boekholt i Simon Portegies Zwart – przygotowali za pomocą Brutusa 9900 uproszczonych scenariuszy dotyczących problemu trzech ciał. One posłużyły do treningu. Następnie przetestowali swoją sieć neuronową dając jej do rozwiązania 5000 kolejnych problemów tego typu, z którymi wcześniej się nie zetknęła. Okazało się, że wykonane przez nią obliczenia dały bardzo podobne wyniki, jak te, które uzyskano z Brutusa. O ile jednak Brutus potrzebował na rozwiązanie każdego z tych 5000 problemów około 2 minut, sieć neuronowa radziła sobie z nimi w ułamku sekundy.

Christopher Foley wyjaśnia, że Brutus i podobne mu algorytmy są znacznie wolniejsze od SI, gdyż prowadzą obliczenia dla każdego niewielkiego przesunięcia się każdego z ciał w układzie. Tymczasem sztuczna inteligencja przygląda się ruchowi i poszukuje wzorców, które pozwolą na przewidzenie przyszłego zachowania ciał.

Uczony zauważa, że problemem może być skalowanie możliwości sieci neuronowej. Musi ona bowiem się uczyć na istniejącym zestawie danych. Teraz była trenowana na uproszczonych scenariuszach. Jeśli jednak będzie potrzeba nauczenia jej radzenia sobie z bardziej złożonymi scenariuszami, czy z układami czterech lub nawet pięciu ciał, konieczne będzie wcześniejsze przygotowanie scenariuszy treningowych. A te trzeba będzie wykonać za pomocą powolnego Brutusa. Tu właśnie dochodzimy do momentu, gdy z jednej strony możemy trenować fantastycznie pracującą sieć neuronową, a z drugiej potrzebujemy danych treningowych. To wąskie gardło, stwierdza Foley. Sposobem na poradzenie sobie z tym problemem byłoby stworzenie całego zestawu danych uzyskanych za pomocą takich programów jak Brutus. To jednak oznacza, że najpierw musiałyby powstać standardowe protokoły, dzięki którym dane uzyskane od różnych programów będą spełniały te same wymagania i zostaną zapisane w tych samych formatach.

Innym problemem jest fakt, że sieć neuronowa może zostać uruchomiona na określony czas. Nie sposób jednak przewidzieć, jak długo potrwają konkretne obliczenia zatem sieć może przestać działać zanim dostarczy wyników. Foley przewiduje powstawanie hybryd, w których część pracy wykonają programy takie jak Brutus, a sieci neuronowe zajmą się przetwarzaniem tylko najbardziej wymagających obliczeń. Za każdym razem gdy podczas obliczeń Brutus się zatnie, może włączać się sieć neuronowa i popchnie obliczenia do przodu, a gdy Brutus znowu będzie gotów do pracy, podejmie ją na nowo.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Trochę OT, ale, czy wiecie może, jakie są możliwości, żeby zapoznać się samodzielnie z sieciami neuronowymi czy ML w domu? Tzn. od czego można w miarę szybko i sprawnie zacząć, np. (tak sobie wyobrażam) ściągnąć z internetu jakiś darmowy framework czy tp., napisać jakiś prosty program w Pythonie, który coś ciekawego robi? Można przyjąć, że mam podstawy teoretyczne - dawno temu mieliśmy na studiach dość obszerny kurs - bez praktycznego programowania - ale wzory itp. pewnie sobie przypomnę w miarę szybko "w boju" :)

Share this post


Link to post
Share on other sites
3 godziny temu, darekp napisał:

od czego można w miarę szybko i sprawnie zacząć, np. (tak sobie wyobrażam) ściągnąć z internetu jakiś darmowy framework czy tp., napisać jakiś prosty program w Pythonie, który coś ciekawego robi?

Biblioteki Tensorflow i Keras dla Pythona są przygotowane stricte do Deep learningu i uczenia maszynowego ;)

Edited by wilk
Nie ma potrzeby cytować całości wypowiedzi. Prawda, że teraz jest znacznie czytelniej i mniej bałaganu na forum i głównej?

Share this post


Link to post
Share on other sites
4 godziny temu, darekp napisał:

ale wzory itp. pewnie sobie przypomnę w miarę szybko "w boju"

Nic nie trzeba nawet znać do prostych zastosowań, jak wspomniał przedmówca, tensorflow/keras przykładów jest mnóstwo.

Można wejść tak wysokopoziomowo, że praktycznie tylko wystarczy znormalizować wejście ustalić ilość warstw (są jeszcze typy) i jazda.

Jakiś czas temu był artykuł podobny do tego, co wyżej też jakieś "kosmiczne obliczenia"  i dali link do githuba do kodu i okazuje się, że całą sieć była tak "skomplikowana" jak dowolne przykłady użycia sieci dla studentów/początkujących.

 

Share this post


Link to post
Share on other sites

Nie jestem żadnym fizykiem, ale z tego, co zrozumiałem, to sieć neuronowa może być kompatybilna z tym Brutusem, który w przeciwieństwie do tego pierwszego może obliczać różne rozwiązania bez wzorowania się na dostarczanych fizycznie widocznych danych. Ogólnie pewnie Newton byłby dumny :D Oglądałem kiedyś serial rozkminiaczowy na temat m.in fal grawitacyjnych tworzących się w pewnej szkole z czarną dziurą w centrum budynku, taka fajna produkcja dla młodzieży. Szczerze bardzo zachęcała do uczenia się tego, co wtedy uważałem za zbędne. Polecam "dziwne przypadki w Blake Hose-High". Tam będzie dużo o grawitacji, kombinowaniu co by było, gdyby pewne prawa fizyki przestały funkcjonować itd. Może wtedy jeszcze przy okazji wpadniecie na coś nowego i pochwalicie się tym tutaj. 

Share this post


Link to post
Share on other sites

Problem nie trzech ale miliardów ciał poruszających się w "polu grawitacyjnym" Natura rozwiązuje on-line!

Share this post


Link to post
Share on other sites

Kiedyś stworzymy komputer, który zasymuluje cały wszechświat, a istoty, ktore tam powstaną będą go nazywały Natura

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Henrique Andrade, student z brazylijskiego Escola Politécnica da Universidade de Pernambuco od wielu lat interesuje się starymi mapami swojego rodzinnego miasta Recife. Zgromadziłem wiele cyfrowych kopii takich map i odkryłem o swoim mieście rzeczy, które nie są powszechnie znane. Ludziom z Recife odebrano dostęp do przeszłości, przez co mają problem ze zrozumieniem, kim są i co mogą zrobić dla swojej przyszłości, mówi Andrade. Student wpadł jednak na bardzo interesujący pomysł.
      Młody człowiek namówił profesora Bruno Fernandesa do stworzenia algorytmu maszynowego uczenia się, który przetwarzałby stare mapy na obrazy satelitarne takie, jaki widzimy w serwisie Google Maps. Zdaniem Andrade pomoże to zrozumieć ludziom, jak ich otoczenie zmieniało się z czasem, w tym jaki wpływ społeczny i ekonomiczny miała urbanizacja.
      Obaj uczeni wykorzystali istniejące narzędzie do sztucznej inteligencji zwane Pix2pix, które opiera się na dwóch sieciach neuronowych. Pierwsza z nich tworzy obrazy na podstawie danych, które otrzymuje, a druga decyduje, czy obraz jest prawdziwy czy nie. Obie sieci zostały tak wytrenowane, by próbowały nawzajem się oszukać. Ostatecznyme efektem ich pracy są realistycznie wyglądające obrazy.
      Andrade i Fernandes opublikowali szczegóły w piśmie IEEE Geoscience and Remote Sensing Letters. Na potrzeby swojej pracy stworzyli „satelitarny” obraz Recife na podstawie mapy z 1808 roku i zestawili go z obecnym obrazem satelitarnym tego samego obszaru. Gdy patrzysz na te obrazy, lepiej pojmujesz, jak zmieniło się miasto w ciągu ostatnich 200 lat. Widać dramatyczne zmiany jego geografii. Zbiorniki wody zostały zasypane odpadami, ludzie usunęli też tereny zielone, mówi Andrade.
      Młody uczony dodaje, że dużą zaletą zastosowanej techniki jest fakt, że SI potrzebuje stosunkowo niewiele danych. Jednak muszą być one umieszczone w kontekście historycznym, a rozdzielczość wygenerowanych obrazów jest mniejsza, niż życzyliby sobie naukowcy. Pracujemy nad poprawieniem rozdzielczości i eksperymentujemy z różnymi danymi, zapewnia Andrade.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy i studenci z Politechniki Gdańskiej (PG) opracowali nowatorski system do rozpoznawania złośliwości guzów nerek. Dzięki niemu możliwa będzie dokładniejsza diagnoza, a także zmniejszenie liczby niepotrzebnych operacji narażających zdrowie i życie pacjentów.
      Większość pacjentów z guzami nerek to osoby starsze, dla których operacja usunięcia guza może okazać się wysoce ryzykowna. Zdaniem lekarzy, jeśli guz nie jest złośliwy, bezpieczniej jest nie wykonywać operacji i pozostawić guz jedynie do dalszej obserwacji.
      Określenie złośliwości guza nie jest jednak prostym zadaniem. Szacuje się, że obecnie w Polsce 15-20 proc. operacji usunięcia nerki po wykryciu w niej guza wykonuje się niepotrzebnie, bo guz, początkowo określony jako złośliwy, po operacji i zbadaniu histopatologicznym okazuje się łagodny.
      Rocznie w Polsce jest to około 900 operacji, które bez potrzeby narażają zdrowie pacjentów i znacząco pogarszają komfort ich życia, a problem ten będzie w przyszłości tylko narastać. Przyczynić do tego może się również pandemia wirusa SARS-CoV-2, który powoduje choroby nerek nawet u 15 proc. zarażonych nim pacjentów.
      System opracowany przez naukowców, lekarzy i studentów
      Z pomocą w rozwiązaniu tego problemu przyszli naukowcy i studenci PG. Opracowali oni system TITAN (Technology In Tumor ANalysis), który przy użyciu technologii uczenia maszynowego i algorytmów sztucznej inteligencji określa prawdopodobieństwo złośliwości guza nerki na podstawie zdjęcia tomografii komputerowej jamy brzusznej.
      W zespole Radiato.ai, który stoi za projektem TITAN, udało się połączyć kompetencje i możliwości pracowników badawczo-dydaktycznych Wydziału FTiMS PG - dr. inż. Patryka Jasika (Team Leader) oraz dr. inż. Pawła Sytego (Product Owner) - a także studentów Wydziałów FTiMS i ETI: Aleksandra Obuchowskiego (Head AI Architect), Romana Karskiego (Data Scientist), Barbary Klaudel (Medical Image Specialist), Bartosza Rydzińskiego (Backend Developer) i Mateusza Anikieja (Devops). W zespole pracował również lekarz Mateusz Glembin z Oddziału Urologii Szpitala św. Wojciecha w Gdańsku.
      Sztuczna inteligencja pomocna w ocenie złośliwości guzów
      System informatyczny TITAN wykorzystuje sztuczną inteligencję do oceny złośliwości guzów nerek na podstawie zdjęcia tomografii komputerowej (TK), osiągając skuteczność na poziomie 87 proc. Aby stworzyć bazujący na metodach uczenia maszynowego autorski model predykcyjny, zdobyto ponad 15 tys. zdjęć tomografii komputerowej z niemal 400 przypadków medycznych.
      Przy opracowywaniu naszego algorytmu przykładaliśmy szczególną uwagę do rozpoznawania guzów łagodnych, gdyż to właśnie poprawne ich wykrycie może potencjalnie uratować życie pacjenta – tłumaczy Aleksander Obuchowski. Nie było to łatwe zadanie, gdyż guzy łagodne stanowiły tylko 26 proc. naszej bazy danych. Po przeanalizowaniu dziesiątek architektur sieci neuronowych i metod przetwarzania obrazów udało się nam jednak osiągnąć wynik 10/10 poprawnie rozpoznanych guzów łagodnych.
      To pozwoliło z kolei na zbudowanie bazy wiedzy, na której wytrenowane zostały algorytmy wykorzystujące głębokie sieci neuronowe, osiągające tak wysoką skuteczność przy jednoczesnym wychwytywaniu 10 na 10 guzów łagodnych. W rezultacie może się to przełożyć na ocalenie nerek i ograniczenie liczby niepotrzebnych operacji.
      Dzięki wykorzystaniu systemu TITAN lekarz uzyskuje dodatkową opinię w postaci sugestii algorytmu w ciągu zaledwie kilkunastu sekund – wyjaśnia dr inż. Patryk Jasik. System nie zastępuje jednak diagnozy lekarskiej, a jedynie zwraca uwagę na to, które przypadki mogły zostać błędnie zaklasyfikowane. Dzięki systemowi lekarze są w stanie uważniej przyjrzeć się takim guzom, skonsultować diagnozę z innymi specjalistami bądź skierować pacjenta na dalsze badania. Taka selekcja w rezultacie może znacząco ograniczyć liczbę błędnie zdiagnozowanych guzów.
      Dodatkowo, jeżeli w badaniu histopatologicznym okaże się, że guz faktycznie był złośliwy, lekarz może dodać taki przypadek do bazy wiedzy, co usprawni działanie algorytmu w przyszłości.
      Pierwsze testy w gdańskim szpitalu
      System został stworzony w ramach programu e-Pionier (jest on prowadzony przez Excento, spółkę celową Politechniki Gdańskiej), który łączy zespoły młodych programistów z instytucjami publicznymi w przygotowywaniu innowacyjnych rozwiązań z branży ICT. Problem braku narzędzi diagnostycznych wykorzystujących technologie informatyczne został zgłoszony z ramienia spółki Copernicus Podmiot Leczniczy oraz Szpitala św. Wojciecha w Gdańsku przez dr. n. med. Wojciecha Narożańskiego.
      System będzie w najbliższym czasie testowo wdrożony w Szpitalu św. Wojciecha w Gdańsku, gdzie lekarze wykorzystywać go będą w diagnozie bieżących przypadków guzów nerek. Jest to pierwszy tego typu system w Polsce, który będzie wykorzystywany w praktyce.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Choroba zwyrodnieniowa stawów to najczęściej występujące schorzenie spośród wszystkich rodzajów zapaleń stawów. Obecnie diagnozuje się ją przede wszystkim na podstawie zdjęć rentgenowskich. Jednak naukowcy z Wydziału Medycyny University of Pittsburgh oraz Wydziału Inżynierii Carnegie Mellon University stworzyli algorytm sztucznej inteligencji, który diagnozuje to schorzenie wiele lat przed pojawieniem się objawów.
      Złotym standardem w diagnostyce choroby zwyrodnieniowej stawów jest zdjęcie rentgenowskie. Gdy stawy ulegają zniszczeniu, zmniejszają się odległości pomiędzy kośćmi. Problem w tym, że gdy możemy zauważ tę chorobę na zdjęciach, zniszczenia już się dokonały. Znacznie łatwiej jest zaś zapobiegać zniszczeniu tkanki chrzęstnej niż spowodować jej odrastanie, mówi jeden z autorów badań, profesor chirurgii ortopedycznej Kenneth Urish z Pittsburgha.
      Obecnie nie istnieje żadna metoda wykrywania choroby zwyrodnieniowej stawów na etapie, który pozwalałby na naprawienie powstałych szkód. W naszej pracy prezentujemy metodę, która pozwala na wykrycie choroby jeszcze zanim da ona objawy. Metoda ta łączy teorię optymalnego transportu masy ze statystycznym rozpoznawaniem wzorców, czytamy w pracy pod tytułem Enabling early detection of osteoarthritis from presymptomatic cartilage texture maps via transport-based learning.
      Gdy lekarze oglądają zdjęcia stawów, nie widać tam oczywistego wzorca, który od razu można zauważyć gołym okiem. Ale to nie znaczy, że taki wzorzec nie istnieje. To znaczy tylko, że nie można go dostrzec używając konwencjonalnych narzędzi, dodaje doktor Shinjini Kundu.
      To właśnie Kundu odpowiadał za trenowanie algorytmu na podstawie zdjęć kolan wykonanych za pomocą rezonansu magnetycznego, a następnie testował go na zdjęciach, pacjentów, z którymi model nie miał wcześniej do czynienia. Proces nauczania i testowania był powtarzany dziesiątki razy, za każdym razem na innej grupie osób.
      W końcu model poddano ostatecznemu testowi. Miał on do przeanalizowania zdjęcia stawów kolanowych 86 zdrowych osób, u których ani nie występowały objawy choroby zwyrodnieniowej stawów, ani nie było na zdjęciach widać zmian wskazujących na proces chorobowy. Okazało się, że algorytm z 78-procentową trafnością przewidział, u których pacjentów trzy lata później rozwinęła się choroba.
      Osiągnięcie to wskazuje, że wykrycie choroby zwyrodnieniowej stawów może być możliwe na etapie, gdzie można jej zapobiec. W przyszłości połączenie metody przedobjawowego wykrywania z nowymi terapiami pozwalającymi na jej zapobieganie może znacząco zmienić epidemiologię choroby, na walkę z którą którą amerykański system opieki zdrowotnej wydaje obecnie 16,5 miliarda dolarów rocznie. Co więcej, naszą technikę można zastosować do wcześniejszego wykrywania w badaniach obrazowych wielu innych chorób, które obecnie diagnozuje się w zaawansowanym stadium rozwoju.
      Przed tygodniem informowaliśmy o innym algorytmie, który równie dobrze jak radiolodzy potrafi diagnozować raka piersi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wykorzystując sztuczną inteligencję, po raz pierwszy udało się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata. Współautorem pionierskiej pracy jest dr William Pearson z Zakładu Astrofizyki Departamentu Badań Podstawowych NCBJ.
      Ostatnia Nagroda Nobla pokazała, jak ważną i fascynującą dziedziną jest astrofizyka. Wielu naukowców od lat próbuje odkryć tajemnice wszechświata, jego przeszłość i przyszłość. Teraz po raz pierwszy udało im się znaleźć zlewające się pary galaktyk przy użyciu identycznej metody zarówno w symulacjach, jak i obserwacjach prawdziwego wszechświata (wykorzystano do tego sztuczną inteligencję).
      W badaniach prowadzonych przez Lingyu Wang (Holenderski Instytut Badań Kosmicznych, SRON), Vicente Rodrigueza-Gomeza (Instytut Radioastronomii i Astrofizyki, IRyA) oraz Williama J. Pearsona (Narodowe Centrum Badań Jądrowych, NCBJ) zastosowano pionierską metodę identyfikacji zderzających się galaktyk zarówno w symulacjach, jak i w obserwacjach rzeczywistego wszechświata.
      Zderzenia galaktyk nie są niczym nowym, od początku powstania wszechświata galaktyki zderzają się ze sobą, często łącząc się w jedną większą galaktykę. Wiadomo, że większość znanych nam galaktyk uczestniczyła w co najmniej kilku takich zderzeniach w ciągu swojego życia. Proces zderzania się galaktyk trwa zwykle setki milionów lat. To ważny aspekt historii naszego wszechświata, który możemy zobaczyć też na własne oczy, np. dzięki zdjęciom z teleskopu Hubble'a.
      Identyfikacja zderzających się galaktyk nie jest jednak prosta. Proces ten możemy badać albo symulując całe wydarzenie i analizując jego przebieg, albo obserwując je w realnym świecie. W przypadku symulacji jest to proste: wystarczy śledzić losy konkretnej galaktyki i sprawdzać, czy i kiedy łączy się z inną galaktyką. W prawdziwym wszechświecie sprawa jest trudniejsza. Ponieważ zderzenia galaktyk są rzadkie i trwają miliardy lat, w praktyce widzimy tylko jeden "moment" z całego długiego procesu zderzenia. Astronomowie muszą dokładnie zbadać obrazy galaktyk, aby ocenić, czy znajdujące się na nich obiekty wyglądają tak, jakby się zderzały lub niedawno połączyły.
      Symulacje można porównać z prowadzeniem kontrolowanych eksperymentów laboratoryjnych. Dlatego są potężnym i użytecznym narzędziem do zrozumienia procesów zachodzących w galaktykach. Dużo więcej wiemy na temat zderzeń symulowanych niż zderzeń zachodzących w prawdziwym wszechświecie, ponieważ w przypadku symulacji możemy prześledzić cały długotrwały proces zlewania się konkretnej pary galaktyk. W prawdziwym świecie widzimy tylko jeden etap całego zderzenia.
      Wykorzystując obrazy z symulacji, jesteśmy w stanie wskazać przypadki zderzeń, a następnie wytrenować sztuczną inteligencję (AI), aby była w stanie zidentyfikować galaktyki w trakcie takich zderzeń – wyjaśnia dr William J. Pearson z Zakładu Astrofizyki NCBJ, współautor badań. Aby sztuczna inteligencja mogła spełnić swoje zadanie, obrazy symulowanych galaktyk przetworzyliśmy tak, żeby wyglądały, jakby były obserwowane przez teleskop. Naszą AI przetestowaliśmy na innych obrazach z symulacji, a potem zastosowaliśmy ją do analizy obrazów prawdziwego wszechświata w celu wyszukiwania przypadków łączenia się galaktyk.
      W badaniach sprawdzono, jak szanse na prawidłową identyfikację zderzającej się pary galaktyk zależą m.in. od masy galaktyk. Porównywano wyniki oparte na symulacjach i rzeczywistych danych. W przypadku mniejszych galaktyk AI poradziła sobie równie dobrze w przypadku obrazów symulowanych i rzeczywistych. W przypadku większych galaktyk pojawiły się rozbieżności, co pokazuje, że symulacje zderzeń masywnych galaktyk nie są wystarczająco realistyczne i wymagają dopracowania.
      Artykuł zatytułowany Towards a consistent framework of comparing galaxy mergers in observations and simulations został przyjęty do publikacji w czasopiśmie Astronomy & Astrophysics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Porównanie trzech komercyjnych systemów sztucznej inteligencji wykorzystywanej w diagnostyce obrazowej raka piersi wykazało, że najlepszy z nich sprawuje się równie dobrze jak lekarz-radiolog. Algorytmy badano za pomocą niemal 9000 obrazów z aparatów mammograficznych, które zgromadzono w czasie rutynowych badań przesiewowych w Szwecji.
      Badania przesiewowe obejmujące dużą część populacji znacząco zmniejszają umieralność na nowotwory piersi, gdyż pozwalają na wyłapanie wielu przypadków na wczesnym etapie rozwoju choroby. W wielu takich przedsięwzięciach każde zdjęcie jest niezależnie oceniane przez dwóch radiologów, co zwiększa skuteczność całego programu. To jednak metoda kosztowna, długotrwała, wymagająca odpowiednich zasobów. Tutaj mogłyby pomóc systemy SI, o ile będą dobrze sobie radziły z tym zadaniem.
      Chcieliśmy sprawdzić, na ile dobre są algorytmy SI w rozpoznawaniu obrazów mammograficznych. Pracuję w wydziale radiologii piersi i słyszałem o wielu firmach oferujących takie algorytmy. Jednak trudno było orzec, jaka jest ich jakość, mówi Fridrik Strand z Karolinska Institutet.
      Każdy z badanych algorytmów to odmiana sieci neuronowej. Każdy miał do przeanalizowania zdjęcia piersi 739 kobiet, u których w czasie krótszym niż 12 miesięcy od pierwotnego badania wykryto raka piersi oraz zdjęcia 8066 kobiet, u których w czasie 24 miesięcy od pierwotnego badania nie wykryto raka piersi. Każdy z algorytmów miał ocenić zdjęcie w skali od 0 do 1, gdzie 1 oznaczało pewność, iż na zdjęciu widać nieprawidłową tkankę.
      Trzy systemy, oznaczone jako AI-1, AI-2 oraz AI-3 osiągnęły czułość rzędu 81,9%, 67,0% oraz 67,4%. Dla porównania, czułość w przypadku radiologów jako pierwszych interpretujących dany obraz wynosiła 77,4%, a w przypadku radiologów, którzy jako drudzy dokonywali opisu było to 80,1%. Najlepszy z algorytmów potrafił wykryć też przypadki, które radiolodzy przeoczyli przy badaniach przesiewowych, a kobiety zostały w czasie krótszym niż rok zdiagnozowane jako chore.
      Badania te dowodzą, że algorytmy sztucznej inteligencji pomagają skorygować fałszywe negatywne diagnozy postawione przez lekarzy-radiologów. Połączenie możliwości AI-1 z przeciętnym lekarzem-radiologiem zwiększało liczbę wykrytych nowotworów piersi o 8%.
      Zespół z Karolinska Institutet spodziewa się, że jakość algorytmów SI będzie rosła. Nie wiem, jak efektywne mogą się stać, ale wiem, że istnieje kilka sposobów, by je udoskonalić. Jednym z nich może być np. ocenianie wszystkich 4 zdjęć jako całości, by można było porównać obrazy z obu piersi. Inny sposób to porównanie nowych zdjęć z tymi, wykonanymi wcześniej, by wyłapać zmiany, mówi Strand.
      Pełny opis eksperymentu opublikowano na łamach JAMA Oncology.

      « powrót do artykułu
×
×
  • Create New...