Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Solein – pożywienie z wody, elektryczności i powietrza uratuje Ziemię?

Rekomendowane odpowiedzi

Fiński startup Solar Foods produkuje żywność z wody, powietrza i elektryczności, wykorzystując przy tym proces podobny do warzenia piwa. Finowie twierdzą, że pozyskują najbardziej przyjazną środowisku proteinę.

Produkt o nazwie Solein wytwarza się poprzez potraktowanie wody prądem elektrycznym. Do wody dodaje się mikroorganizmy, a samą wodę traktuje się prądem elektrycznym. W procesie tym zostają uwolnione dwutlenek węgla i wodór, którymi żywią się mikroorganizmy. Produktem ubocznym jest Solein. Całość następnie suszy się i uzyskuje proteinowy proszek. Proces podobny jest do warzenia piwa, jednak wymaga on specjalnego reaktora. Firma twierdzi, że cały proces jest, w przeliczeniu na hektar, 10-krotnie bardziej efektywny energetycznie niż fotosynteza i zużywa od 10 do 100 razy mniej wody niż uprawa roślin czy hodowla zwierząt.

Proszek Solein zawiera 50 procent białka, smakiem i wyglądem przypomina mąkę pszenną, nadaje się do spożycia i może być wykorzystywany w drukarkach 3D, dzięki czemu uzyskamy pożądane kształty czy tekstury.

To nowy rodzaj pożywienia, nowy rodzaj białka, odmienny od wszystkiego, co obecnie znajduje się na rynku. Do jego wytworzenia nie potrzebujemy ani rolnictwa, ani akwakultury, mówi dyrektor Solar Foods, dokor Pasi Vainikka. Jego zdaniem jest to całkowite zerwanie z liczącą tysiące lat tradycją pozyskiwania żywności przez człowieka. Jeśli spojrzymy w przeszłość, jeszcze na społeczności zbierackie, to zobaczymy, że ludzkość od zawsze używa mniej więcej tych samych roślin i zwierząt.

Obecnie 1/3 spożywanych przez ludzi kalorii pochodzi od 12 roślin i 5 gatunków zwierząt. Z produkcją żywności wiąże się 25% emisji CO2, a zdaniem ONZ do połowy wieku będziemy musieli wytwarzać 50-75 procent więcej pożywienia niż obecnie. Już w tej chwili 50% nadających się do zamieszkania terenów jest przeznaczonych na produkcję rolną. Tymczasem przełowione oceany zapewniają nam coraz mniej pożywienia. Szczyt efektywności połowów miał miejsce 20 lat temu.

Jednym z powodów, dla którego mięso stało się tak ważne w ludzkiej diecie jest fakt, iż jest ono świetnym źródłem białka o wysokiej jakości. Solein, proteina produkowana przez Solar Foods, również zawiera wszystkie niezbędne aminokwasy, ale ze względu na sposób produkcji nie wymaga używania olbrzymich połaci ziemi. Kolejną cechą charakterystyczną Solein jest możliwość pozyskania węgla bezpośrednio z dwutlenku węgla bez potrzeby korzystania ze źródła cukru. Inne metody produkcji protein za pomocą mikroorganizmów wymagają ziemi, by uprawiać na niej źródło węgla, czytamy na firmowej witrynie.

Vainikka nie sądzi, by wynalazek jego firmy stał się w najbliższym czasie alternatywą dla rolnictwa. Jest jednak optymistą. W ciągu 2 lat jego firma chce uzyskać pozwolenie na rynkowy debiut Solein i ma zamiar w ciągu roku sprzedać 50 milionów posiłków. Finowie współpracują już z Europejską Agencją Kosmiczną, która jest zainteresowana wyprodukowaniem pożywienia na potrzeby załogowej misji na Marsa.

Koszt produkcji kilograma Solein to obecnie 5 euro.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, KopalniaWiedzy.pl napisał:

Produkt o nazwie Solein wytwarza się poprzez potraktowanie wody prądem elektrycznym. W procesie tym zostają uwolnione dwutlenek węgla i wodór.

Jakoś tak sobie liczę i liczę i wciąż mi nie wychodzi..

H2O + elektrony (prąd) = CO2 + H2

Czy ktoś może mi to wyjaśnić (?), tym bardziej, że dwutlenek zostaje "uwolniony"

Na oryginalnej stronie znalazłem taki schemat:

image.thumb.png.22d31aca096407baa35efc4d69cbcd03.png

i ani słowa o wodorze

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
5 godzin temu, szady napisał:

i ani słowa o wodorze

O wodorze i dwutlenku węgla jest w źródle (guardian) - prawdopodobnie coś dziennikarz nie zrozumiał. Niestety całość przypomina trochę aferę z fotosyntezą pana profesora Nazimka. Oryginalna prezentacja (dostępna po zarejestrowaniu) niczego nie wyjaśnia, poza tym jaka to wspaniała technologia. Gdyby to zadziałało i produkowało użyteczne białka, to nie wezmę więcej zwięrzęcego białka do gemby. Howgh! Niestety całość wygląda na scam. 

Dla Waszej wygody umieszczam zipowaną prezentację. Niestety KW ogranicza rozmiar plików i musiałem zzipować.

Solar-Foods-presentation-03-2019.pdf.zip

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ja zaś zwracam uwagę, że ważny jest jeszcze skład aminokwasowy tego białka.  Na przykład z kolagenu czy żelatyny pożytku pokarmowego nie ma.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
20 godzin temu, KopalniaWiedzy.pl napisał:

Do wody dodaje się mikroorganizmy, a samą wodę traktuje się prądem elektrycznym.

Może to coś wyjaśni. Skoro dodają mikroorganizmy a proces jest podobny do ważenia piwa to białko jest uzyskiwane z tych mikroorganizmów (pośrednio / jak alkohol z drożdży?). Nie wiem czy te mikroorganizmy pod wpływem prądu intensyfikują produkcję tych białek czy jest to jakiś inny proces ale teoretycznie ma to sens - co nie znaczy że jest prawdą ;P Jednak gdyby było to również chętnie włączyłbym to białko do diety (ze względu na wpływ na środowisko, bo z wegańskiego punktu widzenia mikroorganizmy to chyba też zwierzęta? choć w sumie sam nie wiem gdzie lezy granica, nie szydzę, po prostu nie wiem). 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przecież samo białko to nie wszystko. Gdzie reszta? Poza tym, żywności produkujemy za dużo i za dużo jej jemy. Tutaj tkwi problem.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
37 minut temu, Rowerowiec napisał:

Przecież samo białko to nie wszystko.

Na wyprodukowanie 22g białka (z 1kg z naturalnej, łąkowe wołowiny) potrzeba energii, która zasili 100W żarówkę świecącą 20dni (bez sensu:D) i nocy. Jeżeli przyszła wołowina stoi w oborze, to jej 1kg potrzebuje 40.000l wody (głównie na produkcję paszy i utylizację odchodów). W bonusie CO2 i metan.

Węglowodany i tłuszcz są najmniej energochłonnymi i ekoszkodliwymi składnikami pokarmu (oprócz wynaturzeń jak olej palmowy).

PS

Istotny jest czynnik humanitarny!!!

 

Edytowane przez 3grosze

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Poszukując życia na innych planetach naukowcy skupiają się na wodzie. Jest ona niezbędna dla życia na Ziemi, zatem jej obecność – lub przynajmniej warunki pozwalające na jej obecność – jest uważana za warunek sine qua non możliwości występowania życia na innych planetach. Badacze z MIT, Politechniki Wrocławskiej oraz innych uczelni proponują na łamach PNAS, by za ciała niebieskie zdolne do utrzymania życia uznać też i takie, na których mogą występować ciecze jonowe. A mogą one powstawać w warunkach, w jakich woda w stanie ciekłym nie może istnieć. Jeśli autorzy najnowszych badań mają rację, to liczba potencjalnych miejsc istnienia życia w przestrzeni kosmicznej może być znacznie większa, niż uważamy. Oczywiście nie będzie to takie życie, jakie znamy z Ziemi.
      Ciecze jonowe to substancje chemiczne składające się z jonów. To sole, które pozostają w stanie płynnym w temperaturze poniżej 100 stopni Celsjusza. Ciecze takie mają bardzo niską prężność par, co oznacza, że niemal się nie ulatniają.
      Z badań, w których brał udział doktor Janusz Pętkowski z Wydziału Inżynierii Środowiska Politechniki Wrocławskiej, wynika, że ciecze jonowe mogą z łatwością powstawać ze składników, których obecność jest spodziewana na niektórych planetach i księżycach. Badacze wykazali, że mieszanina kwasu siarkowego i niektórych składników organicznych zawierających azot, prowadzi do utworzenia cieczy jonowej. Kwas siarkowy jest emitowany przez wulkany, a składniki organiczne z azotem wykrywamy na asteroidach czy planetach, więc mogą być szeroko rozpowszechnione.
      Jak już wspomnieliśmy, ciecze jonowe mają niską prężność par, mogą powstawać i pozostawać stabilne przy wyższych temperaturach i niższym ciśnieniu atmosferycznym niż woda w stanie ciekłym. Zatem na tych ciałach niebieskich, na których woda nie może powstać lub się utrzymać, mogą istnieć ciecze jonowe. A, jak zauważają badacze, w cieczach takich niektóre biomolekuły – jak pewne białka – mogą być stabilne. Kierująca pracami zespołu badawczego doktor Rachana Agrawal zauważa, że jeśli w poszukiwaniu pozaziemskiego życia uwzględnimy ciecze jonowe, znacząco zwiększymy ekosferę, czyli obszar wokół gwiazd, w którym może istnieć życie.
      Badania nad cieczami jonowymi w kontekście istnienia życia rozpoczęto w związku z rozważaniem o obecności życia na Wenus. A raczej w górnych warstwach atmosfery, gdyż na powierzchni planety panuje temperatura rzędu 467 stopni Celsjusza, a ciśnienie atmosferyczne jest 90-krotnie większe niż na powierzchni Ziemi. Bardziej przyjazne warunki panują wśród chmur, w górnych warstwach atmosfery. Nie od dzisiaj mówi się o zorganizowaniu misji badawcza w te regiony.
      Chmury na Wenus składają się głównie z kwasu siarkowego. Naukowcy z MIT prowadzą eksperymenty, których celem jest opracowanie technik zbierania i badania próbek podczas misji. Jeśli takie próbki zostałyby zebrane, zbadanie istniejących w nich związków organicznych będzie wymagało najpierw odparowania kwasi siarkowego. Badacze stworzyli więc pracujący przy niskim ciśnieniu układ, w którym odparowywali kwas siarkowy z roztworu kwasu i glicyny. Jednak za każdym razem, gdy usunęli większość kwasu, w urządzeniu pozostawała warstwa cieczy. Uczeni szybko zdali sobie sprawę, że kwas siarkowy przereagował z glicyną, tworząc ciecz jonową, która utrzymywała się w szerokim zakresie temperatur i ciśnienia. Wtedy też zespół Agrawal wpadł na pomysł, by sprawdzić, czy ciecze jonowe mogą powstawać i utrzymywać się na planetach, na których panują zbyt wysokie temperatury lub zbyt niskie ciśnienie, by utrzymała się na nich woda w stanie ciekłym.
      Eksperymentatorzy przetestowali mieszaniny kwasu siarkowego z ponad 30 związkami organicznymi zawierającymi azot. Mieszaniny tworzyli m.in. na powierzchni skał bazaltowych, które istnieją na wielu planetach. Byliśmy zdumieni, w jak wielu różnych warunkach dochodzi do powstania cieczy jonowej. Jeśli umieścisz kwas siarkowy i związki organiczne na bazalcie, nadmiar kwasu siarkowego wsiąknie w bazalt, a na powierzchni pozostaną krople cieczy jonowej. Formowała się ona w każdych testowanych przez nas warunkach, mówi współautorka badań Sara Seager.
      Ciecze jonowe powstawały w temperaturze do 180 stopni Celsjusza przy ekstremalnie niskim ciśnieniu. To oznacza, że mogą powszechnie występować na skalistych planetach czy księżycach. Wyobraźmy sobie planetę gorętsza od Ziemi, na której nie ma wody, a na której występuje, lub kiedyś występował, kwas siarkowy z aktywności wulkanicznej. Wystarczy, że ten kwas będzie miał kontakt ze związkiem organicznym. A związki te są powszechne w Układzie Słonecznym, wyjaśnia Seager. Tak utworzona ciecz jonowa może teoretycznie istnieć przez tysiąclecia, stając się oazą prostych form życia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niemieccy badacze znaleźli nowe źródło informacji o stężeniu dwutlenku węgla w atmosferze przed milionami lat. Okazało się, że zapis na ten temat znajduje się w... skamieniałych zębach dinozaurów. Uczeni z Uniwersytetów w Moguncji, Göttingen i Bochum, na podstawie analizy izotopów tlenu w szkliwie zębów dinozaurów stwierdzili, że stężenie CO2 w atmosferze w mezozoiku (252–66 milionów lat temu), było znacznie wyższe niż obecnie. Badania były możliwe dzięki wykorzystaniu innowacyjnej metody, która pozwoliła na określenie względnego stosunku wszystkich trzech naturalnych izotopów tlenu.
      Badania wykazały, że produkcja pierwotna – czyli w tym przypadku szybkość gromadzenia energii promieniowania słonecznego, która jest podczas fotosyntezy przekształcana w energię wiązań chemicznych w tkankach roślinnych – była dwukrotnie większa niż obecnie.
      Naukowcy przeanalizowali zęby dinozaurów z Ameryki Północnej, Afryki i Europy pochodzące o czasów od późnej jury po późną kredę. Szkliwo zębowe to jeden z najbardziej stabilnych materiałów biologicznych. Zawiera ono trzy izotopy tlenu, które do organizmu dinozaurów dostawały się w czasie oddychania. Względny stosunek tych izotopów w powietrzu zależy od zmian w poziomie atmosferycznego dwutlenku węgla i intensywności fotosyntezy. To oznacza, że zęby dinozaurów mogą zawierać dane o klimacie i szacie roślinnej.
      Z badań wynika, że pod koniec jury, około 150 milionów lat temu, stężenie CO2 w atmosferze było czterokrotnie większe niż w epoce przedprzemysłowej. W późnej kredzie – 73–66 milionów lat temu – było zaś 3-krotnie wyższe. W czasach przedprzemysłowych stężenie CO2 w atmosferze wynosiło 280 ppm. Obecnie jest ono o ponad 50% wyższe. W 2024 było to 424 ppm. Wartość ta szybko rośnie. Jeszcze w 2017 roku stężenie wynosiło 406 ppm.
      Analizy wykazały też, że w niezwykły stosunek izotopów tlenu w niektórych zębach gatunków Tyrannosaurus rex i Kaatedocus siberi. To najprawdopodobniej dowód na nagłe wzrosty stężenia CO2, spowodowane na przykład potężną aktywnością wulkaniczną, jak ta, która utworzyła trapy Dekanu.
      Uzyskane wyniki to przełom w paleoklimatologii. Dotychczas bowiem w czasie podobnych badań używa się próbek węglanów z gleby i wykorzystuje proxy morskie, czyli niebezpośrednich wskaźników ze środowiska morskiego. Obie te metody obarczone są jednak pewnym marginesem niepewności. Użycie szkliwa zębów dinozaurów to pierwsza metoda badań tego typu opierająca się na kręgowcach lądowych. To całkowicie nowy sposób wglądu w przeszłość Ziemi. Teraz możemy użyć sfosylizowanego szkliwa do badania składu atmosfery oraz produktywności roślin morskich i lądowych. To kluczowe elementy zrozumienia długoterminowej dynamiki klimatu, mówi doktor Dingsu Feng z Wydziału Geochemii i Geologii Izotopowej na Uniwersytecie w Göttingen.
      Informacje o produkcji pierwotnej to ważne dane na temat lądowych i morskich sieci troficznych. Dane takie trudno jest zdobyć, a są one bardzo ważne, gdyż to dostępna biomasa roślinna decyduje o liczbie zwierząt, ich gatunków oraz długości łańcucha pokarmowego, wyjaśnia profesor Eva M. Griebeler z Uniwersytetu w Moguncji.
      Badania zostały omówione na łamach PNAS.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Szwajcarii powstaje „żywy” materiał, który w sposób aktywny pobiera dwutlenek węgla z atmosfery. Wewnątrz materiału znajdują się cyjanobakterie, które wiążą CO2 na dwa różne sposoby. Nad niezwykłym projektem, którego celem jest połączenie konwencjonalnych materiałów z bakteriami, grzybami czy glonami pracują naukowcy z Politechniki Federalnej w Zurychu. Ich celem jest stworzenie materiałów, które dzięki metabolizmowi mikroorganizmów nabierają nowych pożądanych właściwości. Na przykład usuwają dwutlenek węgla z powietrza.
      Zespół pracujący pod kierunkiem profesora Marka Tibbitta z katedry Inżynierii Makromolekularnej stworzył właśnie żel zawierający cyjanobakterie. Można go kształtować za pomocą drukarki 3D. Niezwykłe jest to, że żel – mimo że jest miękki – ma być materiałem budowlanym. A jedyne, czego potrzebuje, by się nim stać, to światło słoneczne i słona woda zawierająca proste do uzyskania składniki odżywcze. Oraz dwutlenek węgla z atmosfery. Jakby tego było mało, materiał absorbuje więcej CO2 niż wiążą zawarte w nim cyjanobakterie. Dzieje się tak, gdyż przechowuje on atmosferyczny węgiel nie tylko w postaci biomasy, ale również w postaci mineralnej.
      Cyjanobakterie to jedne z najstarszych form życia na Ziemi. Przeprowadzają bardzo efektywną fotosyntezę i nie potrzebują wiele światła, by z CO2 i wody wytwarzać biomasę. Jednocześnie, w wyniku przeprowadzanej przez nie fotosyntezy, dochodzi do zmiany środowiska chemicznego wokół komórki i tworzenia się węglanów. Węglany deponowane są wewnątrz żelu, wzmacniają go, a jednocześnie same pochłaniają atmosferyczny dwutlenek węgla, przechowując go w bardziej stabilnej formie niż bakterie. Badania wykazały, że taki żel pochłania węgiel przez 400 dni i przechowuje 26 miligramów CO2 na każdy gram. To znacząco więcej niż wiele innych materiałów.
      Twórcy żelu chcą w przyszłości zbadać, czy sprawdzi się on na przykład jako powłoka, którą można będzie pokrywać i zamieniać je w miejsca pochłaniające dwutlenek węgla z atmosfery.
      Źródło: Dual carbon sequestration with photosynthetic living materials, https://www.nature.com/articles/s41467-025-58761-y

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z SETI Institute oraz Uniwersytetu Kalifornijskiego w Davis są pierwszymi, którzy zarejestrowali wielkie pierścienie powietrza wypuszczane przez humbaki. Zwierzęta tworzyły je podczas przyjaznej interakcji z ludźmi. Trudno oprzeć się wrażeniu, że pierścienie te przypominają kółka wypuszczane przez palaczy papierosów. Naukowcy przypuszczają, że pierścienie to albo próba zabawy, albo komunikacji z ludźmi.
      Nie od dzisiaj wiemy, że humbaki wykorzystują bańki powietrza do otaczania ławic ryb, na które polują. Ponadto samce głośno wypuszczają powietrze, tworząc widoczne ślady na wodzie, gdy konkurują o samice. Tym razem mamy do czynienia z nieznanym wcześniej zjawiskiem - tworzeniem specyficznych baniek podczas przyjaznej interakcji z ludźmi.
      Humbaki żyją w złożonych społecznościach, wydają różne dźwięki, posługują się bąblami powietrza jak narzędziami, pomagają innym gatunkom atakowanym przez drapieżniki. Teraz widzimy, że wydmuchują w kierunku ludzi pierścienie z powietrza. To może być sposób na interakcję, obserwowanie naszej reakcji i zaangażowanie nas w zabawę lub komunikację, mówi doktor Fred Sharpe.
      Humbaki w przyjazny sposób interesują się łodziami i pływającymi ludźmi. Większość spośród obserwowanych przez nas na całym świecie dziesiątek populacji waleni, podpływała do łodzi i ludzi, wypuszczając bąble, dodaje Jodi Frediani.
      Źródło: Humpback Whales Blow Poloidal Vortex Bubble Rings, https://onlinelibrary.wiley.com/doi/10.1111/mms.70026

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Białko, dzięki któremu pchły mogą skakać na wysokość 100-krotnie większą niż wysokość ich ciała, może przydać się do zapobiegania infekcjom szpitalnym. Naukowcy z australijskiego RMIT University poinformowali o wykorzystaniu powłoki wykonanej z białek przypominających rezylinę. Dzięki niej bakterie nie były w stanie uczepić się badanej powierzchni. Celem eksperymentów jest stworzenie metod zapobiegania infekcjom przez bakterie osadzające się na powierzchniach urządzeń medycznych.
      Nasza praca pokazuje, że tego typu powłoki mogą efektywnie zwalczać bakterie, nie tylko krótkoterminowo, ale prawdopodobnie i w dłuższym czasie, mówi główna autorka badań, profesor Namita Roy Choudhry.
      Zakażenia bakteryjne po zabiegach szpitalnych to poważny problem. Tym poważniejszy w obliczu zwiększającej się antybiotykooporności. Antybiotykooporność wywołała większe zainteresowanie materiałami, które są w stanie samodzielnie zachować sterylność. Dlatego też stworzyliśmy powłokę, która całkowicie zapobiega początkowemu przyczepianiu się bakterii i utworzeniu biofilmu, dodaje uczona.
      Rezylina bo niezwykle elastyczne białko występujące u owadów. To dzięki niemu pchły mogą skakać tak wysoko. Jest przy tym niezwykle wytrzymałe i biokompatybilne. Te wyjątkowe właściwości w połączeniu z faktem, że rezylina i podobne jej białka nie są toksyczne, czynią z nich idealny materiał wszędzie tam, gdzie potrzebna jest elastyczna, wytrzymała powłoka, stwierdza Choundhry.
      Naukowcy wykorzystali zmodyfikowane formy rezyliny i stworzyli z nich cały szereg powłok, które następnie testowali pod kątem interakcji z bakteriami E. coli i ludzką skórą. Badania wykazały, że w formie nanokropli (koacerwatu) powłoki takie uniemożliwiały przyczepienie się 100% bakterii, jednocześnie zaś były całkowicie biokompatybilne ze zdrowymi ludzkimi komórkami.
      Przy kontakcie z ujemnie naładowaną błoną komórkową bakterii dochodziło do niszczenia błony za pomocą sił elektrostatycznych, wycieku zawartości komórki i jej śmierci. Efektywność tej metody wynosiła 100% w testach z E. coli. Wysoka biokompatybilność z ludzkimi tkankami oznacza, że stosowanie powłok z rezyliny i podobnych jej białek nie powinno być ryzykowne, a fakt, że są to materiały naturalne, oznacza, iż są bardziej przyjazne środowisku niż rozwiązania opierające się na nanocząstkach srebra.
      Źródło: Nano-structured antibiofilm coatings based on recombinant resilin

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...