Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Smartfony mogą przyspieszać starzenie się, uszkadzać mózg i oczy

Recommended Posts

Długa ekspozycja na niebieskie światło, takie jak emitowane przez ekrany smartfonów i komputerów, może negatywnie wpływać na długość życia. Naukowcy z Oregon State University zauważyli, że niebieskie długości fali emitowane przez LED niszczą komórki w mózgu i siatkówce muszki owocówki.

W artykule, opublikowanym na łamach Nature Aging and Mechanisms of Disease, czytamy, że muszki, które codziennie przez 12 godzin przebywały w niebieskim świetle i 12 godzin w ciemności, żyły znacznie krócej niż muszki, które były stale utrzymywane w ciemności lub stale w białym świetle z zablokowanym pasmem niebieskim. Ekspozycja dorosłych muszek na 12 godzin światła niebieskiego dziennie prowadziła do przyspieszenia starzenia się, powodując uszkodzenie komórek siatkówki, degenerację mózgu oraz upośledzała zdolności ruchowe. Uszkodzenie mózgu oraz funkcji motorycznych nie było związane z degeneracją siatkówki, gdyż zjawiska te obserwowano również u muszek, które genetycznie zmodyfikowano tak, by nie wykształcały się u nich oczy. Niebieskie światło prowadziło też do ekspresji genów stresu u starszych muszek, ale nie u młodych. To sugeruje, że zbiorcza ekspozycja na niebieskie światło działa jak czynnik stresowy w miarę starzenia się. Muszki owocówki to ważny organizm modelowy, gdyż wiele występujących u nich mechanizmów komórkowych i rozwojowych jest takich samych, jak u ludzi i innych zwierząt.

Badania prowadził zespół pracujący pod kierunkiem profesor Jagi Giebultowicz, która specjalizuje się w badaniu zegara biologicznego. Zaskoczył nas fakt, że światło przyspiesza starzenie się muszek. Zbadaliśmy ekspresję niektórych genów u starych muszek i stwierdziliśmy, że gdy muszki są poddawane działaniu światła, to dochodzi do ekspresji genów odpowiedzialnych za ochronę organizmu. Wysunęliśmy hipotezę, że światło im szkodzi i postanowiliśmy znaleźć tego przyczynę. Okazało się, że o ile światło pozbawione pasma niebieskiego w niewielkim stopniu skraca życie, to niebieskie światło skraca je w sposób dramatyczny, mówi Giebultowicz.

Wiadomo, że naturalne światło jest bardzo ważnym czynnikiem regulującym rytm dobowy i związane z nim procesy fizjologiczne jak aktywność fal mózgowych, produkcję hormonów, regenerację komórek. Istnieją też dowody sugerujące, że zwiększona ekspozycja na sztuczne światło jest czynnikiem zaburzającym sen i rytm całodobowy. Coraz większa obecność oświetlenia LED i ekranów powoduje, że w coraz większym stopniu jesteśmy narażeni na oddziaływanie światła niebieskiego, gdyż to właśnie spektrum jest w dużej mierze emitowane przez LED-y. Dotychczas jednak zjawiska tego nie zauważono, gdyż nawet w krajach rozwiniętych oświetlenie LED nie jest używane do wystarczająco długiego czasu, by skutki jego negatywnego oddziaływania były już widoczne w badaniach epidemiologicznych.

Okazuje się, że muszki owocówki są mądrzejsze od ludzi. Gdy tylko mogą, unikają niebieskiego światła. Giebultowicz chce teraz sprawdzić, czy za unikanie niebieskiego światła jest odpowiedzialny ten sam szlak sygnałowy, który jest zaangażowany w długość życia owadów.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Bardzo to ciekawe. Potrafię sobie wyobrazić wpływ światła widzialnego (tutaj akurat niebieskiego) na rytm dobowy i wynikajace z tego konsekwencje oraz na uszkadzanie siatkówki - ale uszkadzanie mózgu? Widzę dwie możliwości - albo niebieskie światło przenika przez struktury szkieletowe muszki do mózgu (co wydaje mi się niemożliwe, chyba że mają półprzezroczystą budowę) albo śiwatło niebieskie oddziałuje na komórki na powierzchni owada, aktywując własnie te geny o których pisali, i dopiera białka powstałę z tej ekspresji pośrednio lub bezpośrednio uszkadzają rózne narządy, przede wszystkim mózg. 

Share this post


Link to post
Share on other sites

Może być, że komórki nerwowe lub tylko niektóre ich organelle komórkowe, mogą być w rezonansie z częstotliwością niebieskiego światła i przy braku tłumienia mogą zwiększać amplitudę swoich drgań, aż do ich mechanicznej destrukcji. Lub innej dysfunkcji.

Godzinę temu, Warai Otoko napisał:

niebieskie światło przenika przez struktury szkieletowe muszki do mózgu (co wydaje mi się niemożliwe, chyba że mają półprzezroczystą budowę)

Ale struktura ciała drgania może przenosić.

Share this post


Link to post
Share on other sites

Hmm.. czyli, że absorpcja fotonów przez atomy wchodzące w skład organelli komórkowych powoduje wzrost ich energii kinetycznej jak rozumiem i oscylacje która powoduje powstanie fali aksutycznej która się rozprzestrzenia po całym ciele? Takie zjawisko chyba nie jest możliwe. Światło mogłoby zwiększać Ek , czyli po prostu Temp. (ale raczej nie niebieskie) ale nie powodowałby to raczej powstania żadnych fal mechanicznych (chyba że byłby to laser?). Nawet jesli taka fala akustyczna by powstawała to skąd interferencja akurat w mózgu? 

Share this post


Link to post
Share on other sites
28 minut temu, Warai Otoko napisał:

Hmm.. czyli, że absorpcja fotonów przez atomy wchodzące w skład organelli komórkowych powoduje wzrost ich energii kinetycznej jak rozumiem i oscylacje która powoduje powstanie fali aksutycznej która się rozprzestrzenia po całym ciele?

Nie chodzi o zamianę światła na dźwięk i wzbudzenie rezonansu mechanicznego (to przecież tylko jeden z wielu rodzajów rezonansu).;) Tutaj nabroić może  np. rezonans optyczny lub  optyczno-chemiczny.  

28 minut temu, Warai Otoko napisał:

Nawet jesli taka fala akustyczna by powstawała to skąd interferencja akurat w mózgu? 

Bo tylko tu komórki (lub ich elementy) mają częstotliwość rezonansową z niebieskim światłem?

Edited by 3grosze

Share this post


Link to post
Share on other sites

Pod wpływem artykułu przestawiłem wszystkie monitory. Zacząłem też zwracać uwagę na kolorystykę interfejsów użytownika - one wszystkie są strasznie niebieskie! Najgorszy dla nas kolor jest teraz najpopularniejszy w nowoczesnych, zimnych, maszynowych ekranach do interakcji z człowiekiem. Zatęskniłem do bursztynowych CRT - szukam teraz jak przestawić moje kompy na '90s look :)

Share this post


Link to post
Share on other sites
29 minut temu, Jajcenty napisał:

Pod wpływem artykułu przestawiłem wszystkie monitory.

Ja też się za to zabieram;) Z tapetami mam lekki problem, bo zawsze lubiłem takie, gdzie jest przestrzeń i dużo zieleni, a tam zwykle u góry jest niebieskie niebo. Ale coś wykombinuję, żeby dominowały zielenie, brązy i żółcie.

Gorzej z okienkami, bo tam jest zwykle białe tło, czyli rgb(255,2155,255). A na dodatek zawsze było mi z tym dobrze, ja wolę czarne na białym, niż na odwrót. :(

Edited by darekp

Share this post


Link to post
Share on other sites
15 minut temu, Astro napisał:

Zawsze bardziej kręciły mnie zielone niż bursztynowe.

Właśnie z tym walczę :D To co? Mała petycja do Dyrekcji o zmianę kolorystyki KW na no-blue ? Będą się mogli reklamować: skracamy Ci życie, mniej niż inni :D, oj tam reklama ma swoje prawa więc: Wydłużamy Ci życie! I jeszcze trochę słów z przedrostkiem neuro i już :D

image.png.af7af67ed7ce301d8a1b6174d10f750a.png

28 minut temu, darekp napisał:

ja wolę czarne na białym, niż na odwrót.

U mnie króluje/królowało tło Teal  i yellow jako tekst - właśnie się z tym żegnam :(

Share this post


Link to post
Share on other sites
55 minut temu, Jajcenty napisał:

U mnie króluje/królowało tło Teal  i yellow jako tekst - właśnie się z tym żegnam :(

Ja wybierałem jednolity Teal jako tło pulpitu w dawnych czasach, gdy mi się nie chciało szukać tapety... 

Share this post


Link to post
Share on other sites

Każdy by się zestresował, gdyby mu świecić sztucznym światłem gdy śpi, co w długim terminie doprowadzi do uszkodzeń komórek. Podobnie, gdy nie śpi, ale nachalnie świeci mu się w oczy, gdy tego nie chce - także będzie do wywoływało stres, a długotrwały stres przyspiesza starzenie się.  W przypadku muszek nie jest to żadne wielkie odkrycie, zdziwiłbym się raczej, gdyby muszki zaczęły przyzwyczajać się do 12-godzinnego atakowania je światłem. Jak już kiedyś ten portal przedstawił duże ważniejsze badania, człowiek nie jest w stanie przyzwyczaić swój organizm do mniejszej ilości snu, zapewne tak jest z każdym organizmem. Zatem sztuczne światło musi mieć negatywne konsekwencje zdrowotne. Nie jest to więc nic odkrywczego.

Żeby to badanie miało jakiekolwiek znaczenie dla ludzi, należałoby je przeprowadzić na ludziach, co oczywiście byłoby niemożliwe, bo trzeba byłoby ich więzić. I sam już ten fakt podważa znaczenie tych badań. Żeby dawać się więc wciągać w dyskusje na ten temat, trzeba byłoby przeprowadzić analizę porównawczą np. wpływu światła na informatyków i grupą kontrolną (ludzi, którzy rzadko używają komputera i tel kom).

Share this post


Link to post
Share on other sites
7 godzin temu, Astro napisał:

Ale wiesz Jajcenty, w dzisiejszych czasach takie suwaczki jak "światło nocne" mi zdecydowanie pomagają.

Dokładnie. Jak tylko przegląd artu skończyłem, trybowi  nocnemu nakazałem świecić i w dzień. I jeszcze temperaturę kolorów podkręciłem, przez co wirtualny świat trochę się zmienił.;)

Współczuję grafikom komputerowym.

Share this post


Link to post
Share on other sites
W dniu 18.10.2019 o 17:17, 3grosze napisał:

Nie chodzi o zamianę światła na dźwięk i wzbudzenie rezonansu mechanicznego (to przecież tylko jeden z wielu rodzajów rezonansu).;) Tutaj nabroić może  np. rezonans optyczny lub  optyczno-chemiczny.  

wiem że istnieją inne typy rezonansów poza mechanicznym, ale zmyliło mnie że napisałeś: 

W dniu 18.10.2019 o 16:38, 3grosze napisał:

Ale struktura ciała drgania może przenosić.

Ale nie czepiając się słówek, dalej nie rozumiem jak by ten rezonans optyczny miał w tym przypadku działać, a jeśli nie jest to dobry trop to w jaki sposób światło oddziaływało na mózg muszki pozbawionej receptorów wzrokowych ?! Może ktoś wie czy "powłoki" muszki są półprzezroczyste może? Bo jeśli nie i badania miałby się jakoś odnosić do ludzi, to poza dostrojeniem monitorów musielibyśmy uważać generalnie na ekspozycje, nawet przy zamkniętych/zasłoniętych oczach! 

Share this post


Link to post
Share on other sites
1 godzinę temu, Warai Otoko napisał:

a jeśli nie jest to dobry trop to w jaki sposób światło oddziaływało na mózg muszki pozbawionej receptorów wzrokowych ?!

Słyszałeś o czymś takim jak fototropizm? Rośliny też nie potrzebują oczu, by wiedzieć, gdzie jest światło.

Share this post


Link to post
Share on other sites
2 godziny temu, Warai Otoko napisał:

dalej nie rozumiem jak by ten rezonans optyczny miał w tym przypadku działać,

Niekoniecznie akurat rezonans optyczny, ale o zjawisko drgań samowzbudnych o rosnącej amplitudzie, gdzie żródłem pobudzającym jest niebieskie światło.

2 godziny temu, Warai Otoko napisał:

w jaki sposób światło oddziaływało na mózg muszki pozbawionej receptorów wzrokowych ?! Może ktoś wie czy "powłoki" muszki są półprzezroczyste może?

No właśnie badanie wykazało, że niebieskie światło działa destrukcyjnie bezpośrednio (w sensie bez pośrednictwa wzroku) na komórki mózgu muszek.

 

2 godziny temu, Warai Otoko napisał:

Może ktoś wie czy "powłoki" muszki są półprzezroczyste może?

Teraz tego nie wiem, ale jestem pewny że ich grubość ( w porównaniu np. z człowiekiem;)),  a więc tłumienie fali może być nikłe.

Edited by 3grosze

Share this post


Link to post
Share on other sites
59 minut temu, Antylogik napisał:

Słyszałeś o czymś takim jak fototropizm? Rośliny też nie potrzebują oczu, by wiedzieć, gdzie jest światło.

Może powiem inaczej - jaka jest droga oddziaływania światła na mózg muszki pozbawionej receptorów światła? Bezpośrednia, przez półprzezroczyste powłoki? Czy pośrednia, przez ekspresje genów w konsekwencji oddziaływania na komórki "powłoki" (nie wiem jak odpowiednik skóry nazywa się u muszki ;P). To jest istotne dla nas, ponieważ, jeżeli jest to droga bezpośrednia (tylko) to jesteśmy bezpieczni w momencie gdy np. zasłonimy/zamkniemy oczy w obecności niebieskiego światła, a jeśli pośrednia to istnieje ryzyko że niebieskie światło np. wywołuje ekspresje genów lub katalizuje powstawanie jakiś susbtancji chemicznych (jak np. UV wit. D) które wtórnie pośrednio lub bezpośrednio atakują mózg. A to byłby znacznie większy problem. 

 

30 minut temu, 3grosze napisał:

No właśnie badanie wykazało, że niebieskie światło działa destrukcyjnie bezpośrednio (w sensie bez pośrednictwa wzroku) na komórki mózgu muszek.

No wiem, stąd moje rozterki właśnie ;P 

Share this post


Link to post
Share on other sites
16 minut temu, Warai Otoko napisał:

istnieje ryzyko że niebieskie światło np. wywołuje ekspresje genów lub katalizuje powstawanie jakiś susbtancji chemicznych (jak np. UV wit. D) które wtórnie pośrednio lub bezpośrednio atakują mózg.

Też na tym etapie niewykluczone. Założyłem rezonans, ponieważ tam gdzie istnieje oddziaływanie na odległość, a inicjatorem jest fala, to mogło  coś na końcu za mocno się rozbujać.

Edited by 3grosze

Share this post


Link to post
Share on other sites
13 minut temu, 3grosze napisał:

Też na tym etapie niewykluczone. Założyłem rezonans, ponieważ tam gdzie istnieje oddziaływanie na odległość, a inicjatorem jest fala, to mogło  coś na końcu za mocno się rozbujać.

Obstawiam energię - żywe źle znosi nadfiolet. Niebieskie fotony są prawie dwa razy (7/4) bardziej energetyczne od czerwonych. 

Share this post


Link to post
Share on other sites
17 minut temu, 3grosze napisał:

Też na tym etapie niewykluczone. Założyłem rezonans, ponieważ tam gdzie istnieje oddziaływanie na odległość, a inicjatorem jest fala, to mogło  coś na końcu za mocno się rozbujać.

jasne, na etapie takich luźnych rozważań każdy pomysł jest mile widziany :) W końcu z intuicji biorą się pomysły weryfikowane później przez badania naukowe/teorie etc.. Po prostu ja akurat nie widzę/nie rozumiem takiej możliwości. 

Share this post


Link to post
Share on other sites
40 minut temu, Warai Otoko napisał:

 Po prostu ja akurat nie widzę/nie rozumiem takiej możliwości. 

Taka analogia (przez którą wszędzie widzę:D rezonans): 

 Gdyby wiatr miał większą prędkość, do takiego bujania by nie doszło. Akurat trafił swój na swego.

Edited by 3grosze

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Koreańscy uczeni poinformowali na łamach Occupational & Environmental Medicine, że długie godziny pracy – zdefiniowane tutaj jako praca przez co najmniej 52 godziny w tygodniu – mogą zmieniać strukturę mózgu. Zmiany dotyczą przede wszystkim obszarów powiązanych z regulacją emocji i funkcjami wykonawczymi, jak pamięć robocza i rozwiązywanie problemów. Nadmierna praca powoduje zmiany adaptacyjne w mózgu, które mogą negatywnie wpływać na nasze zdrowie.
      Dostarczamy nowych neurobiologicznych dowodów łączących wydłużony czas pracy ze zmianami strukturalnymi mózgu, podkreślając potrzebę dalszych badań, by zrozumieć długoterminowe skutki poznawcze i emocjonalne przepracowania, czytamy w opublikowanym artykule.
      Nauka zna psychologiczne skutki przepracowania, jednak niewiele wiadomo, w jaki sposób wpływa ono na strukturę mózgu. Już wcześniej pojawiały się sugestie mówiące, że związane z nadmierną pracą chroniczny stres i brak odpoczynku mogą zmieniać budowę mózgu, jednak były one poparte niewielką liczbą dowodów.
      Autorzy najnowszych badań przyjrzeli się 110 ochotnikom. Grupa składała się z lekarzy, pielęgniarek oraz innych pracowników służby zdrowia. Wśród nich były 32 osoby (28%), które pracowały co najmniej 52 godziny w tygodniu.
      Osoby, które spędzały więcej czasu w pracy to zwykle osoby młodsze (przeważnie poniżej 45. roku życie) i lepiej wykształcone, niż osoby pracujące mniej. Różnice w objętości poszczególnych obszarów mózgu oceniano za pomocą badań morfometrycznych opartych o pomiar voksela (VBM). Analizy wykazały istnienie znaczących zmian u osób, które pracowały powyżej 52 godzin tygodniowo. Miały one średnio o 19-procent większą objętość zakrętu czołowego środkowego, który jest zaangażowany w skupienie uwagi, pamięć roboczą i przetwarzanie języka. Powiększonych było też 16 innych regionów, w tym zakręt czołowy górny, odpowiedzialny m.in. za funkcje wykonawcze (podejmowanie decyzji, myślenie abstrakcyjne, planowanie).
      Autorzy badań podkreślają, że badania przeprowadzili na niewielkiej grupie osób i uchwyciły one tylko różnie istniejące w konkretnym momencie. Nie można zatem na ich podstawie wyciągać jednoznacznych wniosków co do skutków i przyczyn. Nie wiadomo, czy zmiany te są skutkiem czy przyczyną przepracowywania się.
      Mimo to badania wskazują na istnienie potencjalnego związku pomiędzy zmianami objętości mózgu a długimi godzinami pracy. Zmiany zaobserwowane u osób przepracowujących się mogą być adaptacją do chronicznego stresu, stwierdzili naukowcy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Słuchając ulubionej muzyki odczuwamy przyjemność, niejednokrotnie wiąże się to z przeżywaniem różnych emocji. Teraz, dzięki pracy naukowców z fińskiego Uniwersytetu w Turku dowiadujemy się, w jaki sposób muzyka na nas działa. Uczeni puszczali ochotnikom ich ulubioną muzykę, badając jednocześnie ich mózgi za pomocą pozytonowej tomografii emisyjnej (PET). Okazało się, że ulubione dźwięki aktywują układ opioidowy mózgu.
      Badania PET wykazały, że w czasie gdy badani słuchali ulubionej muzyki, w licznych częściach mózgu, związanych z odczuwaniem przyjemności, doszło do uwolnienia opioidów. Wzorzec tego uwolnienia powiązano ze zgłaszanym przez uczestników odczuwaniem przyjemności. Dodatkowo za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) skorelowano indywidualną dla każdego z badanych liczbę receptorów opioidowych z aktywacją mózgu. Im więcej receptorów miał mózg danej osoby, tym silniejsze pobudzenie widać było na fMRI.
      Po raz pierwszy bezpośrednio obserwujemy, że słuchanie muzyki uruchamia układ opioidowy mózgu. Uwalnianie opioidów wyjaśnia, dlaczego muzyka powoduje u nas tak silne uczucie przyjemności, mimo że nie jest ona powiązana z zachowaniami niezbędnymi do przetrwania, takimi jak pożywianie się czy uprawianie seksu, mówi Vesa Putkinen. Profesor Luri Nummenmaa dodaje, że układ opioidowy powiązany jest też ze znoszeniem bólu, zatem jego pobudzenie przez muzykę może wyjaśniać, dlaczego słuchanie muzyki może działać przeciwbólowo.
      Receptorem, który zapewnia nam przyjemność ze słuchania muzyki jest μ (MOR). Jego aktywacja powoduje działanie przeciwbólowe – to na niego działają opioidy stosowane w leczeniu bólu, euforię (przez co przyczynia się do uzależnień) czy uspokojenie oraz senność.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badania przeprowadzone na gryzoniach w średnim wieku wskazują, że brak witaminy K może zwiększać stan zapalny i zakłócać proliferację komórek w hipokampie, części mózgu odpowiedzialnej za pamięć i uczenie się. Wyniki pokazują zatem, w jaki sposób niedobór witaminy K może wpływać na nasze zdolności poznawcze w miarę, jak przybywa nam lat.
      Witamina K obecna jest w zielonych warzywach liściastych, jak brukselka, szpinak, brokuły czy jarmuż. Wiadomo, że odkrywa ważną rolę w krzepnięciu krwi, prawdopodobnie ma też pozytywny wpływ na zdrowie układu krwionośnego i stawy. Teraz dowiadujemy się, że może mieć też wpływ na ludzki mózg.
      Istnieją badania sugerujące, że witamina K chroni mózg przed spadkiem zdolności poznawczych w miarę, jak przybywa nam lat. Nasze prace mają na celu zrozumienie tego mechanizmu, mówi główny autor badań Tong Zheng z Tufts University.
      Naukowcy przez pół roku karmili jedną grupę myszy standardową dietą, a druga grupa otrzymywała dietę ubogą w witaminę K. Naukowcy skupili się na metachinonie-4 (witamina K2 MK-4), związku z grupy witamin K, który występuje w tkance mózgowej. Odkryli, że u myszy karmionych dietą ubogą w witaminę K poziom tego związku był znacząco niższy. A jego niedobór wiązał się z zauważalnym spadkiem zdolności poznawczych zwierząt. Podczas testów takie myszy miały na przykład problem w odróżnieniu nowych obiektów do już znanych, co jest jasną wskazówką problemów z pamięcią. Podczas innego z badań – mających sprawdzić orientację w przestrzeni – myszy miały nauczyć się, gdzie znajduje się ukryta platforma z wodą. Te z niedoborem witaminy K uczyły się znacznie dłużej.
      Badania tkanki mózgowej myszy wykazały istnienie znaczących zmian w hipokampie. U tych, które spożywały zbyt mało witaminy K doszło do zmniejszenia liczby komórek ulegających proliferacji w zakręcie zębatym, co przekładało się na mniej intensywną neurogenezę. Neurogeneza odgrywa kluczową rolę w procesach uczenia się i zapamiętywania, a jej zaburzenie może bezpośrednio wpływać na zaobserwowany spadek zdolności poznawczych, wyjaśnia Zheng. Jakby jeszcze tego było mało, naukowcy znaleźli dowody na zwiększenie się stanu zapalnego w mózgach myszy z niedoborem witaminy K. Odkryliśmy w nich większą liczbę nadaktywnych komórek mikrogleju, dodaje uczony.
      Autorzy badań podkreślają, że ich wyniki nie oznaczają, iż ludzie powinni przyjmować suplementy witaminy K. Ludzie powinni stosować zdrową dietę i jeść warzywa, mówi profesor Sarah Booth. Uczeni z Tufts University współpracują z Rush University Medical Center w Chicago, gdzie zespół Booth prowadzi badania obserwacyjne dotyczące ludzkiego mózgu i zdolności poznawczych. Wiemy z nich, że zdrowa dieta działa, że ludzie, który nie odżywiają się zdrowo, nie żyją tak długo, a ich zdolności poznawcze nie dorównują ludziom ze zdrową dietą. Łącząc badania na ludziach i zwierzętach możemy lepiej poznać mechanimy różnych zjawisk i dowiedzieć się, w jaki sposób długoterminowo poprawić zdrowie mózgu, dodaje uczona.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wystarczy 5 dni nadmiernego spożywania batonów czekoladowych, chipsów i innego śmieciowego jedzenia, by doszło do zmian w aktywności mózgu. Niemieccy naukowcy wykazali, że krótkoterminowe spożywanie słodyczy i tłuszczów uruchamia mechanizm gromadzenia tłuszczu w wątrobie oraz zaburza reakcję mózgu na insulinę, a skutki tego utrzymują się po zaprzestaniu jedzenia wspomnianych pokarmów. Wzorce pracy mózgu po kilku dniach spożywania śmieciowego jedzenia są podobne do tych, widocznych u osób z otyłością. Nie można wykluczyć, że reakcja mózgu na insulinę pozwala mu zaadaptować się do krótkoterminowych zmian diety i ułatwia rozwój otyłości oraz innych chorób.
      Nie spodziewałam się, że skutki będą tak bardzo widoczne u zdrowych ludzi, mówi główna autorka badań, neurolog Stephanie Kullmann. Celem naukowców było zbadanie wpływu krótkoterminowego spożywania wysoce przetworzonych i kalorycznych produktów na reakcję mózgu na insulinę, zanim jeszcze zaczynamy przybierać na wadze.
      Do badań zaangażowano 29 zdrowych mężczyzn w wieku 19–27 lat, których BMI mieściło się w zakresie 19–25 kg/m2 (obecnie przygotowywane są analogiczne badania na kobietach). Podzielono ich na dwie grupy. To jednej, która miała spożywać wysokokaloryczną dietę, przypisano 18 osób. Pozostali stanowili grupę kontrolną. Grupa na diecie wysokokalorycznej miała dziennie spożywać dodatkowo 1500 kcal w postaci chipsów, batonów itp. Aktywność fizyczną ograniczono do 4000 kroków dziennie.
      Początkowo osoby przypisane do grupy spożywającej dodatkowe kalorie zareagowały na to entuzjastycznie. Jednak już w czwartym dniu eksperymentu jedzenie batonów czy chipsów było dla nich męczarnią. W efekcie spożyli oni średnio 1200 kcal dziennie więcej, a nie zakładane 1500 kcal. Mimo to okazało się, że znacząco z 1,55% (± 2,2%) do 2,54% (± 3,5%) zwiększyło się u nich otłuszczenie wątroby. Nie zauważono znaczących różnic w masie działa, zmiany wrażliwości na insulinę w innych tkankach niż mózgu czy wskaźnikach zapalnych.
      Po pięciu dniach u osób z grupy zjadającej słodkie i tłuste przekąski doszło do zmniejszenia czułości układu nagrody. Niekorzystne skutki śmieciowej diety utrzymywały się przez około tydzień po powrocie do diety prawidłowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Szwedzcy uczeni dokonali czegoś niezwykłego. Połączyli indywidualne komórki z organicznymi elektrodami. Ich osiągnięcie daje nadzieję, że w przyszłości będziemy w stanie bardzo precyzyjnie leczyć choroby neurologiczne. I nie tylko je.
      Mózg jest kontrolowany przez sygnały elektryczne, które są z kolei przekładane na substancje chemiczne służące do komunikacji między komórkami. Nie od dzisiaj wiemy, że mózg można stymulować za pomocą prądu elektrycznego. Jednak stosowane metody są bardzo nieprecyzyjne i wpływają na duże obszary mózgu. W zwiększeniu precyzji pomagają metalowe elektrody. Jednak ich mocowanie do mózgu stwarza ryzyko uszkodzenia tkanki, pojawienia się stanu zapalnego czy blizn. Rozwiązaniem mogą być miękkie polimerowe elektrody.
      Naszym celem jest połączenie układu biologicznego z elektrodami, używając przy tym organicznych polimerów przewodzących. Polimery są miękkie i wygodne w używaniu, mogą przekazywać zarówno sygnał elektryczny, jak i jony. Są więc lepszym materiałem niż konwencjonalne elektrody, mówi Chiara Musumeci z Uniwersytetu w Linköping.
      Uczona wraz z kolegami z Karolinska Institutet opracowała technikę mocowania organicznych elektrod do błon komórkowych pojedynczych komórek. Dotychczas udawało się to osiągnąć w przypadku genetycznie modyfikowanych komórek, zmienionych tak, by ich błony komórkowe łatwiej łączyły się z elektrodami. Szwedzi są pierwszymi, którzy wykonali takie połączenie z niezmodyfikowanymi komórkami, uzyskali ścisłe dopasowanie, a elektroda nie wpłynęła na funkcjonowanie komórek.
      Technika połączenia jest dwuetapowa. W pierwszym kroku wykorzystywana jest molekuła kotwicząca, za pomocą której tworzy się punkt zaczepienia do błony komórkowej. Na drugim końcu molekuły znajduje się struktura, do której mocowana jest następnie elektroda.
      Na kolejnym etapie badań naukowcy będą starali się opracować sposób na bardziej równomierne zaczepianie molekuły kotwiczącej, uzyskanie bardziej stabilnego połączenia oraz zbadanie, jak takie połączenie zachowuje się z upływem czasu. Przed nimi jeszcze sporo wyzwań. Naukowcy wciąż nie są w stanie z całą pewnością stwierdzić, że ich technika sprawdzi się w przypadku żywych tkanek. Na razie skupiają się nad uzyskaniem pewnego, stabilnego i bezpiecznego połączenia z komórką.
      Jeśli okaże się, że takie połączenia sprawdzają się w żywych organizmach, przyjdzie czas na badania, które dadzą odpowiedź na pytanie, w terapiach jakich chorób można będzie zastosować elektrody łączone z poszczególnymi komórkami.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...