Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Smartfony mogą przyspieszać starzenie się, uszkadzać mózg i oczy

Rekomendowane odpowiedzi

Długa ekspozycja na niebieskie światło, takie jak emitowane przez ekrany smartfonów i komputerów, może negatywnie wpływać na długość życia. Naukowcy z Oregon State University zauważyli, że niebieskie długości fali emitowane przez LED niszczą komórki w mózgu i siatkówce muszki owocówki.

W artykule, opublikowanym na łamach Nature Aging and Mechanisms of Disease, czytamy, że muszki, które codziennie przez 12 godzin przebywały w niebieskim świetle i 12 godzin w ciemności, żyły znacznie krócej niż muszki, które były stale utrzymywane w ciemności lub stale w białym świetle z zablokowanym pasmem niebieskim. Ekspozycja dorosłych muszek na 12 godzin światła niebieskiego dziennie prowadziła do przyspieszenia starzenia się, powodując uszkodzenie komórek siatkówki, degenerację mózgu oraz upośledzała zdolności ruchowe. Uszkodzenie mózgu oraz funkcji motorycznych nie było związane z degeneracją siatkówki, gdyż zjawiska te obserwowano również u muszek, które genetycznie zmodyfikowano tak, by nie wykształcały się u nich oczy. Niebieskie światło prowadziło też do ekspresji genów stresu u starszych muszek, ale nie u młodych. To sugeruje, że zbiorcza ekspozycja na niebieskie światło działa jak czynnik stresowy w miarę starzenia się. Muszki owocówki to ważny organizm modelowy, gdyż wiele występujących u nich mechanizmów komórkowych i rozwojowych jest takich samych, jak u ludzi i innych zwierząt.

Badania prowadził zespół pracujący pod kierunkiem profesor Jagi Giebultowicz, która specjalizuje się w badaniu zegara biologicznego. Zaskoczył nas fakt, że światło przyspiesza starzenie się muszek. Zbadaliśmy ekspresję niektórych genów u starych muszek i stwierdziliśmy, że gdy muszki są poddawane działaniu światła, to dochodzi do ekspresji genów odpowiedzialnych za ochronę organizmu. Wysunęliśmy hipotezę, że światło im szkodzi i postanowiliśmy znaleźć tego przyczynę. Okazało się, że o ile światło pozbawione pasma niebieskiego w niewielkim stopniu skraca życie, to niebieskie światło skraca je w sposób dramatyczny, mówi Giebultowicz.

Wiadomo, że naturalne światło jest bardzo ważnym czynnikiem regulującym rytm dobowy i związane z nim procesy fizjologiczne jak aktywność fal mózgowych, produkcję hormonów, regenerację komórek. Istnieją też dowody sugerujące, że zwiększona ekspozycja na sztuczne światło jest czynnikiem zaburzającym sen i rytm całodobowy. Coraz większa obecność oświetlenia LED i ekranów powoduje, że w coraz większym stopniu jesteśmy narażeni na oddziaływanie światła niebieskiego, gdyż to właśnie spektrum jest w dużej mierze emitowane przez LED-y. Dotychczas jednak zjawiska tego nie zauważono, gdyż nawet w krajach rozwiniętych oświetlenie LED nie jest używane do wystarczająco długiego czasu, by skutki jego negatywnego oddziaływania były już widoczne w badaniach epidemiologicznych.

Okazuje się, że muszki owocówki są mądrzejsze od ludzi. Gdy tylko mogą, unikają niebieskiego światła. Giebultowicz chce teraz sprawdzić, czy za unikanie niebieskiego światła jest odpowiedzialny ten sam szlak sygnałowy, który jest zaangażowany w długość życia owadów.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo to ciekawe. Potrafię sobie wyobrazić wpływ światła widzialnego (tutaj akurat niebieskiego) na rytm dobowy i wynikajace z tego konsekwencje oraz na uszkadzanie siatkówki - ale uszkadzanie mózgu? Widzę dwie możliwości - albo niebieskie światło przenika przez struktury szkieletowe muszki do mózgu (co wydaje mi się niemożliwe, chyba że mają półprzezroczystą budowę) albo śiwatło niebieskie oddziałuje na komórki na powierzchni owada, aktywując własnie te geny o których pisali, i dopiera białka powstałę z tej ekspresji pośrednio lub bezpośrednio uszkadzają rózne narządy, przede wszystkim mózg. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 minuty temu, 3grosze napisał:

Nie wykluczam destrukcyjnego rezonansu.

Możesz rozwinąć ten pomysł ? 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Może być, że komórki nerwowe lub tylko niektóre ich organelle komórkowe, mogą być w rezonansie z częstotliwością niebieskiego światła i przy braku tłumienia mogą zwiększać amplitudę swoich drgań, aż do ich mechanicznej destrukcji. Lub innej dysfunkcji.

Godzinę temu, Warai Otoko napisał:

niebieskie światło przenika przez struktury szkieletowe muszki do mózgu (co wydaje mi się niemożliwe, chyba że mają półprzezroczystą budowę)

Ale struktura ciała drgania może przenosić.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Hmm.. czyli, że absorpcja fotonów przez atomy wchodzące w skład organelli komórkowych powoduje wzrost ich energii kinetycznej jak rozumiem i oscylacje która powoduje powstanie fali aksutycznej która się rozprzestrzenia po całym ciele? Takie zjawisko chyba nie jest możliwe. Światło mogłoby zwiększać Ek , czyli po prostu Temp. (ale raczej nie niebieskie) ale nie powodowałby to raczej powstania żadnych fal mechanicznych (chyba że byłby to laser?). Nawet jesli taka fala akustyczna by powstawała to skąd interferencja akurat w mózgu? 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
28 minut temu, Warai Otoko napisał:

Hmm.. czyli, że absorpcja fotonów przez atomy wchodzące w skład organelli komórkowych powoduje wzrost ich energii kinetycznej jak rozumiem i oscylacje która powoduje powstanie fali aksutycznej która się rozprzestrzenia po całym ciele?

Nie chodzi o zamianę światła na dźwięk i wzbudzenie rezonansu mechanicznego (to przecież tylko jeden z wielu rodzajów rezonansu).;) Tutaj nabroić może  np. rezonans optyczny lub  optyczno-chemiczny.  

28 minut temu, Warai Otoko napisał:

Nawet jesli taka fala akustyczna by powstawała to skąd interferencja akurat w mózgu? 

Bo tylko tu komórki (lub ich elementy) mają częstotliwość rezonansową z niebieskim światłem?

Edytowane przez 3grosze

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pod wpływem artykułu przestawiłem wszystkie monitory. Zacząłem też zwracać uwagę na kolorystykę interfejsów użytownika - one wszystkie są strasznie niebieskie! Najgorszy dla nas kolor jest teraz najpopularniejszy w nowoczesnych, zimnych, maszynowych ekranach do interakcji z człowiekiem. Zatęskniłem do bursztynowych CRT - szukam teraz jak przestawić moje kompy na '90s look :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
29 minut temu, Jajcenty napisał:

Pod wpływem artykułu przestawiłem wszystkie monitory.

Ja też się za to zabieram;) Z tapetami mam lekki problem, bo zawsze lubiłem takie, gdzie jest przestrzeń i dużo zieleni, a tam zwykle u góry jest niebieskie niebo. Ale coś wykombinuję, żeby dominowały zielenie, brązy i żółcie.

Gorzej z okienkami, bo tam jest zwykle białe tło, czyli rgb(255,2155,255). A na dodatek zawsze było mi z tym dobrze, ja wolę czarne na białym, niż na odwrót. :(

Edytowane przez darekp

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
15 minut temu, Astro napisał:

Zawsze bardziej kręciły mnie zielone niż bursztynowe.

Właśnie z tym walczę :D To co? Mała petycja do Dyrekcji o zmianę kolorystyki KW na no-blue ? Będą się mogli reklamować: skracamy Ci życie, mniej niż inni :D, oj tam reklama ma swoje prawa więc: Wydłużamy Ci życie! I jeszcze trochę słów z przedrostkiem neuro i już :D

image.png.af7af67ed7ce301d8a1b6174d10f750a.png

28 minut temu, darekp napisał:

ja wolę czarne na białym, niż na odwrót.

U mnie króluje/królowało tło Teal  i yellow jako tekst - właśnie się z tym żegnam :(

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
55 minut temu, Jajcenty napisał:

U mnie króluje/królowało tło Teal  i yellow jako tekst - właśnie się z tym żegnam :(

Ja wybierałem jednolity Teal jako tło pulpitu w dawnych czasach, gdy mi się nie chciało szukać tapety... 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Każdy by się zestresował, gdyby mu świecić sztucznym światłem gdy śpi, co w długim terminie doprowadzi do uszkodzeń komórek. Podobnie, gdy nie śpi, ale nachalnie świeci mu się w oczy, gdy tego nie chce - także będzie do wywoływało stres, a długotrwały stres przyspiesza starzenie się.  W przypadku muszek nie jest to żadne wielkie odkrycie, zdziwiłbym się raczej, gdyby muszki zaczęły przyzwyczajać się do 12-godzinnego atakowania je światłem. Jak już kiedyś ten portal przedstawił duże ważniejsze badania, człowiek nie jest w stanie przyzwyczaić swój organizm do mniejszej ilości snu, zapewne tak jest z każdym organizmem. Zatem sztuczne światło musi mieć negatywne konsekwencje zdrowotne. Nie jest to więc nic odkrywczego.

Żeby to badanie miało jakiekolwiek znaczenie dla ludzi, należałoby je przeprowadzić na ludziach, co oczywiście byłoby niemożliwe, bo trzeba byłoby ich więzić. I sam już ten fakt podważa znaczenie tych badań. Żeby dawać się więc wciągać w dyskusje na ten temat, trzeba byłoby przeprowadzić analizę porównawczą np. wpływu światła na informatyków i grupą kontrolną (ludzi, którzy rzadko używają komputera i tel kom).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
7 godzin temu, Astro napisał:

Ale wiesz Jajcenty, w dzisiejszych czasach takie suwaczki jak "światło nocne" mi zdecydowanie pomagają.

Dokładnie. Jak tylko przegląd artu skończyłem, trybowi  nocnemu nakazałem świecić i w dzień. I jeszcze temperaturę kolorów podkręciłem, przez co wirtualny świat trochę się zmienił.;)

Współczuję grafikom komputerowym.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 18.10.2019 o 17:17, 3grosze napisał:

Nie chodzi o zamianę światła na dźwięk i wzbudzenie rezonansu mechanicznego (to przecież tylko jeden z wielu rodzajów rezonansu).;) Tutaj nabroić może  np. rezonans optyczny lub  optyczno-chemiczny.  

wiem że istnieją inne typy rezonansów poza mechanicznym, ale zmyliło mnie że napisałeś: 

W dniu 18.10.2019 o 16:38, 3grosze napisał:

Ale struktura ciała drgania może przenosić.

Ale nie czepiając się słówek, dalej nie rozumiem jak by ten rezonans optyczny miał w tym przypadku działać, a jeśli nie jest to dobry trop to w jaki sposób światło oddziaływało na mózg muszki pozbawionej receptorów wzrokowych ?! Może ktoś wie czy "powłoki" muszki są półprzezroczyste może? Bo jeśli nie i badania miałby się jakoś odnosić do ludzi, to poza dostrojeniem monitorów musielibyśmy uważać generalnie na ekspozycje, nawet przy zamkniętych/zasłoniętych oczach! 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1 godzinę temu, Warai Otoko napisał:

a jeśli nie jest to dobry trop to w jaki sposób światło oddziaływało na mózg muszki pozbawionej receptorów wzrokowych ?!

Słyszałeś o czymś takim jak fototropizm? Rośliny też nie potrzebują oczu, by wiedzieć, gdzie jest światło.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, Warai Otoko napisał:

dalej nie rozumiem jak by ten rezonans optyczny miał w tym przypadku działać,

Niekoniecznie akurat rezonans optyczny, ale o zjawisko drgań samowzbudnych o rosnącej amplitudzie, gdzie żródłem pobudzającym jest niebieskie światło.

2 godziny temu, Warai Otoko napisał:

w jaki sposób światło oddziaływało na mózg muszki pozbawionej receptorów wzrokowych ?! Może ktoś wie czy "powłoki" muszki są półprzezroczyste może?

No właśnie badanie wykazało, że niebieskie światło działa destrukcyjnie bezpośrednio (w sensie bez pośrednictwa wzroku) na komórki mózgu muszek.

 

2 godziny temu, Warai Otoko napisał:

Może ktoś wie czy "powłoki" muszki są półprzezroczyste może?

Teraz tego nie wiem, ale jestem pewny że ich grubość ( w porównaniu np. z człowiekiem;)),  a więc tłumienie fali może być nikłe.

Edytowane przez 3grosze

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
59 minut temu, Antylogik napisał:

Słyszałeś o czymś takim jak fototropizm? Rośliny też nie potrzebują oczu, by wiedzieć, gdzie jest światło.

Może powiem inaczej - jaka jest droga oddziaływania światła na mózg muszki pozbawionej receptorów światła? Bezpośrednia, przez półprzezroczyste powłoki? Czy pośrednia, przez ekspresje genów w konsekwencji oddziaływania na komórki "powłoki" (nie wiem jak odpowiednik skóry nazywa się u muszki ;P). To jest istotne dla nas, ponieważ, jeżeli jest to droga bezpośrednia (tylko) to jesteśmy bezpieczni w momencie gdy np. zasłonimy/zamkniemy oczy w obecności niebieskiego światła, a jeśli pośrednia to istnieje ryzyko że niebieskie światło np. wywołuje ekspresje genów lub katalizuje powstawanie jakiś susbtancji chemicznych (jak np. UV wit. D) które wtórnie pośrednio lub bezpośrednio atakują mózg. A to byłby znacznie większy problem. 

 

30 minut temu, 3grosze napisał:

No właśnie badanie wykazało, że niebieskie światło działa destrukcyjnie bezpośrednio (w sensie bez pośrednictwa wzroku) na komórki mózgu muszek.

No wiem, stąd moje rozterki właśnie ;P 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
16 minut temu, Warai Otoko napisał:

istnieje ryzyko że niebieskie światło np. wywołuje ekspresje genów lub katalizuje powstawanie jakiś susbtancji chemicznych (jak np. UV wit. D) które wtórnie pośrednio lub bezpośrednio atakują mózg.

Też na tym etapie niewykluczone. Założyłem rezonans, ponieważ tam gdzie istnieje oddziaływanie na odległość, a inicjatorem jest fala, to mogło  coś na końcu za mocno się rozbujać.

Edytowane przez 3grosze

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
13 minut temu, 3grosze napisał:

Też na tym etapie niewykluczone. Założyłem rezonans, ponieważ tam gdzie istnieje oddziaływanie na odległość, a inicjatorem jest fala, to mogło  coś na końcu za mocno się rozbujać.

Obstawiam energię - żywe źle znosi nadfiolet. Niebieskie fotony są prawie dwa razy (7/4) bardziej energetyczne od czerwonych. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
17 minut temu, 3grosze napisał:

Też na tym etapie niewykluczone. Założyłem rezonans, ponieważ tam gdzie istnieje oddziaływanie na odległość, a inicjatorem jest fala, to mogło  coś na końcu za mocno się rozbujać.

jasne, na etapie takich luźnych rozważań każdy pomysł jest mile widziany :) W końcu z intuicji biorą się pomysły weryfikowane później przez badania naukowe/teorie etc.. Po prostu ja akurat nie widzę/nie rozumiem takiej możliwości. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
40 minut temu, Warai Otoko napisał:

 Po prostu ja akurat nie widzę/nie rozumiem takiej możliwości. 

Taka analogia (przez którą wszędzie widzę:D rezonans): 

 Gdyby wiatr miał większą prędkość, do takiego bujania by nie doszło. Akurat trafił swój na swego.

Edytowane przez 3grosze

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Z załogową misją na Marsa wiążą się nie tylko duże koszty i problemy techniczne. Jedne i drugie można w końcu przezwyciężyć. Znacznie trudniejsze do pokonania będą ograniczenia ludzkiego organizmu. Wyewoluowaliśmy na Ziemi i jesteśmy przyzwyczajeni do ziemskiej grawitacji oraz zapewnianej przez atmosferę ochrony przed promieniowaniem kosmicznym. Niejednokrotnie informowaliśmy o problemach zdrowotnych astronautów. Pobyt w kosmosie może uszkadzać mózg, nerki, prowadzić do anemii. Od lat pojawiają się też doniesienia o negatywnym wpływie na wzrok.
      Oftalmolog Santiago Costantino z Uniwersytetu w Montrealu poinformował, że co najmniej 70% osób, które przebywały na Międzynarodowej Stacji Kosmicznej cierpi na związany z lotem w kosmos zespół neurookulistyczny (SANS, spaceflight-associated neuro-ocular syndrome). Uczony wraz z zespołem chcieli przyjrzeć się zmianom biomechanicznym, które prowadzą do pojawienia się SANS. W tym celu przeanalizowali dane dotyczące 13 astronautów, którzy przebywali na Międzynarodowej Stacji Kosmicznej od 157 do 186 dni. Średnia wieku astronautów wynosiła 48 lat. Pochodzili oni z różnych krajów, ośmioro z nich w chwili badań miało za sobą jedną misję, były wśród nich 4 kobiety.
      Naukowcy porównali trzy parametry, które mierzyli przed i po misji: sztywność gałki ocznej, ciśnienie wewnątrzgałkowe oraz amplitudę pulsu oka. Pierwszy z parametrów badano za pomocą koherencyjnej tomografii optycznej, dwa pozostałe – metodą tonometrii.
      Naukowcy zauważyli, że w czasie misji doszło do znaczących zmian właściwości biomechanicznych gałek ocznych. Ich sztywność zmniejszyła się o 33%, ciśnienie węwnątrzgałkowe spadło o 11%, a amplituda pulsu był niższa o 25%. Tym zmianom fizycznym towarzyszyły objawy takie jak zmniejszenie rozmiarów gałki ocznej, zmiana obszaru, w którym oko widzi ostry obraz oraz – w części przypadków – obrzęk nerwu wzrokowego oraz fałdowanie siatkówki. Okazało się też, że u pięciu astronautów naczyniówka ma grubość większą niż 400 mikrometrów i nie było to skorelowane z wiekiem, płcią ani wcześniejszym pobytem w przestrzeni kosmicznej. "Brak powszechnego ciążenia zmienia dystrybucję krwi w organizmie, zwiększając przepływ krwi w głowie i spowalniając krążenie żylne w oczach. Prawdopodobnie dlatego dochodzi do zwiększenia grubości naczyniówki, gęstej sieci naczyń krwionośnych, odpowiedzialnej za odżywianie siatkówki.
      Zdaniem naukowców powiększenie się naczyniówki w wyniku braku grawitacji może rozciągać włókna kolagenowe w twardówce, prowadząc do długotrwałych zmian właściwości mechanicznych gałki ocznej. Badacze sądzą też, że pulsowanie krwi w warunkach mikrograwitacji może prowadzić do pojawienia się zjawiska uderzeń hydraulicznych, w wyniku których nagłe zmiany ciśnienia przepływu krwi wywołują w oku wstrząsy mechaniczne prowadzące do znacznego przemodelowania tkanek oka.
      Autorzy badań uważają, że zmiany te nie powinny stanowić problemu w przypadku misji trwających 6 do 12 miesięcy. Po powrocie na Ziemię oczy astronautów powróciły do normy, a problemy ze wzrokiem można było korygować za pomocą okularów. Problemem mogą być jednak dłuższe misje, takie jak załogowa wyprawa na Marsa, która może trwać nawet ponad 30 miesięcy. Obecnie nie znamy ani skutków tak długotrwałego pobytu w warunkach mikrograwitacji, ani nie potrafimy im zapobiegać.
      Zaobserwowane przez nas zmiany właściwości mechanicznych oka mogą być biomarkerami SANS. Pomoże to zidentyfikować tych astronautów, którzy są szczególnie narażeni na ryzyko, zanim jeszcze pojawią się u nich problemy spowodowane długotrwałym pobytem w przestrzeni kosmicznej, mówi Costantino.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przenoszony przez komary wirus Zika powoduje infekcje w obu Amerykach, Afryce i Azji, a świat szerzej o nim usłyszał przed 10 laty, gdy wywołał epidemię w Ameryce Południowej. Zwykle Zika nie daje objawów lub przypominają one lekkie przeziębienie. W bardzo rzadkich przypadkach dochodzi do pojawienia się zespołu Guillaina-Barrégo. Dlatego też głównym zagrożeniem wiążącym się z infekcją jest zarażenie ciężarnej kobiety. Zika powoduje bowiem małogłowie u dzieci zarażonych matek.
      Naukowcy z uniwersytetów w Kalifornii, Nowym Jorku i Nevadzie właśnie odkryli mechanizm wywoływania małogłowia u noworodków przez Zikę.
      W artykule Microcephaly protein ANKLE2 promotes Zika virus replication donoszą, że Zika przejmuje proteinę ANKLE2, która jest niezbędna do prawidłowego rozwoju mózgu, i wykorzystuje ją podczas replikacji. Również spokrewnione z Ziką wirusy, jak wirus dengi i wirus żółtej gorączki, również korzystają z ANKLE2. Jednak Zika, w przeciwieństwie do większości spokrewnionych z nim wirusów, jest w stanie przedostać się do łożyska. A to ma katastrofalne skutki dla rozwijającego się dziecka. W przypadku Ziki mamy do czynienia z wirusem, który dostaje się w złe miejsce, w złym czasie, mówi doktor Priya Shah z Uniwersytetu Kalifornijskiego w Davis.
      Zika należy do rodzaju ortoflawiwirusów. Posiadają one jednoniciowe RNA i, podobnie jak inne wirusy, niosą ze sobą ograniczony zestaw instrukcji we własnym kodzie genetycznym. By się replikować, muszą skorzystać z materiału dostępnego w zarażonej komórce gospodarza. Już wcześniej autorzy obecnych badań zauważyli, że wchodząca w skład wirusa proteina NS4A wchodzi w interakcje z ANKLE2 w zarażonych komórkach. ANKLE2 jest zaangażowana w rozwój mózgu u płodu, ale występuje w komórkach całego ciała.
      Podczas najnowszych badan uczeni wykazali, że usunięcie z komórek genu kodującego ANKLE2 zmniejsza zdolność wirusa do namnażania się. Stwierdzili też, że w wyniku interakcji NS4A z ANLKE2 proteina ANKLE2 gromadzi się wokół siateczki śródplazmatycznej zarażonych komórek, tworząc „kieszonkę”, w której replikacja wirusa jest znacznie bardziej efektywna. Ponadto „kieszonka” ukrywa patogen przed układem odpornościowym. Nasz organizm potrafi efektywnie zwalczać wirusy, pod warunkiem jednak, że jest w stanie je znaleźć. Zika i spokrewnione wirusy wyewoluowały efektywne strategie pozwalające ukryć im się w tych „kieszonkach”, by uniknąć wykrycia, stwierdzają autorzy badań. Bez kieszonek wirusy są narażone na atak ze strony układu odpornościowego, który dobrze sobie radzi z utrzymywaniem ich pod kontrolą.
      Co więcej, okazało się, że wirus przechwytuje też proteinę ANKLE2 u komarów, co oznacza, że odgrywa ona dla niego ważną rolę, zarówno u gospodarzy ludzkich, jak i zwierzęcych. Uczeni wykazali też, że do interakcji NS4A i ANKLE2 dochodzi również w przypadku innych wirusów przenoszonych przez komary. To zaś sugeruje, że interakcja ta odgrywa duża rolę w rozprzestrzenianiu się wielu chorób, zatem jej mechanizm można wziąć na cel opracowując nowe leki i szczepionki.
      Wirus Zika jest jednak o tyle unikatowy, że przenika do łożyska i powoduje nieodwracalne szkody u płodu.  Większość innych wirusów nie ma, na szczęście, takich możliwości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badacze z MIT, University of Cambridge i McGill University skanowali mózgi ludzi oglądających filmy i dzięki temu stworzyli najbardziej kompletną mapę funkcjonowania kory mózgowej. Za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) naukowcy zidentyfikowali w naszej korze mózgowej 24 sieci połączeń, które pełnią różne funkcje, jak przetwarzanie języka, interakcje społeczne czy przetwarzanie sygnałów wizualnych.
      Wiele z tych sieci było znanych wcześniej, jednak dotychczas nie zbadano ich działania w warunkach naturalnych. Wcześniejsze badania polegały bowiem na obserwowaniu tych sieci podczas wypełniania konkretnych zadań lub podczas odpoczynku. Teraz uczeni sprawdzali ich działanie podczas oglądania filmów, byli więc w stanie sprawdzić, jak reagują na różnego rodzaju sceny. W neuronauce coraz częściej bada się mózg w naturalnym środowisku. To inne podejście, które dostarcz nam nowych informacji w porównaniu z konwencjonalnymi metodami badawczymi, mówi Robert Desimone, dyrektor McGovern Institute for Brain Research na MIT.
      Dotychczas zidentyfikowane sieci w mózgu badano podczas wykonywania takich zadań jak na przykład oglądanie fotografii twarzy czy też podczas odpoczynku, gdy badani mogli swobodnie błądzić myślami. Teraz naukowcy postanowili przyjrzeć się mózgowi w czasie bardziej naturalnych zadań: oglądania filmów.
      Wykorzystując do stymulacji mózgu tak bogate środowisko jak film, możemy bardzo efektywnie badań wiele obszarów kory mózgowej. Różne regiony będą różnie reagowały na różne elementy filmu, jeszcze inne obszary będą aktywne podczas przetwarzania informacji dźwiękowych, inne w czasie oceniania kontekstu. Aktywując mózg w ten sposób możemy odróżnić od siebie różne obszary lub różne sieci w oparciu o ich wzorce aktywacji, wyjaśnia badacz Reza Rajimehr.
      Bo badań zaangażowano 176 osób, z których każda oglądała przez godzinę klipy filmowe z różnymi scenami. W tym czasie ich mózgi były skanowane aparatem do rezonansu magnetycznego, generującym pole magnetyczne o indukcji 7 tesli. To zapewnia znacznie lepszy obraz niż najlepsze komercyjnie dostępne aparaty MRI. Następnie za pomocą algorytmów maszynowego uczenia analizowano uzyskane dane. Dzięki temu zidentyfikowali 24 różne sieci o różnych wzorcach aktywności i zadaniach.
      Różne regiony mózgu konkurują ze sobą o przetwarzanie specyficznych zadań, gdy więc mapuje się je z osobna, otrzymujemy nieco większe sieci, gdyż ich działanie nie jest ograniczone przez inne. My przeanalizowaliśmy wszystkie te sieci jednocześnie podczas pracy, co pozwoliło na bardziej precyzyjne określenie granic każdej z nich, dodaje Rajimehr.
      Badacze opisali też sieci, których wcześniej nikt nie zauważył. Jedna z nich znajduje się w korze przedczołowej i wydaje się bardzo silnie reagować na bodźce wizualne. Sieć ta była najbardziej aktywna podczas przetwarzania scen z poszczególnych klatek filmu. Trzy inne sieci zaangażowane były w „kontrolę wykonawczą” i były najbardziej aktywne w czasie przechodzenia pomiędzy różnymi klipami. Naukowcy zauważyli też, że były one powiązane z sieciami przetwarzającymi konkretne cechy filmów, takie jak twarze czy działanie. Gdy zaś taka powiązana sieć, odpowiedzialna za daną cechę, była bardzo aktywna, sieci „kontroli wykonawczej” wyciszały się i vice versa. Gdy dochodzi do silnej aktywacji sieci odpowiedzialnej za specyficzny obszar, wydaje się, że te sieci wyższego poziomu zostają wyciszone. Ale w sytuacjach niepewności czy dużej złożoności bodźca, sieci te zostają zaangażowane i obserwujemy ich wysoką aktywność, wyjaśniają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Neurolog Carina Heller poddała się w ciągu roku 75 badaniom rezonansem magnetycznym, by zebrać dane na temat wpływu pigułek antykoncepcyjnych na mózg. Pierwszą pigułkę antykoncepcyjną dopuszczono do użycia w USA w 1960 roku i już po dwóch latach przyjmowało ją 1,2 miliona Amerykanek. Obecnie z pigułek korzysta – z różnych powodów – około 150 milionów kobiet na całym świecie, co czyni je jednymi z najczęściej używanych leków. I chociaż generalnie są one bezpiecznie, ich wpływ na mózg jest słabo poznany.
      Dlatego też Heller postanowiła sprawdzić to na sobie. Zwykle bowiem eksperymentalne obrazowanie mózgu z wykorzystaniem MRI prowadzone jest na niewielkich grupach, a każda osoba poddawana jest badaniu raz lub dwa razy. Takim badaniom umykają codzienne zmiany w działaniu czy morfologii mózgu.
      Pani Heller najpierw pozwoliła przeskanować swój mózg 25 razy w ciągu 5 tygodni. Rejestrowano wówczas zmiany zachodzące podczas jej naturalnego cyklu. Klika miesięcy później zaczęła brać pigułki antykoncepcyjne i po trzech miesiącach poddała się kolejnym 25 skanom w ciągu 5 tygodni. Wkrótce po tym przestała brać pigułki, odczekała 3 miesiąca i została poddana ostatnim 25 skanom w 5 tygodni. Po każdym skanowaniu pobierano jej też krew do badań oraz wypełniała kwestionariusz dotyczący nastroju.
      Heller zaprezentowała wstępne wyniki swoich badań podczas dorocznej konferencji Towarzystwa Neuronauk. Uczona zauważyła, że w trakcie naturalnego cyklu dochodzi do regularnych zmian w objętości mózgu i liczbie połączeń pomiędzy różnymi regionami. W czasie brania pigułek objętość mózgu była nieco mniejsza, podobnie jak liczba połączeń. Po odstawieniu pigułek jej mózg w większości powrócił do naturalnego cyklu zmian.
      Uczona planuje też porównać wyniki swoich badań MRI z wynikami badań kobiety z endometriozą, niezwykle bolesną, niszczącą organizm i życie chorobą, która jest jedną z głównych przyczyn kobiecej niepłodności. Uczona chce sprawdzić, czy zmiany poziomu hormonów w mózgu mogą mieć wpływ na rozwój choroby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Choroba Alzheimera niszczy mózg w dwóch etapach, ogłosili badacze z amerykańskich Narodowych Instytutów Zdrowia. Ich zdaniem pierwszy etap przebiega powoli i niezauważenie, zanim jeszcze pojawią się problemy z pamięcią. Wówczas dochodzi do uszkodzeń tylko kilku typów wrażliwych komórek. Etap drugi jest znacznie bardziej niszczący i w nim dochodzi do pojawienia się objawów choroby, szybkiej akumulacji blaszek amyloidowych, splątków i innych cech charakterystycznych alzheimera.
      Jednym z problemów związanych z diagnozowaniem i leczeniem choroby Alzheimera jest fakt, że do znacznej części szkód dochodzi na długo zanim pojawią się objawy. Możliwość wykrycia tych szkód oznacza, że po raz pierwszy możemy obserwować to, co dzieje się w mózgu chorej osoby na najwcześniejszych etapach choroby. Uzyskane przez nas wyniki w znaczący sposób zmienią rozumienie, w jaki sposób choroba uszkadza mózg i ułatwią opracowanie nowych metod leczenia, mówi doktor Richar J. Hodes, dyrektor Narodowego Instytutu Starzenia Się.
      Badacze przeanalizowali mózgu 84 osób i stwierdzili, że uszkodzenie na wczesnym etapie choroby neuronów hamujących może być tym czynnikiem, który wyzwala całą kaskadę reakcji prowadzących do choroby.
      Badania potwierdziły też wcześniejsze spostrzeżenia dotyczące alzheimera. Naukowcy wykorzystali zaawansowane narzędzia do analizy genetycznej, by bliżej przyjrzeć się komórkom w zakręcie skroniowym środkowym, gdzie znajdują się ośrodki odpowiedzialne za pamięć, język i widzenie. Obszar ten jest bardzo wrażliwy na zmiany zachodzące w chorobie Alzheimera.
      Porównując dane z analizowanych mózgów z danymi z mózgów osób, które cierpiały na alzheimera, naukowcy byli w stanie odtworzyć linię czasu zmian zachodzących w komórkach i genach w miarę rozwoju choroby.
      Wcześniejsze badania sugerowały, że do uszkodzeń dochodzi z kilkunastu etapach charakteryzujących się coraz większą liczbą umierających komórek, zwiększającym się stanem zapalnym i akumulacją białka w postaci blaszek amyloidowych i splątków. Z nowych badań wynika, że występują jedynie dwa etapy, a do wielu uszkodzeń dochodzi w drugim z nich i to wówczas pojawiają się widoczne objawy.
      W pierwszej, wolno przebiegającej ukrytej fazie, powoli gromadzą się blaszki, dochodzi do aktywowania układu odpornościowego mózgu, osłonki mielinowej oraz śmierci hamujących neuronów somatostatynowych. To ostatnie odkrycie jest zaskakujące. Dotychczas uważano bowiem, że szkody w alzheimerze są powodowane głównie poprzez uszkodzenia neuronów pobudzających, które aktywują komórki, a nie je uspokajają. W opublikowanym na łamach Nature artykule możemy zapoznać się z hipotezą opisującą, w jaki sposób śmierć neuronów somatostatynowych może przyczyniać się do rozwoju choroby.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...