Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Wycinanie drzew w sposób nieunikniony prowadzi do uwalniania węgla do środowiska, jednak wpływ wylesiania na zmiany klimatyczne jest znacznie przeszacowany, twierdzą autorzy najnowszych badań. Zespół pracujący pod kierunkiem naukowców z Ohio State University i Yale University obliczył, że od roku 1900 wycinka lasów w celu pozyskania drewna oraz pod uprawy przyczyniła się do emisji 92 miliardów ton węgla.

Nasze wyliczenia dały wynik aż pięciokrotnie mniejszy niż poprzednie szacunki, które mówiły, że od roku 1900 wylesianie przyczyniło się do emisji 484 miliardów ton węgla, czyli jest odpowiedzialne aż za 1/3 emisji antropogenicznej, mówi profesor Brent Sohngen z Ohio State University. Uczony zauważa, że autorzy poprzednich szacunków nie wzięli pod uwagę nowych nasadzeń drzew oraz innych metod zarządzania lasami, które zmniejszyły wpływ wylesiania na środowisko. Model obliczeniowy, który wykorzystano przy najnowszych badanach, brał pod uwagę wiele różnorodnych działań z zakresu gospodarki leśnej, które przyczyniły się do zmniejszenia negatywnego wpływu wycinki.

W ciągu ostatnich stu lat dokonał się znaczący zwrot w gospodarce leśnej. Lasy zaczęto postrzegać jako zasób odnawialny, a nie nieodnawialny. Szacujemy, że działania takie jak zalesianie i inne techniki gospodarki znacząco zmniejszyły niekorzystny wpływ wycinki lasu na środowisko, mówi Sohngen i wyjaśnia, iż autorzy poprzednich badań brali pod uwagę odrastanie lasu jedynie w sposób naturalny, bez żadnej interwencji człowieka.

Użytkowanie ziemi i zmiany w jej użytkowaniu mają stosunkowo niewielki wpływ na emisję węgla w porównaniu z niemal 1300 miliardami ton wyemitowanymi w tym samym czasie przez przemysł, dodaje Sohngen.

Dotychczasowe szacunki mówiły, że wycinka drzew odpowiada za 27% antropogenicznej emisji węgla od roku 1900. Nowe szacunki pokazują, że odsetek ten jest mniejszy i wynosi 7%.

Przeszacowano emisję, gdyż nie wzięto pod uwagę ponownego zalesiania, które jest techniką stosowaną na całym świecie od 70 lat. Zalesianie to rynkowa odpowiedź na spostrzeżenie, że do lat 90. zabraknie starych drzew. Wtedy to, w latach 50. firmy zajmujące się wycinką zaczęły również sadzić drzewa i zarządzać lasami. W ten sposób cały przemysł drzewny stopniowo zmienił się z przemysłu wydobywczego zasobów nieodnawialnych w przemysł uprawy drzew, dodaje współautor badań, Robert Mendelsohn z Yale University.

W artykule opublikowanym na łamach Journal of Forest Economics, którego cały numer specjalny poświęcono metodom obliczeniowym służącym ocenie wpływu lasów na obieg węgla, naukowcy zauważają, że jeśli przyjrzymy się trendom z ostatnich dekad, to zauważymy, że w walce z globalnym ociepleniem należy skupić się przede wszystkim na emisji przemysłowej. Tym bardziej, że w ciągu ostatnich 10–15 lat wyraźnie widać, że coraz mniej starych lasów jest wycinanych i trend ten prawdopodobnie utrzyma się w przyszłości. Nie oznacza to jednak, że możemy zrezygnować z ochrony lasów. Wręcz przeciwnie. Ekonomiści zauważają, że jeśli rządy na całym świecie będą prowadziły odpowiednią gospodarkę, przyjmą rozwiązania zachęcające do ochrony lasów, to działania takie odegrają olbrzymią rolę w walce ze zmianami klimatu.

Wylesianie jest postrzegane jako olbrzymie źródło emisji węgla, jednak nie jest to duże źródło. Wielkim źródłem jest sektor energetyczny i to na nim powinniśmy skupić swoją uwagę. Na nim oraz na zwiększeniu roli lasów jako czynnika chroniącego środowisko, stwierdza Sohngen.

Możliwe jest takie zarządzanie światowymi lasami, by przechowywały one więcej węgla niż obecnie. Część z tego dodatkowego węgla może być przechowywana w niemal niezmiennym lesie tropikalnym, który w ogóle nie jest wycinany, a część w lasach zarządzanych przez człowieka. W dalszej przyszłości lasy mogą stać się źródłem energii. Jeśli drewno będzie spalane, a jednocześnie będziemy przechwytywać i przechowywać węgiel z tego spalania, to lasy mogą efektywnie wyłapywać węgiel z atmosfery i pomogą osiągnąć długoterminowe cele jeśli chodzi o utrzymanie średnich temperatur na Ziemi, dodaje uczony.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Może to głupie pytanie, ale czemu właściwie traktuje się przemysł drzewny jako źródło emisji a nie jako - częściowe przynajmniej - rozwiązanie problemu? Argumenty sprowadzają się przecież do tego, że ludzie wydobywają węgiel usunięty z obiegu przez milionami lat (węgiel, ropa, gaz) i wprowadzają go w obieg bardzo szybko co prawdopodobnie może wytrącić układ z równowagi. Dlaczego więc nie traktuje się drewna, które większość masy bierze z dwutlenku węgla i wody, jako magazynu tego niechcianego CO2? Czy nie powinniśmy popularyzować drewna i poszerzać jego możliwe zastosowania tj. żeby wróciło do budownictwa, do meblarstwa, +znaleźć nowe zastosowania? I jasne, wiem że są projekty ale potem można przeczytać takie artykuły i wniosek z tego taki że w opinii i powszechnym rozumowaniu lasy należy zostawić w spokoju a wycięcie drzewa powoduje w jakiś niezrozumiały niebezpośredni sposób emisję CO2. 

P.S. Widzę, że autorzy zakładają odpowiednią gospodarkę jako narzędzie do walki ze zmianami klimatu. Ale to nie jest też tak że las zostawiony sam w sobie nie zmagazynuje tyle CO2 co np. drewniane kompleksy mieszkalne? Drzewa urosną i potem zaczną umierać i wracać przez grzybki i bakterie do CO2. Może jak poczekamy parę milionów lat to lasy się uporają. :P

Edytowane przez Mongoon
Sprostowanie co do rozwiązania w artykule.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Meble i domy z drzewa też wieczne nie są. Po jakimś czasie idą na przemiał i prawdopodobnie do spalenia.

Przemysł drzewny to też węgiel drzewny i papier... te w większości idą do spalenia prędzej czy później.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
36 minut temu, pogo napisał:

Meble i domy z drzewa też wieczne nie są. Po jakimś czasie idą na przemiał i prawdopodobnie do spalenia.

Tak na chłopski rozum, to można by składować gdzieś zużyte meble (Jajcenty chyba coś takiego kiedyś proponował), jeśli chodzi nam o "wyciąganie" CO2 z atmosfery. A obszary po wyciętych drzewach ponownie zalesiać. Można by nawet składować w opuszczonych kopalniach czy tp. - w końcu kiedyś były pomysły wpompowywania do tych kopalń CO2 z atmosfery. A deski itp. chyba łatwiej (i bezpieczniej!) składować niż gaz...

Edytowane przez darekp

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czy ja wiem, czy lasy uporałyby się z własnym problemem wzrostu i obumierania w ciągu milionów lat? Spójrzmy na miejsca na świecie, gdzie pożary wytwarzane w wyniku wysokich temperatur to tak naprawdę chrzest ognia, po którym przychodzą silne wiatry rozwiewające syf, jaki po nich pozostaje i zaczynają pojawiać się nowe drzewka, wcale nie po tysiącu czy milionie latach tylko znacznie wcześniej. A co do domków z drewna to podobno powracają do łask i te murowane nie są już jedynymi pożądanymi przez konsumentów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

@Astro

Wiem i wiedziałem, że ktoś o tym napisze. Nie zmienia to faktu, że po tych 200 latach zwykle i tak "wraca do obiegu" poprzez spalenie. Nadal wygląda mi to tylko na odraczanie tego.

Nie mam też kompletnie żadnego pomysłu co zrobić, by było inaczej. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tak... w jednym przypadku to problem naszych prawnuków, a w drugim nasz.
Hmm...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mimo wszystko myślę raczej o współcześnie produkowanych meblach i domach, nawet jeśli znów miałyby przeżyć 200 lat.

Nie mam na ten temat żadnych danych, ale tak na moje wyczucie: wybudowanie i spalenie takiego domu powinno wytworzyć mniej CO2, niż wybudowanie i wyburzenie analogicznego domu betonowego. Doliczając 50 lat eksploatacji pewnie wciąż wychodzi podobnie, a być może jeszcze bardziej na korzyść drewna.

Jakby jeszcze zamiast palić to zakopać głęboko w ziemi by za jakiś czas stało się pokładami węgla... 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jądro wewnętrzne Ziemi, sztywne bogate w żelazo ciało stałe o średnicy 1250 kilometrów powoli rośnie, w miarę jak płynne jądro zewnętrzne ochładza się i krystalizuje. Specjaliści od dawna nie mogą dość do porozumienia, kiedy rozpoczął się ten proces. Jedni uważają, że trwa on od ponad 2 miliardów lat, zdaniem innych to proces stosunkowo niedawny, liczący sobie nie więcej niż pół miliarda lat. Badań nie ułatwia fakt, że nie wystarczy po prostu stwierdzić, kiedy materiał jądra schłodził się na tyle, by skrystalizować.
      Jeśli założymy, że jądro zbudowane jest z czystego żelaza, to temperatura topnienia żelaza wcale nie musi być punktem odniesienia dla określenia temperatury, w której ono krystalizuje. Tak jak woda może wymagać schłodzenia nawet do -30 stopni Celsjusza zanim spadnie grad, tak i żelazne jądro może potrzebować znacznie niższej temperatury, by krystalizować. Wcześniejsze badania pokazywały, że żelazne jądro musiałoby schłodzić się o 800–1000 stopni Celsjusza poniżej temperatury topnienia zanim skrystalizuje. Jednak symulacje pokazały, że gdyby osiągnęło tak niską temperaturę, doszłoby do gwałtownego wzrostu jądra wewnętrznego i zniknięcia pola magnetycznego Ziemi. Tymczasem badania sejsmiczne oraz badania magnetyzmu skał wykazały, że do takiego wydarzenia nigdy nie doszło.
      Autorzy nowych badań uważają, że do powstania stałego jądra wystarczyło, by w przeszłości materiał schłodził się zaledwie o 250 stopni Celsjusza poniżej temperatury topnienia. Jak jednak możliwe jest tak niewielkie schłodzenie – pamiętajmy, że musimy uwzględniać tutaj też olbrzymie ciśnienie wewnątrz Ziemi – i ciągłe istnienie stałego jądra wewnętrznego? Naukowcy odpowiedzieli na to pytanie, symulując obecność w jądrze innych pierwiastków, takich jak krzem, siarka, tlen i węgiel. Każdy z nich istnienie w warstwach położonych powyżej, zatem może istnieć też w jądrze. A musimy tutaj opierać się na symulacjach, bo do samego jądra nie jesteśmy w stanie dotrzeć, by zbadać jego skład chemiczny.
      Naukowcy przeprowadzili komputerową symulację jądra składającego się ze 100 000 atomów, które zostaje poddane ciśnieniu takiemu, jak we wnętrzu Ziemi. Śledzili w jaki sposób, w temperaturze stosunkowo niewiele niższej mogą tworzyć się tam zbitki atomów podobne do kryształów, które dały początek krystalizacji.
      Badania dały zaskakujący wynik. Okazało się, że krzem i siarka, pierwiastki o których zawsze sądzono, że są obecne w jądrze, spowalniały krystalizację. Innymi słowy, gdyby powszechnie występowały one w jądrze, temperatura musiałaby spaść znacznie bardziej, by zaczęło się tworzyć jądro wewnętrzne. Natomiast obecność węgla przyspieszała krystalizację. Kolejne testy wykazały, że jeśli węgiel stanowi w jądrze 2,4% jego masy, to konieczne byłoby schłodzenie o 420 stopni Celsjusza poniżej temperatury topnienia żelaza. To zbyt dużo. Jeśli jednak węgiel to 3,8% masy jądra, wystarczy temperatura o 266 stopni niższa niż temperatura topnienia. To jedyny zakres, który wyjaśnia zarówno istnienie jądra wewnętrznego, jak i jego obecne rozmiary.
      Wyniki badań sugerują, że w jądrze Ziemi węgla jest więcej niż przypuszczano i że bez jego odpowiedniego udziału, mogłoby nie dojść do powstania jądra wewnętrznego.
      Ze szczegółowymi wynikami analizy można zapoznać się w artykule Constraining Earth’s core composition from inner core nucleation.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wysokogórskie obszary Azji – głównie Himalaje i Tybet, ale też Karakorum, Hindukusz czy Pamir – zwane są „trzecim biegunem”, gdyż zawierają największe rezerwy lodu poza Arktyką i Antarktyką. Znajdują się tam dziesiątki tysięcy lodowców, od których zależy byt 1,5-2 miliardów ludzi. Lodowce zapewniają im wodę do picia, generowania energii i na potrzeby rolnictwa. Nie od dzisiaj wiadomo, że w wyniku globalnego ocieplanie utrata lodu przez te lodowce przyspiesza. Obecnie każdego roku tracą one ponad 22 gigatony (miliardy ton) lodu rocznie. Naukowcy z University of Utah i Virginia Tech dowiedli właśnie, że zmiany zachodzące w występowaniu monsunów w Azji Południowej, również przyspieszają topnienie lodowców „trzeciego bieguna”.
      Główny autor badań, Sonam Sherpa z University of Utah mówi, że jeśli intensywność monsunów oraz czas ich początku i końca nadal będą ulegały zmianie, może to przyspieszyć topnienie lodowców i zagrozić życiu setek milionów ludzi. Lodowce są bowiem pewnym, stabilnym i przewidywalnym źródłem wody. Jeśli ich zabraknie, to w przyszłości ludzie będą musieli polegać na znacznie mniej pewnych opadach deszczu i śniegu. To zaś będzie groziło niedoborami wody i suszami w regionach, w których lodowce zapewniają wodę ponad 1,5 miliardowi ludzi.
      Lodowce w wysokich górskich partiach Azji akumulują masę latem. Niskie temperatury panujące na dużych wysokościach powodują, że niesiona monsunami wilgoć opada w postaci śniegu, zwiększając masę lodowców. Lodowce mogą tracić masę albo z powodu szybszego niż zwykle topnienia, albo zmniejszenia się opadów. Globalne ocieplenie już powoduje, że lodowce szybciej topnieją. Teraz dochodzą do tego niepokojące zmiany w monsunach. Mogą one spowodować skrócenie sezonu opadów, zmniejszenie ich ilości czy też zamianę opadów śniegu w deszcz, który dodatkowo przyspiesza topnienie.
      Szybsze wycofywanie się lodowców niesie też za sobą ryzyko gwałtownych, niespodziewanych powodzi powodowanych przez jeziora lodowcowe. Jeziora takie powstają na przedpolach lub powierzchni lodowca. Tworzą się za moreną, barierą z lodu czy w zagłębieniu w powierzchni lodowca. W wyniku topnienia lodu wewnątrz bariery, jej erozji wewnętrznej, może dojść do gwałtownego pęknięcia takiej naturalnej tamy. Mamy więc tutaj do czynienia nie tylko z długoterminowym ryzykiem braku wody, ale też z codziennymi zagrożeniami dla położonych w dolinach wsi, dróg, mostów i wszelkiej innej infrastruktury.
      Najważniejszymi wnioskami, płynącymi ze wspomnianych badań jest spostrzeżenie, że w środkowych i zachodnich Himalajach – gdzie lodowce zwykle przyrastają latem – utrata lodu spowodowana jest przez coraz częściej zdarzające się opady deszczu; na wschodzie Himalajów za utratą lodowców odpowiadają zmniejszone opady śniegu; powtarzające się cykle wycofywania się lodowców są powiązane z cyklami monsunów.
      Wyniki badań zostały opublikowane w artykule Investigating the Influence of Climate Seasonality on Glacier Mass Changes in High Mountain Asia via GRACE Observations.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z University of Hawai'i ostrzegają, że do roku 2080 rosnący poziom oceanów zacznie zagrażać słynnym moai z Wyspy Wielkanocnej. Z artykułu opublikowanego na łamach Journal of Cultural Heritage dowiadujemy się, że za nieco ponad 50 lat poziom oceanów wzrośnie na tyle, że sezonowo fale będą dosięgały największej platformy ceremonialnej (ahu) na Wyspie, Ahu Tongariki, na której ustawionych jest 15 posągów, w tym najcięższe moai, jakie kiedykolwiek powstały na wyspie. Ponadto wody oceaniczne zagrożą 51 innym zabytkom.
      Główny autor badań, doktorant Noah Paoa i jego zespół stworzyli szczegółowy wirtualny obraz wybrzeża i symulowali oddziaływanie fal morskich w różnych przewidywanych dla przyszłości scenariuszach wzrostu poziomu oceanów. Niestety, z naukowego punktu widzenia, wyniki naszej pracy nie są zaskakujące. Wiemy, że wzrost poziomu oceanów zagraża wybrzeżom na całym świecie. Nie pytaliśmy, czy dane miejsca zostaną zagrożone, ale kiedy i jak poważne będzie to zagrożenie. Odkrycie, że fale morskie mogą dosięgnąć Ahu Tongariki do roku 2080 pokazuje, że należy rozpocząć dyskusję na ten temat i zastanowić się nad planami na przyszłość, mówi uczony.
      Wzrost poziomu oceanów to poważny problem dla wybrzeży na całym świecie oraz dla znajdującego się tam dziedzictwa kulturowego. Z podobnym problemem już w najbliższym czasie będą zmagały się i Hawaje i wszystkie inne wyspy Pacyfiku. Niebezpieczeństwo wisi nad świętymi miejscami, świątyniami czy cmentarzami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niemieccy badacze znaleźli nowe źródło informacji o stężeniu dwutlenku węgla w atmosferze przed milionami lat. Okazało się, że zapis na ten temat znajduje się w... skamieniałych zębach dinozaurów. Uczeni z Uniwersytetów w Moguncji, Göttingen i Bochum, na podstawie analizy izotopów tlenu w szkliwie zębów dinozaurów stwierdzili, że stężenie CO2 w atmosferze w mezozoiku (252–66 milionów lat temu), było znacznie wyższe niż obecnie. Badania były możliwe dzięki wykorzystaniu innowacyjnej metody, która pozwoliła na określenie względnego stosunku wszystkich trzech naturalnych izotopów tlenu.
      Badania wykazały, że produkcja pierwotna – czyli w tym przypadku szybkość gromadzenia energii promieniowania słonecznego, która jest podczas fotosyntezy przekształcana w energię wiązań chemicznych w tkankach roślinnych – była dwukrotnie większa niż obecnie.
      Naukowcy przeanalizowali zęby dinozaurów z Ameryki Północnej, Afryki i Europy pochodzące o czasów od późnej jury po późną kredę. Szkliwo zębowe to jeden z najbardziej stabilnych materiałów biologicznych. Zawiera ono trzy izotopy tlenu, które do organizmu dinozaurów dostawały się w czasie oddychania. Względny stosunek tych izotopów w powietrzu zależy od zmian w poziomie atmosferycznego dwutlenku węgla i intensywności fotosyntezy. To oznacza, że zęby dinozaurów mogą zawierać dane o klimacie i szacie roślinnej.
      Z badań wynika, że pod koniec jury, około 150 milionów lat temu, stężenie CO2 w atmosferze było czterokrotnie większe niż w epoce przedprzemysłowej. W późnej kredzie – 73–66 milionów lat temu – było zaś 3-krotnie wyższe. W czasach przedprzemysłowych stężenie CO2 w atmosferze wynosiło 280 ppm. Obecnie jest ono o ponad 50% wyższe. W 2024 było to 424 ppm. Wartość ta szybko rośnie. Jeszcze w 2017 roku stężenie wynosiło 406 ppm.
      Analizy wykazały też, że w niezwykły stosunek izotopów tlenu w niektórych zębach gatunków Tyrannosaurus rex i Kaatedocus siberi. To najprawdopodobniej dowód na nagłe wzrosty stężenia CO2, spowodowane na przykład potężną aktywnością wulkaniczną, jak ta, która utworzyła trapy Dekanu.
      Uzyskane wyniki to przełom w paleoklimatologii. Dotychczas bowiem w czasie podobnych badań używa się próbek węglanów z gleby i wykorzystuje proxy morskie, czyli niebezpośrednich wskaźników ze środowiska morskiego. Obie te metody obarczone są jednak pewnym marginesem niepewności. Użycie szkliwa zębów dinozaurów to pierwsza metoda badań tego typu opierająca się na kręgowcach lądowych. To całkowicie nowy sposób wglądu w przeszłość Ziemi. Teraz możemy użyć sfosylizowanego szkliwa do badania składu atmosfery oraz produktywności roślin morskich i lądowych. To kluczowe elementy zrozumienia długoterminowej dynamiki klimatu, mówi doktor Dingsu Feng z Wydziału Geochemii i Geologii Izotopowej na Uniwersytecie w Göttingen.
      Informacje o produkcji pierwotnej to ważne dane na temat lądowych i morskich sieci troficznych. Dane takie trudno jest zdobyć, a są one bardzo ważne, gdyż to dostępna biomasa roślinna decyduje o liczbie zwierząt, ich gatunków oraz długości łańcucha pokarmowego, wyjaśnia profesor Eva M. Griebeler z Uniwersytetu w Moguncji.
      Badania zostały omówione na łamach PNAS.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na University of Queensland (UQ) prowadzone są eksperymenty nad wykorzystaniem pól magnetycznych do ochrony wchodzących w atmosferę pojazdów kosmicznych przed nadmierną temperaturą i przeciążeniami. Kluczowym elementem eksperymentów będzie zbadanie deformacji pól magnetycznych w kontakcie z gorącą plazmą. Ich celem jest zaś opracowanie technologii, która pozwoli na budowę bardziej bezpiecznych, lżejszych ich tańszych pojazdów kosmicznych.
      Pojazdy kosmiczne wchodzące w atmosferę Ziemi pędzą z prędkością około 30 tys. km/h. Powietrze wokół nich staje się tak gorące, że zamienia się plazmę. Przed spłonięciem pojazdy chronione są za pomocą osłon termicznych. Celem profesora Gildfinda z UQ jest odepchnięcie tej plazmy od pojazdu za pomocą pól magnetycznych generowanych przez nadprzewodzące magnesy. To powinno znacząco zmniejszyć temperatury, jakich doświadcza pojazd wchodzący w atmosferę czy to Ziemi czy Marsa. Tym samym powrót taki będzie bezpieczniejszy, osłony termicznie nie będą musiały być tak potężne jak obecnie, pojazd stanie się więc lżejszy i tańszy. Podobnie jak cała misja związana z jego wystrzeleniem.
      Dodatkową korzyścią z wykorzystania pól magnetycznych jest fakt, że gdy wywierają one nacisk na plazmę, plazma odpowiada tym samym. Pojawia się siła, która dodatkowo spowalnia opadający na planetę pojazd. W ten sposób mamy dodatkowy element hamujący. Pojawia się on wcześniej i spowolni pojazd jeszcze zanim otaczająca go kula ognia osiągnie maksymalną intensywność, a przeciążenia staną się trudne do zniesienia. A obniżenie temperatury powierzchni pojazdu oznacza, że osłony termiczne mogą być lżejsze, bez narażania na szwank bezpieczeństwa, wyjaśnia uczony.
      Gildfind i jego zespół prowadzą eksperymenty w Centre for Hypersonics University of Queensland, jednym z najważniejszych środków badań nad prędkościami hipersonicznymi, definiowanymi jako prędkości co najmniej 5-krotnie większe od prędkości dźwięku. Dotychczas prowadzono niewiele badań nad deformacją pól magnetycznych przez plazmę utworzoną wokół szybko poruszającego się obiektu. Natomiast zupełnie nic nie wiadomo na temat tego, jak taka technologia sprawdziłaby się w przypadku obiektu wielkości pojazdu kosmicznego. Modele i analizy pokazują, że powinien być to znaczny efekt, ale dopóki tego nie przetestujemy, nie będziemy pewni, stwierdza uczony.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...