Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Problem trzech ciał, czyli ruchu trzech ciał oddziałujących na siebie przez grawitację, stanowi poważne wyzwanie obliczeniowe od czasu sformułowania go przez Newtona. Obecnie, dzięki komputerom. możemy poznać dokładne rozwiązanie problemu, jednak nawet nowoczesnym maszynom obliczenia zajmują całe tygodnie, a nawet miesiące.

Grupa naukowców z Uniwersytetów w Lejdzie, Aveiro, Edynburgu i Cambridge zaprzęgła do obliczeń sztuczną inteligencję. Okazało się, że sieci neuronowe radzą sobie z obliczeniami nawet 100 milionów razy szybciej niż najbardziej zaawansowany obecnie algorytm Brutus. Jak mówi Chris Foley z University of Cambridge, to pokazuje, że sieci neuronowe mogą zostać wykorzystane do badania zachowania gromad gwiazd i lepszego poznania wszechświata.

Jak czytamy w opublikowanym w arXiv artykule pod tytułem „Newton vs the machine: solving the chaotic three-body problem using deep neural networks [PDF]”, równania takie odgrywają główną rolę w rozwiązaniu wielu klasycznych problemów fizyki. Na przykład wyjaśniają one dynamiczną ewolucję gromad kulistych i jąder galaktycznych, które są uważane za miejsca powstawania układów podwójnych czarnych dziur, które w końcu łączą się, wytwarzając fale grawitacyjne. Los tych systemów zależy od interakcji trzech ciał, układów podwójnych czarnych dziur i pojedynczej czarnej dziury. Interakcje pomiędzy nimi zachodzą zwykle w ściśle określonym przedziale czasu i, biorąc pod uwagę silne interakcje pomiędzy tymi trzema ciałami, można zignorować wpływ innych ciał, co oznacza, że interakcje pomiędzy trzema ciałami można obliczać w izolacji od innych interakcji.

Foley zauważa, że jeśli potwierdzi się, że sieć neuronowa pozwala na dokonanie precyzyjnych obliczeń w bardo krótkim czasie, to będziemy mogli myśleć o odpowiedziach na znacznie głębsze pytania, jak np. te o powstawanie fal grawitacyjnych.

Jako, że sieci neuronowe wymagają odpowiedniego treningu przed zaprzęgnięciem ich do pracy Foley i jego koledzy – Philip G. Breen, Tjarda Boekholt i Simon Portegies Zwart – przygotowali za pomocą Brutusa 9900 uproszczonych scenariuszy dotyczących problemu trzech ciał. One posłużyły do treningu. Następnie przetestowali swoją sieć neuronową dając jej do rozwiązania 5000 kolejnych problemów tego typu, z którymi wcześniej się nie zetknęła. Okazało się, że wykonane przez nią obliczenia dały bardzo podobne wyniki, jak te, które uzyskano z Brutusa. O ile jednak Brutus potrzebował na rozwiązanie każdego z tych 5000 problemów około 2 minut, sieć neuronowa radziła sobie z nimi w ułamku sekundy.

Christopher Foley wyjaśnia, że Brutus i podobne mu algorytmy są znacznie wolniejsze od SI, gdyż prowadzą obliczenia dla każdego niewielkiego przesunięcia się każdego z ciał w układzie. Tymczasem sztuczna inteligencja przygląda się ruchowi i poszukuje wzorców, które pozwolą na przewidzenie przyszłego zachowania ciał.

Uczony zauważa, że problemem może być skalowanie możliwości sieci neuronowej. Musi ona bowiem się uczyć na istniejącym zestawie danych. Teraz była trenowana na uproszczonych scenariuszach. Jeśli jednak będzie potrzeba nauczenia jej radzenia sobie z bardziej złożonymi scenariuszami, czy z układami czterech lub nawet pięciu ciał, konieczne będzie wcześniejsze przygotowanie scenariuszy treningowych. A te trzeba będzie wykonać za pomocą powolnego Brutusa. Tu właśnie dochodzimy do momentu, gdy z jednej strony możemy trenować fantastycznie pracującą sieć neuronową, a z drugiej potrzebujemy danych treningowych. To wąskie gardło, stwierdza Foley. Sposobem na poradzenie sobie z tym problemem byłoby stworzenie całego zestawu danych uzyskanych za pomocą takich programów jak Brutus. To jednak oznacza, że najpierw musiałyby powstać standardowe protokoły, dzięki którym dane uzyskane od różnych programów będą spełniały te same wymagania i zostaną zapisane w tych samych formatach.

Innym problemem jest fakt, że sieć neuronowa może zostać uruchomiona na określony czas. Nie sposób jednak przewidzieć, jak długo potrwają konkretne obliczenia zatem sieć może przestać działać zanim dostarczy wyników. Foley przewiduje powstawanie hybryd, w których część pracy wykonają programy takie jak Brutus, a sieci neuronowe zajmą się przetwarzaniem tylko najbardziej wymagających obliczeń. Za każdym razem gdy podczas obliczeń Brutus się zatnie, może włączać się sieć neuronowa i popchnie obliczenia do przodu, a gdy Brutus znowu będzie gotów do pracy, podejmie ją na nowo.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Trochę OT, ale, czy wiecie może, jakie są możliwości, żeby zapoznać się samodzielnie z sieciami neuronowymi czy ML w domu? Tzn. od czego można w miarę szybko i sprawnie zacząć, np. (tak sobie wyobrażam) ściągnąć z internetu jakiś darmowy framework czy tp., napisać jakiś prosty program w Pythonie, który coś ciekawego robi? Można przyjąć, że mam podstawy teoretyczne - dawno temu mieliśmy na studiach dość obszerny kurs - bez praktycznego programowania - ale wzory itp. pewnie sobie przypomnę w miarę szybko "w boju" :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, darekp napisał:

od czego można w miarę szybko i sprawnie zacząć, np. (tak sobie wyobrażam) ściągnąć z internetu jakiś darmowy framework czy tp., napisać jakiś prosty program w Pythonie, który coś ciekawego robi?

Biblioteki Tensorflow i Keras dla Pythona są przygotowane stricte do Deep learningu i uczenia maszynowego ;)

Edytowane przez wilk
Nie ma potrzeby cytować całości wypowiedzi. Prawda, że teraz jest znacznie czytelniej i mniej bałaganu na forum i głównej?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
4 godziny temu, darekp napisał:

ale wzory itp. pewnie sobie przypomnę w miarę szybko "w boju"

Nic nie trzeba nawet znać do prostych zastosowań, jak wspomniał przedmówca, tensorflow/keras przykładów jest mnóstwo.

Można wejść tak wysokopoziomowo, że praktycznie tylko wystarczy znormalizować wejście ustalić ilość warstw (są jeszcze typy) i jazda.

Jakiś czas temu był artykuł podobny do tego, co wyżej też jakieś "kosmiczne obliczenia"  i dali link do githuba do kodu i okazuje się, że całą sieć była tak "skomplikowana" jak dowolne przykłady użycia sieci dla studentów/początkujących.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie jestem żadnym fizykiem, ale z tego, co zrozumiałem, to sieć neuronowa może być kompatybilna z tym Brutusem, który w przeciwieństwie do tego pierwszego może obliczać różne rozwiązania bez wzorowania się na dostarczanych fizycznie widocznych danych. Ogólnie pewnie Newton byłby dumny :D Oglądałem kiedyś serial rozkminiaczowy na temat m.in fal grawitacyjnych tworzących się w pewnej szkole z czarną dziurą w centrum budynku, taka fajna produkcja dla młodzieży. Szczerze bardzo zachęcała do uczenia się tego, co wtedy uważałem za zbędne. Polecam "dziwne przypadki w Blake Hose-High". Tam będzie dużo o grawitacji, kombinowaniu co by było, gdyby pewne prawa fizyki przestały funkcjonować itd. Może wtedy jeszcze przy okazji wpadniecie na coś nowego i pochwalicie się tym tutaj. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Problem nie trzech ale miliardów ciał poruszających się w "polu grawitacyjnym" Natura rozwiązuje on-line!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Raczej w ogóle nie rozwiązuje, bo nie ma takiej potrzeby. Co będzie, to będzie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Kiedyś stworzymy komputer, który zasymuluje cały wszechświat, a istoty, ktore tam powstaną będą go nazywały Natura

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W latach 1967–1978 roku Włoska Wyprawa Archeologiczna ISMEO prowadziła pierwsze badania w Shahr-i Sokhta (SiS) w Iranie. Szybko okazało się, że miasto składało się z trzech obszarów: mieszkalnego, cmentarza i przemysłowego. Jego największy rozkwit przypadł na połowę III tysiąclecia przed naszą erą, gdy obszar mieszkalny zajmował 80 hektarów. Miasto uznano za jeden z najważniejszych ośrodków na wschodzie Wyżyny Irańskiej. Zidentyfikowano tam cztery okresy kulturowe podzielone na 10 faz konstrukcyjnych, które datowano na od 2. połowy IV tysiąclecia do połowy III tysiąclecia. W południowej części miasta znaleziono duży cmentarz o powierzchni około 20 hektarów, a w jednym z grobów planszę do gry i bierki.
      Datowanie wykazało, że gra pochodzi z lat 2600–2700 p.n.e. W grobie nie znaleziono żadnej innej planszy, założono więc, że wszystkie bierki pochodzą z tej jednej gry i że jest ona kompletna. Planszę do gry złożono w pobliżu głowy zmarłej osoby, w pobliżu zaś stał koszyk z bierkami i kostkami. Plansza jest podobna do wcześniej znajdowanych plansz, ale istnieją między nimi też duże różnice. Kształt planszy z SiS jest niezwykle podobny do słynnej Królewskiej Gry z Ur, jednak gra z SiS ma więcej bierek i nie ma na niej rozety, która wydaje się bardzo ważnym elementem tego typu gier, znanych pod zbiorową nazwą „gier na 20 kwadratach”.
      Z Bliskiego Wschodu i spoza niego znamy ponad 100 plansz, w pewnej mierze do siebie podobnych, a w wielu aspektach różnych, które klasyfikowane są pod tą nazwą. Znaleziono je w Turkmenistanie czy Indiach. Podobnej gry używali Egipcjanie ok. 1580 roku p.n.e. Prawdopodobnie zapoznali się z nią za pośrednictwem Hyksosów. Podobne gry były popularne przez około 2000 lat.
      Autorzy nowych badań zaprzęgli algorytmy sztucznej inteligencji, do pracy nad odgadnięciem zasad gry. Wykorzystanie metod obliczeniowych do badań starożytnych gier, pozwala na symulowanie tysięcy możliwych zestawów zasad i wybranie tych najbardziej prawdopodobnych czy pasujących do gry i bierek.
      Gra z Shahr-i Sokhta wydaje się grą strategiczną – rodzajem wyścigu – podobną do Królewskiej Gry z Ur, ale bardziej złożoną. Zdaniem naukowców, mamy tutaj do czynienia z grą 2-osobową, a celem gracza jest przesunięcie przez pola planszy wszystkich 10 swoich bierek, zanim zrobi to przeciwnik. W grze gracze posługują się kostką i mogą wykorzystywać swoje bierki zarówno do jak najszybszego dotarcia do celu, jak i do blokowania ruchów przeciwnika. Badacze sugerują, że dodatkowe bierki, dzięki którym gra różni się np. od gry z Ur, dodawały jej złożoności. Widzimy wśród nich na przykład rozety, podobne do rozet, które w grze w Ur narysowane są na planszy. W przeciwieństwie do Królewskiej Gry z Ur, w przypadku gry z SiS losowość odgrywa mniejszą rolę, a większa rolę gra strategia.
      Po określeniu najbardziej prawdopodobnych zasad, grę z SIS przetestowało 50 doświadczonych graczy, który ocenili ją i porównali z Królewską Grą z Ur. Przyznali, że gra z SiS jest bardziej wymagająca pod względem strategii niż gra z Ur.
      Szczegóły badań zostały opublikowane na łamach Journal of the British Institute of Persian Studies. Gra z Shahr-i Sokhta została znaleziona w bogato wyposażonym grobie, ale nie był to grób królewski, co wskazuje, że była bardziej dostępna niż gra dla najwyższej elity.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Troje naukowców – Elizabeth A Barnes z Colorado State University, Noah S Diffenbaugh z Uniwersytetu Stanforda oraz Sonia I Seneviratne z EHT Zurich – zebrało dane z 10 modeli klimatycznych i przeanalizowało je za pomocą algorytmów sztucznej inteligencji. Na łamach Environmental Research Letters poinformowali, że z tak przeprowadzonych badań wynika, iż globalne temperatury będą rosły szybciej niż zakładano, a jeszcze za naszego życia niektóre regiony doświadczą średniego wzrostu temperatury przekraczającego 3 stopnie Celsjusza.
      Autorzy badań stwierdzili, że w 34 ze zdefiniowanych przez IPCC 43 regionów lądowych Ziemi średni wzrost temperatury przekroczy 1,5 stopnia Celsjusza do roku 2040. W 31 z tych 34 regionów należy spodziewać się wzrostu o 2 stopnie do roku 2040. Natomiast do roku 2060 w 26 regionach średnia temperatura wzrośnie o ponad 3 stopnie.
      Regionami narażonymi na szybszy niż przeciętny wzrost temperatur są południowa Azja, region Morza Śródziemnego, Europa Środkowa i niektóre części Afryki Subsaharyjskiej.
      Profesor Diffenbaugh zauważył, że ważne jest, by nie skupiać się tylko na temperaturach globalnych, ale zwracać uwagę na temperatury lokalne i regionalne. Badając, jak rośnie temperatura w poszczególnych regionach, będziemy mogli określić, kiedy i jakie skutki będą odczuwalne dla społeczności i ekosystemów tam żyjących. Problem w tym, że regionalne zmiany klimatyczne są trudniejsze do przewidzenia. Dzieje się tak dlatego, że zjawiska klimatyczne są bardziej chaotyczne w mniejszej skali oraz dlatego, że trudno powiedzieć, jak dany obszar będzie reagował na ocieplenie w skali całej planety.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      „Ala ma kota” to pierwsze i – prawdę mówiąc – jedyne zdanie, jakie pamiętam z elementarza. I właśnie to zdanie, które kolejne pokolenia poznają dzięki legendarnemu „Elementarzowi” Falskiego prowadzi nas przez „Prosto o AI. Jak działa i myśli sztuczna inteligencja” autorstwa Roberta Trypuza. Niewielki format książeczki sugeruje, że znajdziemy w niej niezbyt wiele informacji. Nic bardziej mylnego. To elementarz, skoncentrowana skarbnica wiedzy o technologii, która już teraz w znaczącym stopniu zmienia ludzkie życie.
      Robert Trypuz jest praktykiem. To specjalista w dziedzinie Semnatic Web i inżynierii danych. Doktorat z informatyki i telekomunikacji uzyskał na Uniwersytecie w Trydencie, jest też doktorem habilitowanym filozofii z KUL. I, co widać w książce, jest entuzjastą sztucznej inteligencji, o której potrafi bardzo ciekawie pisać.
      Z „Prosto o AI” dowiemy się na przykład jak wygląda programowanie AI w porównaniu z programowaniem klasycznym, jak AI rozumie tekst, czym jest osadzanie słów oraz jakie rewolucyjne podejście pozwoliło na skonstruowanie dużych modeli językowych, w tym najbardziej znanego z nich ChataGPT. Przeczytamy o sieciach konwolucyjnych w medycynie, uczeniu ze wzmacnianiem, autor – pamiętajmy, że jest również filozofem – opisuje, czym jest sztuczna wolna wola, zatem czy AI ma wolną wolę.
      W ostatnim zaś odcinku znajdziemy rozważania na temat wpływu sztucznej inteligencji na proces edukacji. Nie ma w tym zdaniu pomyłki, odcinku, a nie rozdziale. Historia jest mianowicie taka, że treści zawarte w tej książce nie zostały napisane do tej książki. Pisałem je jako scenariusze odcinków programu, który nigdy nie powstał, pisze Robert Trypuz we wstępie. I może właśnie pochodzenie tekstu, który zamienił się w książkę, powoduje, że tak łatwo można przyswoić zawarte w niej informacje.
      Dla kogo jest zatem „Prosto o AI”? Dla każdego z nas, kto nigdy bardziej nie zagłębił się w tajniki sztucznej inteligencji. Tutaj znajdzie jej podstawy wyjaśnione w prosty sposób. Większości czytelników pogłębienie wiedzy do tego stopnia w zupełności wystarczy, jakąś zaś część zachęci, by sięgnąć po kolejne, bardziej szczegółowe i specjalistyczne pozycje. Ja czytałem książkę Trypuza z olbrzymim zainteresowaniem i przyjemnością.
    • przez KopalniaWiedzy.pl
      Wielkie modele językowe (LLM) – takie jak osławiony ChatGPT – nie są w stanie samodzielnie się uczyć i nabierać nowych umiejętności, a tym samym nie stanowią egzystencjalnego zagrożenia dla ludzkości, uważają autorzy badań opublikowanych w ramach 62nd Annual Meeting of the Association for Computational Linguistics, głównej międzynarodowej konferencji dotyczącej komputerowego przetwarzania języków naturalnych.
      Naukowcy z Uniwersytetu Technicznego w Darmstadt i Uniwersytetu w Bath stwierdzają, że LLM potrafią uczyć się, jeśli zostaną odpowiednio poinstruowane. To zaś oznacza, że można je w pełni kontrolować, przewidzieć ich działania, a tym samym są dla nas bezpieczne. Bezpieczeństwo ludzkości nie jest więc powodem, dla którego możemy się ich obawiać. Chociaż, jak zauważają badacze, wciąż można je wykorzystać w sposób niepożądany.
      W miarę rozwoju modele te będą prawdopodobnie w stanie udzielać coraz bardziej złożonych odpowiedzi i posługiwać się coraz doskonalszym językiem, ale jest wysoce nieprawdopodobne, by nabyły umiejętności złożonego rozumowania. Co więcej, jak stwierdza doktor Harish Tayyar Madabushi, jeden z autorów badań, dyskusja o egzystencjalnych zagrożeniach ze strony LLM odwraca naszą uwagę od rzeczywistych problemów i zagrożeń z nimi związanych.
      Uczeni z Wielkiej Brytanii i Niemiec przeprowadzili serię eksperymentów, w ramach których badali zdolność LLM do radzenia sobie z zadaniami, z którymi wcześniej nigdy się nie spotkały. Ilustracją problemu może być na przykład fakt, że od LLM można uzyskać odpowiedzi dotyczące sytuacji społecznej, mimo że modele nigdy nie były ćwiczone w takich odpowiedziach, ani zaprogramowane do ich udzielania. Badacze wykazali jednak, że nie nabywają one w żaden tajemny sposób odpowiedniej wiedzy, a korzystają ze znanych wbudowanych mechanizmów tworzenia odpowiedzi na podstawie analizy niewielkiej liczby znanych im przykładów.
      Tysiące eksperymentów, za pomocą których brytyjsko-niemiecki zespół przebadał LLM wykazało, że zarówno wszystkie ich umiejętności, jak i wszystkie ograniczenia, można wyjaśnić zdolnością do przetwarzania instrukcji, rozumienia języka naturalnego oraz umiejętnościom odpowiedniego wykorzystania pamięci.
      Obawiano się, że w miarę, jak modele te stają się coraz większe, będą w stanie odpowiadać na pytania, których obecnie sobie nawet nie wyobrażamy, co może doprowadzić do sytuacji, ze nabiorą niebezpiecznych dla nas umiejętności rozumowania i planowania. Nasze badania wykazały, że strach, iż modele te zrobią coś niespodziewanego, innowacyjnego i niebezpiecznego jest całkowicie bezpodstawny, dodaje Madabushi.
      Główna autorka badań, profesor Iryna Gurevych wyjaśnia, że wyniki badań nie oznaczają, iż AI w ogóle nie stanowi zagrożenia. Wykazaliśmy, że domniemane pojawienie się zdolności do złożonego myślenia powiązanych ze specyficznymi zagrożeniami nie jest wsparte dowodami i możemy bardzo dobrze kontrolować proces uczenia się LLM. Przyszłe badania powinny zatem koncentrować się na innych ryzykach stwarzanych przez wielkie modele językowe, takie jak możliwość wykorzystania ich do tworzenia fałszywych informacji.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dermatolog Harald Kittler z Uniwersytetu Medycznego w Wiedniu stanął na czele austriacko-australijskiego zespołu, który porównał trafność diagnozy i zaleceń dotyczących postępowania z przebarwieniami na skórze stawianych przez lekarzy oraz przez dwa algorytmy sztucznej inteligencji pracujące na smartfonach. Okazało się, że algorytmy równie skutecznie co lekarze diagnozują przebarwienia. Natomiast lekarze podejmują znacznie lepsze decyzje dotyczące leczenia.
      Testy przeprowadzono na prawdziwych przypadkach pacjentów, którzy zgłosili się na Wydział Dermatologii Uniwersytetu Medycznego w Wiedniu oraz do Centrum Diagnozy Czerniaka w Sydney w Australii.
      Testowane były dwa scenariusze. W scenariuszu A porównywano 172 podejrzane przebarwienia na skórze (z których 84 były nowotworami), jakie wystąpiły u 124 pacjentów. W drugim (scenariuszu B) porównano 5696 przebarwień – niekoniecznie podejrzanych – u 66 pacjentów. Wśród nich było 18 przebarwień spowodowanych rozwojem nowotworu. Testowano skuteczność dwóch algorytmów. Jeden z nich był nowym zaawansowanym programem, drugi zaś to starszy algorytm ISIC (International Skin Imaging Collaboration), używany od pewnego czasu do badań retrospektywnych.
      W scenariuszu A nowy algorytm stawiał diagnozę równie dobrze jak eksperci i był wyraźnie lepszy od mniej doświadczonych lekarzy. Z kolei algorytm ISIC był znacząco gorszy od ekspertów, ale lepszy od niedoświadczonych lekarzy.
      Jeśli zaś chodzi o zalecenia odnośnie leczenia, nowoczesny algorytm sprawował się gorzej niż eksperci, ale lepiej niż niedoświadczeni lekarze. Aplikacja ma tendencję do usuwania łagodnych zmian skórnych z zaleceń leczenia, mówi Kittler.
      Algorytmy sztucznej inteligencji są więc już na tyle rozwinięte, że mogą służyć pomocą w diagnozowaniu nowotworów skóry, a szczególnie cenne będą tam, gdzie brak jest dostępu do doświadczonych lekarzy. Ze szczegółami badań można zapoznać się na łamach The Lancet.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...